Skip to main content

Population Genomic Insights into Insecticide Resistance in the Colorado Potato Beetle

  • Chapter
  • First Online:
Population Genomics

Abstract

The ability of pests to develop resistance is still poorly understood, particularly regarding the process of adaptive change that leads to resistance. Understanding the mechanisms involved in pesticide adaptation is important because common methods of field-level resistance management assume that simple (single-gene) mutations cause resistance, but may not perform effectively when multiple loci and several molecular pathways confer resistance. Emerging experimental and genomic evidence suggests the single-gene model may be insufficient to explain many cases of rapid pest evolution. Here we review such evidence in the Colorado potato beetle, Leptinotarsa decemlineata, widely considered to be a super-pest due to its rapid evolution to most classes of insecticides. A combination of studies suggests that polygenic resistance drawn from standing variation best explains regional differences in patterns of insecticide resistance. However, these studies have lacked a temporal framework to demonstrate polygenic evolution unequivocally, as well as the ability to estimate key evolutionary parameters to model processes of rapid evolution. We suggest a temporal framework to empirically test for polygenic insecticide resistance evolution, as well as determine the proximate genetic and evolutionary mechanisms contributing to resistance. Emerging data from population genomics promise to increase our knowledge of insect pest molecular genetics by identifying gene networks involved in pesticide resistance, thereby providing a means to monitor the spread of resistance, develop management approaches that increase pesticide longevity, and identify new methods of gene-targeted pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alyokhin A, Chen YH. Adaptation to toxic hosts as a factor in the evolution of insecticide resistance. Curr Opin Insect Sci. 2017;21:33–8.

    Google Scholar 

  • Alyokhin AV, Ferro DN. Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J Econ Entomol. 1999;92:510–5.

    Google Scholar 

  • Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E. Colorado potato beetle resistance to insecticides. Am J Potato Res. 2008;85:395–413.

    Google Scholar 

  • Alyokhin A, Mota-Sanchez D, Baker M, Snyder WE, Menasha S, Whalon M, et al. The red queen in a potato field: integrated pest management versus chemical dependency in Colorado potato beetle control. Pest Manag Sci. 2015;71:343–56.

    Google Scholar 

  • Anspaugh DD, Kennedy GG, Roe RM. Purification and characterization of a resistance-associated esterase from the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pestic Biochem Physiol. 1995;53:84–96.

    Google Scholar 

  • Argentine J, Clark JM, Ferro D. Relative fitness of insecticide-resistant Colorado potato beetle strains (Coleoptera: Chrysomelidae). Environ Entomol. 1989a;18:705–10.

    Google Scholar 

  • Argentine J, Clark MJ, Ferro D. Genetics and synergism of resistance to azinphosmethyl and permethrin in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1989b;82:698–705.

    Google Scholar 

  • Argentine JA, Clark JM, Lin H. Genetics and biochemical mechanisms of abamectin resistance in two isogenic strains of Colorado potato beetle. Pestic Biochem Physiol. 1992;44:191–207.

    Google Scholar 

  • Argentine JA, Zhu K, Lee S, Clark JM. Biochemical mechanisms of azinphosmethyl resistance in isogenic strains of Colorado potato beetle. Pestic Biochem Physiol. 1994;48:63–78.

    Google Scholar 

  • Argentine JA, Lee SH, Sos MA, Barry SR, Clark JM. Permethrin resistance in a near isogenic strain of Colorado potato beetle. Pestic Biochem Physiol. 1995;53:97–115.

    Google Scholar 

  • Baker A. Metal tolerance. New Phytol. 1987;106:93–111.

    Google Scholar 

  • Baker MB, Alyokhin A, Porter AH, Ferro DN, Dastur SR, Galal N. Persistence and inheritance of costs of resistance to imidacloprid in Colorado potato beetle. J Econ Entomol. 2007;100:1871–9.

    Google Scholar 

  • Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23:38–44.

    Google Scholar 

  • Bass C, Zimmer CT, Riveron JM, Wilding CS, Wondji CS, Kaussmann M, Field LM, Williamson MS, Nauen R. Gene amplification and microsatellite polymorphism underlie a recent insect host shift. Proc Natl Acad Sci. 2013;110(48):19460–5.

    Google Scholar 

  • Bourguet D, Genissel A, Raymond M. Insecticide resistance and dominance levels. J Econ Entomol. 2000;93:1588–95.

    Google Scholar 

  • Brevik K, Bueno EM, McKay S, Schoville SD, Chen YH. Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle, Leptinotarsa decemlineata. Evol Appl. 2020; https://doi.org/10.1111/eva.13153.

  • Calla B, Noble K, Johnson RM, Walden KK, Schuler MA, Robertson HM, et al. Cytochrome P450 diversification and hostplant utilization patterns in specialist and generalist moths: birth, death and adaptation. Mol Ecol. 2017;26:6021–35.

    Google Scholar 

  • Casagrande R. The Colorado potato beetle: 125 years of mismanagement. Bull Entomol Soc Am. 1987;33:142–50.

    Google Scholar 

  • Cattel J, Faucon F, Le Péron B, Sherpa S, Monchal M, Grillet L, et al. Combining genetic crosses and pool targeted DNA-seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito Aedes aegypti. Evol Appl. 2020;13:303–17.

    Google Scholar 

  • Chen YH, Schoville SD. Editorial overview: ecology: ecological adaptation in agroecosystems: novel opportunities to integrate evolutionary biology and agricultural entomology. Curr Opin Insect Sci. 2018;26:iv–viii.

    Google Scholar 

  • Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13.

    Google Scholar 

  • Chung SH, Rosa C, Hoover K, Luthe DS, Felton GW. Colorado potato beetle manipulates plant defenses in local and systemic leaves. Plant Signal Behav. 2013;8:e27592.

    Google Scholar 

  • Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K, et al. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep. 2017;7:1–13.

    Google Scholar 

  • Clements J, Schoville S, Peterson N, Lan Q, Groves RL. Characterizing molecular mechanisms of imidacloprid resistance in select populations of Leptinotarsa decemlineata in the Central Sands region of Wisconsin. PLoS One. 2016;11:e0147844.

    Google Scholar 

  • Clements J, Schoville S, Clements N, Chapman S, Groves RL. Temporal patterns of imidacloprid resistance throughout a growing season in Leptinotarsa decemlineata populations. Pest Manag Sci. 2017a;73:641–50.

    Google Scholar 

  • Clements J, Schoville S, Peterson N, Huseth AS, Lan Q, Groves RL. RNA interference of three upregulated transcripts associated with insecticide resistance in an imidacloprid resistant population of Leptinotarsa decemlineata. Pestic Biochem Physiol. 2017b;135, 35–40.

    Google Scholar 

  • Clements J, Sanchez-Sedillo B, Bradfield CA, Groves RL. Transcriptomic analysis reveals similarities in genetic activation of detoxification mechanisms resulting from imidacloprid and chlorothalonil exposure. PLoS One. 2018;13:e0205881.

    Google Scholar 

  • Cohen ZP, Brevik K, Chen YH, Hawthorne DJ, Weibel BD, Schoville SD. Elevated rates of positive selection drive the evolution of pestiferousness in the Colorado potato beetle (Leptinotarsa decemlineata, Say). Mol Ecol. 2021;30:237–54.

    Google Scholar 

  • Crossley MS, Chen YH, Groves RL, Schoville SD. Landscape genomics of Colorado potato beetle provides evidence of polygenic adaptation to insecticides. Mol Ecol. 2017;26:6284–300.

    Google Scholar 

  • Crossley MS, Rondon SI, Schoville SD. A comparison of resistance to imidacloprid in Colorado potato beetle (Leptinotarsa decemlineata Say) populations collected in the Northwest and Midwest US. Am J Potato Res. 2018:1–9.

    Google Scholar 

  • Crossley MS, Rondon SI, Schoville SD. Effects of contemporary agricultural land cover on Colorado potato beetle genetic differentiation in the Columbia Basin and Central Sands. Ecol Evol. 2019a;9:9385–94.

    Google Scholar 

  • Crossley MS, Rondon SI, Schoville SD. Patterns of genetic differentiation in Colorado potato beetle correlate with contemporary, not historic, potato land cover. Evol Appl. 2019b;12:804–14.

    Google Scholar 

  • Crow JF. Genetics of insect resistance to chemicals. Annu Rev Entomol. 1957;2:227–46.

    Google Scholar 

  • Denholm I, Rowland M. Tactics for managing pesticide resistance in arthropods: theory and practice. Annu Rev Entomol. 1992;37:91–112.

    Google Scholar 

  • Dermauw W, Pym A, Bass C, Van Leeuwen T, Feyereisen R. Does host plant adaptation lead to pesticide resistance in generalist herbivores? Curr Opin Insect Sci. 2018;26:25–33.

    Google Scholar 

  • Dively GP, Crossley MS, Schoville SD, Steinhauer N, Hawthorne DJ. Regional differences in gene regulation may underlie patterns of sensitivity to novel insecticides in Leptinotarsa decemlineata. Pest Manag Sci. 2020;76:4278–85.

    Google Scholar 

  • Feyereisen R, Dermauw W, Van Leeuwen T. Genotype to phenotype, the molecular and physiological dimensions of resistance in arthropods. Pestic Biochem Physiol. 2015;121:61–77.

    Google Scholar 

  • Ffrench-Constant RH. The molecular genetics of insecticide resistance. Genetics. 2013;194:807.

    Google Scholar 

  • Forgash AJ. Insecticide resistance in the Colorado potato beetle. Research Bulletin, Massachusetts Agricultural Experiment Station. 1985. p. 33–52.

    Google Scholar 

  • Foster GE. The Colorado potato beetle. Concord, NH. 1876.

    Google Scholar 

  • François O, Martins H, Caye K, Schoville SD. Controlling false discoveries in genome scans for selection. Mol Ecol. 2016;25:454–69.

    Google Scholar 

  • Gaddelapati SC, Kalsi M, Roy A, Palli SR. Cap'n'collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochem Mol Biol. 2018;99:54–62.

    Google Scholar 

  • Georghiou G. The magnitude of the resistance problem. In: National Research Council, editor. Pesticide resistance: strategies and tactics for management. Washington, DC: National Academy Press; 1986. p. 14–43.

    Google Scholar 

  • Georghiou GP, Taylor CE. Factors influencing the evolution of resistance. In: National Research Council, editor. Pesticide resistance: strategies and tactics for management. Washington, DC: National Academy Press; 1986. p. 157–69.

    Google Scholar 

  • Gordon H. Nutritional factors in insect resistance to chemicals. Annu Rev Entomol. 1961;6:27–54.

    Google Scholar 

  • Gould F. The evolutionary potential of crop pests. Am Sci. 1991;79:496–507.

    Google Scholar 

  • Gui S, Taning CNT, Wei D, Smagghe G. First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol. 2020:104013.

    Google Scholar 

  • Haegele RW, Wakeland C. Control of the Colorado potato beetle. Moscow, ID: University of Idaho, College of Agriculture, Extension Division; 1932.

    Google Scholar 

  • Hahn MW, Han MV, Han S-G. Gene family evolution across 12 Drosophila genomes. PLoS Genet. 2007;3:e197.

    Google Scholar 

  • Hardy NB, Peterson DA, Ross L, Rosenheim JA. Does a plant-eating insect's diet govern the evolution of insecticide resistance? Comparative tests of the pre-adaptation hypothesis. Evol Appl. 2018;11:739–47.

    Google Scholar 

  • Haridas CV, Tenhumberg B. Modeling effects of ecological factors on evolution of polygenic pesticide resistance. J Theor Biol. 2018;456:224–32.

    Google Scholar 

  • Hartl DL, Clark AG. Principles of population genetics. 3rd ed. Sunderland, MA: Sinauer Associates; 1997. p. 542.

    Google Scholar 

  • Hawthorne DJ. Quantitative trait locus mapping of pyrethroid resistance in Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). J Econ Entomol. 2003;96:1021–30.

    Google Scholar 

  • Hawthorne DJ, Crossley MS, Schoville SD, Steinhauer N, Dively GP. Regional differences in gene regulation may underlie patterns of sensitivity to novel insecticides in Leptinotarsa decemlineata. Pest Manag Sci. 2020:794446.

    Google Scholar 

  • Heim D, Kennedy G, Vanduyn J. Survey of insecticide resistance among North Carolina Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J Econ Entomol. 1990;83:1229–35.

    Google Scholar 

  • Heim DC, Kennedy GG, Gould FL, Van Duyn JW. Inheritance of fenvalerate and carbofuran resistance in Colorado beetles – Leptinotarsa decemlineata (Say) – from North Carolina. Pestic Sci. 1992;34:303–11.

    Google Scholar 

  • Hitchner EM, Kuhar TP, Dively GP, Youngman RR, Philips CR, Anderson TD. Baseline toxicity and field efficacy of metaflumizone on Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 2012;105:207–13.

    Google Scholar 

  • Holmes MW, Hammond TT, Wogan GO, Walsh RE, LaBarbera K, Wommack EA, et al. Natural history collections as windows on evolutionary processes. Mol Ecol. 2016;25:864–81.

    Google Scholar 

  • Hoy MA. Myths, models and mitigation of resistance to pesticides. Philos Trans R Soc London B Biol Sci. 1998;353:1787–95.

    Google Scholar 

  • Huseth A, Groves R. Effect of insecticide management history on emergence phenology and neonicotinoid resistance in Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). J Econ Entomol. 2013;106:2491–505.

    Google Scholar 

  • Huseth AS, Petersen JD, Poveda K, Szendrei Z, Nault BA, Kennedy GG, et al. Spatial and temporal potato intensification drives insecticide resistance in the specialist herbivore, Leptinotarsa decemlineata. PLoS One. 2015;10:e0127576.

    Google Scholar 

  • Ioannidis P, Grafius E, Whalon M. Patterns of insecticide resistance to azinphosmethyl, carbofuran, and permethrin in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1991;84:1417–23.

    Google Scholar 

  • Ioannidis PM, Grafius EJ, Wierenga JM, Whalon ME, Hollingworth RM. Selection, inheritance and characterization of carbofuran resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae). Pestic Sci. 1992;35:215–22.

    Google Scholar 

  • IRAC. Insecticide Resistance Action Committee database. 2016. http://www.irac-online.org/.

  • Izzo V, Chen YH, Schoville SD, Wang C, Hawthorne DJ. Origin of pest lineages of the Colorado potato beetle, Leptinotarsa decemlineata. bioRxiv. 2017:156612.

    Google Scholar 

  • Izzo VM, Chen YH, Schoville SD, Wang C, Hawthorne DJ. Origin of pest lineages of the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 2018;111:868–78.

    Google Scholar 

  • Jacques RL. The potato beetles. Abingdon: Taylor & Francis; 1988.

    Google Scholar 

  • Jiang W-H, Guo W-C, Lu W-P, Shi X-Q, Xiong M-H, Wang Z-T, et al. Target site insensitivity mutations in the AChE and LdVssc1 confer resistance to pyrethroids and carbamates in Leptinotarsa decemlineata in northern Xinjiang Uygur autonomous region. Pestic Biochem Physiol. 2011;100:74–81.

    Google Scholar 

  • Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 2017;83:1–12.

    Google Scholar 

  • Kaplanoglu E, Chapman P, Scott IM, Donly C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci Rep. 2017;7:1762.

    Google Scholar 

  • Karasov T, Messer PW, Petrov DA. Evidence that adaptation in Drosophila is not limited by mutation at single sites. PLoS Genet. 2010;6:e1000924.

    Google Scholar 

  • Kim H-J, Hawthorne DJ, Peters T, Dively G, Clark JM. Application of DNA-based genotyping techniques for the detection of kdr-like pyrethroid resistance in field populations of Colorado potato beetle. Pestic Biochem Physiol. 2005;81:85–96.

    Google Scholar 

  • Kliot A, Ghanim M. Fitness costs associated with insecticide resistance. Pest Manag Sci. 2012;68:1431–7.

    Google Scholar 

  • Kreiner JM, Stinchcombe JR, Wright SI. Population genomics of herbicide resistance: adaptation via evolutionary rescue. Annu Rev Plant Biol. 2018;69:611–35.

    Google Scholar 

  • Kumar A, Congiu L, Lindström L, Piiroinen S, Vidotto M, Grapputo A. Sequencing, de novo assembly and annotation of the Colorado potato beetle, Leptinotarsa decemlineata, transcriptome. PLoS One. 2014;9:e86012.

    Google Scholar 

  • Lotterhos KE, Whitlock MC. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol. 2015;24:1031–46.

    Google Scholar 

  • Luck RF, van den Bosch R, Garcia R. Chemical insect control – a troubled pest management strategy. Bioscience. 1977;27:606–11.

    Google Scholar 

  • Malaspinas A-S, Malaspinas O, Evans SN, Slatkin M. Estimating allele age and selection coefficient from time-serial data. Genetics. 2012;192:599–607.

    Google Scholar 

  • Mallet J. The evolution of insecticide resistance: have the insects won? Trends Ecol Evol. 1989;4:336–40.

    Google Scholar 

  • Mamidala P, Jones SC, Mittapalli O. Metabolic resistance in bed bugs. Insects. 2011;2:36–48.

    Google Scholar 

  • Margus A, Piiroinen S, Lehmann P, Tikka S, Karvanen J, Lindström L. Sublethal pyrethroid insecticide exposure carries positive fitness effects over generations in a pest insect. Sci Rep. 2019;9:1–10.

    Google Scholar 

  • Miyo T, Keil C, Hough-Goldstein J, Oguma Y. Inheritance of resistance to esfenvalerate in Colorado potato beetles (Coleoptera: Chrysomelidae). J Econ Entomol. 1999;92:1031–8.

    Google Scholar 

  • Mota-Sanchez D, Hollingworth RM, Grafius EJ, Moyer DD. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say)(Coleoptera: Chrysomelidae). Pest Manag Sci. 2006;62:30–7.

    Google Scholar 

  • Olson E, Dively G, Nelson J. Baseline susceptibility to imidacloprid and cross resistance patterns in Colorado potato beetle (Coleoptera: Chrysomelidae) populations. J Econ Entomol. 2000;93(2):447–458.

    Google Scholar 

  • Orr HA. The genetic theory of adaptation: a brief history. Nat Rev Genet. 2005;6:119–27.

    Google Scholar 

  • Pélissié B, Crossley MS, Cohen Z, Schoville SD. Rapid evolution in insect pests: the importance of space and time in population genomics studies. Curr Opin Insect Sci. 2018;26:8–16.

    Google Scholar 

  • Pélissié B, Chen YH, Cohen ZP, Crossley MS, Hawthorne DJ, Victor I, et al. Genome resequencing reveals rapid, repeated evolution in the Colorado potato beetle, Leptinotarsa decemlineata. bioRxiv. 2021:430453.

    Google Scholar 

  • Pietri JE, Liang D. The links between insect symbionts and insecticide resistance: causal relationships and physiological tradeoffs. Ann Entomol Soc Am. 2018;111:92–7.

    Google Scholar 

  • Piiroinen S, Lindström L, Lyytinen A, Mappes J, Chen YH, Izzo V, et al. Pre-invasion history and demography shape the genetic variation in the insecticide resistance-related acetylcholinesterase 2 gene in the invasive Colorado potato beetle. BMC Evol Biol. 2013;13:13.

    Google Scholar 

  • Qu Y, Chen J, Li C, Wang Q, Guo W, Han Z, et al. The subunit gene Ldα1 of nicotinic acetylcholine receptors plays important roles in the toxicity of imidacloprid and thiamethoxam against Leptinotarsa decemlineata. Pestic Biochem Physiol. 2016;127:51–8.

    Google Scholar 

  • Rahardja U, Whalon ME. Inheritance of resistance to Bacillus thuringiensis subsp. tenebrionis CryIIIA δ-endotoxin in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1995;88:21–6.

    Google Scholar 

  • Rane RV, Walsh TK, Pearce SL, Jermiin LS, Gordon KH, Richards S, et al. Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr Opin Insect Sci. 2016;13:70–6.

    Google Scholar 

  • Riley CV. First annual report of the noxious, beneficial and other insects of the state of Missouri. First annual report of the noxious, beneficial and other insects of the State of Missouri. 1869.

    Google Scholar 

  • Riveron JM, Yunta C, Ibrahim SS, Djouaka R, Irving H, Menze BD, et al. A single mutation in the GSTe2 gene allows tracking of metabolically based insecticide resistance in a major malaria vector. Genome Biol. 2014;15:R27.

    Google Scholar 

  • Rose RL, Brindley WA. An evaluation of the role of oxidative enzymes in Colorado potato beetle resistance to carbamate insecticides. Pestic Biochem Physiol. 1985;23:74–84.

    Google Scholar 

  • Roush RT. Designing resistance management programs: how can you choose? Pestic Sci. 1989;26:423–41.

    Google Scholar 

  • Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931.

    Google Scholar 

  • Scott JG. Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use. Annu Rev Entomol. 2019;64:243–57.

    Google Scholar 

  • Scott IM, Tolman JH, MacArthur DC. Insecticide resistance and cross-resistance development in Colorado potato beetle Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) populations in Canada 2008–2011. Pest Manag Sci. 2015;71:712–21.

    Google Scholar 

  • Silcox CA, Ghidiu GM, Forgash AJ. Laboratory and field evaluation of piperonyl butoxide as a pyrethroid synergist against the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1985;78:1399–405.

    Google Scholar 

  • Stewart JG, Kennedy GG, Sturz AV. Incidence of insecticide resistance in populations of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), on Prince Edward Island. Can Entomol. 1997;129:21–6.

    Google Scholar 

  • Szendrei Z, Grafius E, Byrne A, Ziegler A. Resistance to neonicotinoid insecticides in field populations of the Colorado potato beetle (Coleoptera: Chrysomelidae). Pest Manag Sci. 2012;68:941–6.

    Google Scholar 

  • Tabashnik BE. Modeling and evaluation of resistance management tactics. In: Roush RT, Tabashnik BE, editors. Pesticide resistance in arthropods. New York: Chapman & Hall; 1990. p. 153–82.

    Google Scholar 

  • Tabashnik BE, Brevault T, Carriere Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat Biotechnol. 2013;31:510–21.

    Google Scholar 

  • Tan J, Salgado VL, Hollingworth RM. Neural actions of imidacloprid and their involvement in resistance in the Colorado potato beetle, Leptinotarsa decemlineata (Say). Pest Manag Sci. 2008;64:37–47.

    Google Scholar 

  • Tebbe C, Breckheimer B, Racca P, Schorn C, Kleinhenz B, Nauen R. Incidence and spread of knockdown resistance (kdr) in German Colorado potato beetle (Leptinotarsa decemlineata Say) populations. EPPO Bull. 2016;46:129–38.

    Google Scholar 

  • Tower WL. An investigation of evolution in chrysomelid beetles of the genus Leptinotarsa. Washington, DC: Carnegie Institution of Washington; 1906.

    Google Scholar 

  • Trisyono A, Whalon ME. Fitness costs of resistance to Bacillus thuringiensis in Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 1997;90:267–71.

    Google Scholar 

  • Walsh BD. The new potato bug. Pract Entomol. 1866;2:13–6.

    Google Scholar 

  • Wan P-J, Shi X-Q, Kong Y, Zhou L-T, Guo W-C, Ahmat T, et al. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata. Pestic Biochem Physiol. 2013;107:360–8.

    Google Scholar 

  • Wan P-J, Guo W-Y, Yang Y, Lü F-G, Lu W-P, Li G-Q. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata. J Insect Physiol. 2014;63:48–55.

    Google Scholar 

  • Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet. 2016;32:155–64.

    Google Scholar 

  • Whalon ME, Mota-Sanchez D, Hollingworth RM. Arthropod pesticide resistance database. East Lansing, MI: Michigan State University; 2016. http://www.pesticideresistance.org/

    Google Scholar 

  • Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: key principles, and lessons from rapid repeated adaptation of killifish (Fundulus heteroclitus) populations. Evol Appl. 2017;10:762–83.

    Google Scholar 

  • Wierenga JM, Hollingworth RM. Inhibition of altered acetylcholinesterases from insecticide-resistant Colorado potato beetles (Coleoptera: Chrysomelidae). J Econ Entomol. 1993;86:673–9.

    Google Scholar 

  • Wilding CS. Regulating resistance: CncC: Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Curr Opin Insect Sci. 2018;27:89–96.

    Google Scholar 

  • Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996;252:51–60.

    Google Scholar 

  • Wilson TG. Transposable elements as initiators of insecticide resistance. J Econ Entomol. 1993;86:645–51.

    Google Scholar 

  • Wondji CS, Dabire RK, Tukur Z, Irving H, Djouaka R, Morgan JC. Identification and distribution of a GABA receptor mutation conferring dieldrin resistance in the malaria vector Anopheles funestus in Africa. Insect Biochem Mol Biol. 2011;41:484–91.

    Google Scholar 

  • Wybouw N, Zhurov V, Martel C, Bruinsma KA, Hendrickx F, Grbić V, Van Leeuwen T. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Mol Ecol. 2015;24(18), 4647–4663.

    Google Scholar 

  • Zhao J-Z, Bishop BA, Grafius EJ. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol. 2000;93:1508–14.

    Google Scholar 

  • Zhu KY, Clark JM. Validation of a point mutation of acetylcholinesterase in Colorado potato beetle by polymerase chain reaction coupled to enzyme inhibition assay. Pestic Biochem Physiol. 1997;57:28–35.

    Google Scholar 

  • Zhu KY, Lee SH, Clark JM. A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic Biochem Physiol. 1996;55:100–8.

    Google Scholar 

  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci. 2011;67:175–82.

    Google Scholar 

  • Zhu F, Moural TW, Nelson DR, Palli SR. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple cytochrome P450s. Sci Rep. 2016;6

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Yolanda Chen, Sylvia Rondon, Justin Clements, David Hawthorne, Andrei Alyokhin, and Russell Groves for discussions related to this research. Funding for this research was provided by a USDA NIFA Exploratory grant (2015-67030-23495), USDA Hatch grant (WIS02004), USDA Potato Research Service grant (58-5090-7-073), a USDA AFRI-ELI doctoral fellowship (2018-67011-28058), and grants from the Wisconsin Potato Industry Board.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. Schoville .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schoville, S.D., Cohen, Z.P., Crossley, M.S. (2021). Population Genomic Insights into Insecticide Resistance in the Colorado Potato Beetle. In: Population Genomics. Springer, Cham. https://doi.org/10.1007/13836_2021_91

Download citation

  • DOI: https://doi.org/10.1007/13836_2021_91

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics