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Abstract Viruses, and a few RNA viruses in particular, represent one of the greatest
threats for human health. High mutation rates, large population sizes, and short
generation times contribute to their typically fast evolutionary rates. However,
many additional processes operate on their genomes, often in opposite directions,
driving their evolution and allowing them to adapt to diverse host populations and
antiviral drugs. Until recently, the high levels of genetic variation of most viruses
have been explored only at a few genes or genome regions. The recent advent and
increasing affordability of next-generation sequencing techniques have allowed
obtaining complete genome sequences of large numbers of viruses, mainly HIV,
HCV, influenza A, and others associated with emerging infections, such as Zika,
chikungunya, or dengue virus. This opens the possibility to explore the effects of the
different processes affecting viral diversity and evolution at the genome level.
Consequently, population genomics provides the conceptual and empirical tools
necessary to interpret genetic variation in viruses and its dynamics and drivers and
to transform these results into information that may complement the epidemiological
surveillance of the virus and its disease. This chapter provides an overview of human
viruses from a population genomics perspective, with a special emphasis on RNA
viruses, and the potential benefits of “genomic surveillance” to establish public health
policies that improve the control and monitoring of the diseases caused by these
viruses.
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1 Introduction

The development of fast and efficient sequencing methodologies has brought the
opportunity for obtaining complete sequences of hundreds, even thousands, of viral
genomes at affordable costs. This has led to a new interest in the analysis of viral
populations, which, until recently, was usually linked to outbreaks and other health
emergencies. Most previous studies paid attention only to those fragments of the
viral genome that were of interest from a clinical perspective, for diagnostics,
surveillance, or similar applications. Furthermore, most insights into the population
genetics of viral populations were drawn from markers likely under the influence of
selective forces, thus leading to distorted or biased views of viral population
genetics. This situation is rapidly changing, and the availability of complete genome
sequences is shifting the perspective from “population genetics” to “population
genomics,” that is, the analysis of the processes and mechanisms that govern the
population dynamics of genetic variation at the complete genome level and not only
on a portion of it.

Although information on complete genomes is rapidly accumulating, there is still
a huge gap between the number and diversity of viral population samples that have
been analyzed in only one or a few genes and those with complete genome
information. However, there is a shift of interest in using population genomics
inference to better understand the intra-host and inter-host dynamics of epidemio-
logically and evolutionary relevant processes and to incorporate this information into
surveillance systems. This shift has also benefited from recent methodological and
technical advances, which have allowed the combination of different sources of
information (temporal, geographical, genetic, and epidemiological) into a compre-
hensive framework, known as “genomic surveillance.” Here, we review the current
state of the art in the population genomics of human viruses and its relevance for the
surveillance, monitoring, and control of the diseases they cause. Because of their
rapid rate of evolution and the serious diseases they produce — AIDS, hepatitis C,
Ebola, influenza, among many others — RNA viruses have received most attention
until now and abundant information on their population genomics is accumulating.
We will center this review on these viruses.

2 Evolutionary Processes in Viral Populations

Mutation is the ultimate source of variation in all living organisms, viruses included.
However, the genetic diversity and the evolutionary rate of RNA viruses are
influenced and shaped by other processes and factors apart from mutation. The action
of natural selection and genetic drift, the mode of transmission, particular mecha-
nisms for genetic exchange (such as recombination and reassortment), genome size,
procedures for compressing genetic information, generation time, and population size
are the most relevant such factors. In addition, we must also consider environmental
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factors, resulting from differences among hosts and, occasionally, from antiviral
treatments (Cuypers et al. 2016; Rambaut et al. 2008; Renzette et al. 2014; Simon-
Loriere et al. 2013; Snoeck et al. 2011; Wilson et al. 2016).

Deciphering the mechanisms responsible for the production of spontaneous
mutations in viruses has important applications for public health and for basic
science (Geller et al. 2016) due to their critical role in virus evolution and genetic
diversity (Cuevas et al. 2015). One defining feature of RNA viruses is their high
mutation rates, in the range from 1073 to 10°° mutations/nucleotide/replication
round, which result from low-fidelity replication (Simon-Loriere et al. 2013; Cuevas
et al. 2015; Duffy et al. 2008; Sanjuan et al. 2010). This also leads to a very high
evolutionary rate of 1072 to 10 substitutions/site/year. These high mutation rates
can be decomposed into several factors or mechanisms with complex interactions
such as the fidelity of the RNA polymerase, the capacity for error correction, the
propensity of ribonucleic acid to damage, or the edition by hosts’ enzymes (Geller
et al. 2016; Cuevas et al. 2015). These high mutation rates might explain the small
genome size of RNA viruses (ranging from 3 to 29 kb) because in larger genomes,
deleterious mutations would appear at such a high frequency that they would
compromise virus survival (Duffy et al. 2008; Bradwell et al. 2013).

In general, RNA viruses have short generation times and large population sizes.
These features favor fast evolutionary rates, which lead to genetically very diverse
populations, with a high capacity for adaptation even under very strong selective
pressures (Wilson et al. 2016). However, we must consider that virus evolutionary
rates are limited by the frequency of deleterious mutations since virus mutation rates
are very close to the error threshold beyond which deleterious mutations are so
frequent that they lead to population extinction (Holmes 2003). In addition, some
mechanisms for genetic exchange, which are present in some RNA viruses, favor the
generation and maintenance of diversity. Two such mechanisms are genetic
reassortment and recombination (homologous and nonhomologous).

Genetic reassortment occurs in segmented viruses, whose genome is distributed
in individual segments, each carrying a different portion of the genetic information.
Reassortment plays a major role at the epidemiological level in the evolution of
influenza A virus (Rambaut et al. 2008; Wilson et al. 2016; Steel and Lowen 2014)
and in other segmented viruses (McDonald et al. 2016; Nomikou et al. 2015).
Recombination is also a frequent process in many viruses. In retroviruses, such as
HIV, a nonhomologous type of recombination known as copy-choice recombination
is common, and it can occur when two different viral strains simultaneously infect
the same cell. In this form of recombination, the RNA polymerase “jumps” between
two copies of single-stranded RNA, which makes up the genome of retroviruses,
while it is still attached to the newly synthesized chain. This mechanism occurs only
during RNA synthesis and the parental (donor) strand is not physically transferred to
the recombined strand. It is likely that secondary structures of the RNA genomes are
involved in controlling the “jump” between strands (Lai 1992; Negroni and Buc
2000; Simon-Loriere and Holmes 2011).

Natural selection may deplete genetic diversity from viral populations (negative
or purifying selection) or increase its levels (some forms of positive selection) and,
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consequently, may increase or decrease the rate of evolution. Therefore, there is a
trade-off between the conservation of those regions that are essential for completing
the viral cycle of replication and the genetic change and innovation that are involved
in evading the immune system and responding to antiviral treatments. The former
group includes genes encoding for slowly evolving enzymes and structural proteins
as well as genome regions involved in the formation of secondary structures. This
compromise is partially achieved through differential mutation rates along the viral
genome (Geller et al. 2015, 2016).

Because of their high mutation rates, RNA viruses are under selection for small
genome size. This is due to the deleterious effect on fitness of most mutations, which
lead to an excessive genetic load in large genomes, which, in turn, leads to population
extinction (Muller 1932). A small genome size represents a limitation for the gener-
ation of genetic diversity because (1) sequence lengths are limited and (2) using gene
overlapping to compress genetic information implies an increase in the sensitivity to
deleterious mutations in certain parts of the genome and, consequently, a larger role
for purifying selection (Simon-Loriere et al. 2013). Although gene overlapping is
present in all cellular organisms, mammals included (Veeramachaneni et al. 2004), it
is very frequent only in viruses (Rogozin et al. 2002; Brandes and Linial 2016).

Another factor limiting the rate of evolution is the transmission between hosts.
Each of these events represents a bottleneck that dramatically reduces the size of the
viral population and, as a result, its genetic diversity (Gray et al. 2011; Grenfell et al.
2004; Joseph et al. 2015). Besides, founder viruses will generally be poorly adapted
to the new environment because, in general, the specific adaptations to the immune
system of the donor/source individual do not imply a higher fitness in another
individual of the same species and they can even be penalized by natural selection
(Kubinak et al. 2012).

Therefore, viruses mutate and may evolve very fast. It is crucial to understand the
mechanisms by which they generate and maintain genetic diversity for the applica-
tion of research on these organisms to health-related questions, such as the evasion
of immune response, the development and spread of drug resistance mutations,
virulence, species jumps, and the failure or success of vaccination campaigns
(Wilson et al. 2016; Geller et al. 2016; Smyth et al. 2012). In this context, the rate
of mutation should be considered not only as a mechanism generating diversity but
also as a virulence factor (Cuevas et al. 2015).

3 Selective Pressures

In viruses, as in all living organisms, natural selection operates as a force that, on the
one hand, may reduce genetic variability and, on the other hand, may increase
genetic diversity (Snoeck et al. 2011). Hence, we start by describing the different
types of natural selection that operate in viral populations.

Positive selection promotes an increase of the relative frequency of an allele or
genetic variant in a population. Positively selected mutations confer higher fitness to
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their carriers, resulting in an increased frequency of the corresponding allele. Two
paradigmatic examples of positive selection are immune escape mutations and drug
resistance mutations.

Positive selection may act as an evolutionary force that restricts the genetic
diversity of a population (directional selection) or as a force that promotes an
increase of genetic diversity (diversifying selection). Directional selection is com-
monly associated with selective sweeps. During selective sweeps, neutral or nearly
neutral mutations increase their relative frequencies, even become fixed, in the
population due to genetic linkage with positively selected variants (Maynard-
Smith and Haigh 1974). The strength and scope of selective sweeps (which may
act at the genome-wide level) (Rambaut et al. 2008) will also depend on the rate of
recombination. For example, as detailed above, high recombination rates limit the
scope of selective sweeps in HIV (Ramirez et al. 2008; Vuilleumier and Bonhoeffer
2015; Zanini et al. 2015). Additionally, the rate of emergence of adaptive mutations
influences the intensity of selective sweeps.

When different adaptive mutations, which have either newly arisen or were
previously present at low frequencies in a population, are selected simultaneously
or nearly simultaneously, then soft sweeps will be produced as several mutations —
located in different regions of the viral genome — propagate jointly. Such soft sweeps
may result in clonal interference, which consists of competition between distinct
lineages in the viral population carrying different adaptive mutations. Consequently,
even mutations favored by natural selection may not be fixed in the population or,
alternatively, they may get fixed at lower rates. Thus, clonal interference may slow
down adaptation in a viral population (Miralles et al. 1999).

Soft selective sweeps have a minor impact on the loss of population genetic
diversity. However, if adaptive mutations arise rarely in a population, then a single
variant will increase its frequency along with its genetically linked neutral alleles.
Consequently, a hard selective sweep will be produced, which implies a huge
decrease in genomic diversity (Feder et al. 2016; Hermisson and Pennings 2005;
Messer and Petrov 2013; Pennings et al. 2014).

The rate at which adaptive mutations emerge and become positively selected
depends on the mutation rate, the population size, with small sizes resulting in strong
genetic drift and reduced efficiency of natural selection, and the strength of the
selective pressure. This complex process can be studied in individuals under
antiviral drug therapy. Highly efficient drug treatments, consisting of a combination
of antiviral drugs, reduce viral population size and the frequencies of drug-resistant
alleles. Moreover, the number of permissive mutations needed for acquiring drug
resistance (genetic barrier) may increase (Feder et al. 2016).

Diversifying selection occurs when selection favors different adaptive mutations
over time and/or space, and it results in an increase in genetic diversity. Generally, we
can observe this type of selection in viral responses to the hosts” immune systems. As a
result, the genome regions coding for proteins targeted by the immune response
(antigens) present much higher variability than the remainder of the genome. Antigenic
drift — antigenic evolution in influenza A virus — exemplifies this phenomenon and
should not be confused with genetic drift. Due to the interaction between influenza A
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virus and the human immune system, mutations accumulate in antigenic regions
encoding surface proteins such as hemagglutinin and neuraminidase. Influenza A
viruses show episodic selection, that is, positive selection over long periods inter-
spersed with purifying selection over short time periods. This process might explain the
new seasonal antigenic variants of influenza A virus (Rambaut et al. 2008; Cobey and
Koelle 2008; McHardy and Adams 2009). However, it must be noted that the two sides
of positive selection are linked: antigenic drift is inevitably related to periodic selective
sweeps (McHardy and Adams 2009).

Negative (or purifying) selection operates by removing deleterious alleles (i.e.,
mutations that decrease viral fitness). Negative effects of deleterious mutations can
involve a reduction in the replication rate or increased susceptibility to the host
immune response or to antiviral drugs. Most mutations arising in living organisms
are deleterious. For instance, nearly 60% of the spontaneous mutations in vesicular
stomatitis virus are deleterious (Duffy et al. 2008). Thus, purifying selection consti-
tutes a force acting to preserve nucleotide or amino acid sequence. Therefore,
negative selection constrains genetic diversity.

Purifying selection can be prominent in the viral genome, even in viruses, such as
HIV, in which positive selection and neutral evolution have an important role at the
intra-host level (Snoeck et al. 2011; Zanini et al. 2015; Pybus and Rambaut 2009;
Ross and Rodrigo 2002). HCV is a clear example of predominance of negative
selection. Despite the high levels of genetic variability in this virus, negative
selection represents the main force acting on the HCV genome: more than 80% of
the nucleotide sites in the viral genome are under negative selective pressure
(Cuypers et al. 2016; Geller et al. 2016; Patifio Galindo and Gonzalez-Candelas
2017).

Natural selection can be studied by comparing the synonymous substitution
rate per synonymous site (dS) and the non-synonymous substitution rate per
non-synonymous site (dN). The ratio of both rates (w0 = dN/dS) allows different
types of selection to be distinguished throughout the viral genome. Under neutral
evolution, all mutations are expected to have the same effect (i.e., none or negligible)
on fitness, and, thus, @ will be around 1. Negative or purifying selection reduces dN —
because non-synonymous substitutions lead to changes in the amino acid sequence
and thus protein structure or function will likely be affected — whereas dS should not
be affected. Therefore, the ratio @ will be lower than 1. In contrast, positive selection
favors non-synonymous substitutions over synonymous substitutions, and, therefore,
o will be larger than 1 (Cobey and Koelle 2008; Jackowiak et al. 2014).

When interpreting the results of analyses based on this popular method for
analyzing selection at the genome level, several caveats have to be considered.
Firstly, the method was originally proposed to analyze selection acting over evolu-
tionary large time scales, because it makes use of the rates of substitution, which
implies the replacement and fixation of mutations in populations/species. This is not
usually the case in viral populations, where we are dealing with constantly arising
polymorphisms that, even when they are deleterious, will segregate in the population
before selection removes them. This effect can be controlled for by considering only
those mutations that can be mapped onto the internal branches of the phylogeny
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whereas those at the external branches are excluded from the analyses. Secondly,
these tests can be misleading if recombination occurs frequently (Anisimova et al.
2003), because it may alter the estimates of dN and dS, thus leading to incorrect
estimates of .

4 How Selective Pressures Operate on Viral Genomes

Viruses are subjected to different types of selective pressures that drive their evolu-
tion and shape their genome diversity. Distinct selective pressures can increase or
constrain genome variability. These selective pressures and evolutionary trade-offs
drive virus evolution. They include interactions with the host’s immune system as
well as the need for immune escape, the pressures exerted by antiviral drug therapies,
the trade-off between high viral mutation rates and genome size, the maintenance of
protein structure and function, the maintenance of RNA secondary structures, and the
presence of epistatic interactions between different parts of the genome. It is neces-
sary to take into account these, sometimes opposite, forces for understanding viral
genome evolution (Snoeck et al. 2011).

4.1 Interaction with the Host Immune System

Some of the most prevalent infectious diseases are caused by RNA viruses due to
their high capacity for escaping their hosts’ immune system by rapid antigenic
evolution (Cobey and Koelle 2008). Viruses, as well as parasites, are involved in a
constant “arms race” with their hosts. The former evolve to evade the immune
system of the latter, while hosts’ immune systems evolve to detect, control, and
efficiently eliminate pathogens [the “Red Queen hypothesis” illustrates this situation
(Van Valen 1973)]. The strong selective pressures exerted by the hosts’ immune
systems on viruses, along with their high genomic variability, result in rapid
adaptation and constant evolution in coding genome regions involved in interaction
with the hosts (Snoeck et al. 2011; Duffy et al. 2008; Kubinak et al. 2012; Jackowiak
etal. 2014; Alizon and Fraser 2013). Thus, mutations that allow evading the immune
system usually propagate rapidly through viral populations (Zanini et al. 2015).
Genome regions or segments involved in immune escape show high evolutionary
rates due to positive selective pressures exerted by the hosts (Rambaut et al. 2008).
Generally, these regions encode surface or viral envelope proteins. Therefore, these
proteins act as targets for viral recognition by the host’s immune system. Examples
include the env region in HIV (Cobey and Koelle 2008; Alizon and Fraser 2013),
the E1 and E2 genes in HCV (Thurner et al. 2004; Campo et al. 2008), and the
hemagglutinin and neuraminidase segments in influenza A virus (Rambaut et al.
2008; Cobey and Koelle 2008; Pybus and Rambaut 2009; Neverov et al. 2015).
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There are three types of canonical viral targets and, consequently, “hot spots” for
positive selection. These are targets of neutralizing antibodies, CD4 T-cell and CD8
T-cell epitopes (i.e., regions of viral antigen recognized by molecules of the host
immune system) (Zanini et al. 2015; Jackowiak et al. 2014). However, their rele-
vance has been questioned. For example, CD4 T-cell epitopes seem to be conserved
(i.e., under negative selection) in HCV, whereas CD8 T-cell epitopes are under
positive selection and, consequently, drive immune evasion in this virus (Cuypers
et al. 2016; Patino Galindo and Gonzdlez-Candelas 2017). Another example is
represented by the mapping of positively selected sites in the HIV genome and by
considering different likely targets of selection, such as epitopes recognized by
immune system cells, secondary structure of protein and nucleic acids, and particular
dinucleotides targeted by antiviral proteins such as APOBEC3G/F (Snoeck et al.
2011). Antibody and CD4 T-cell epitopes were found to be under positive selection.
However, no positive selection was detected on CD8 T-cell epitopes. Although
this observation may suggest an absence of host selective pressures acting on CDS§
T-cell epitopes, the authors suggest other explanations. On the one hand, positively
selected escape variants without deleterious effects will fix rapidly in the viral
population, thus becoming relatively conserved. On the other hand, T-cell epitopes
could be under opposite selective pressures over chronic infection.

HCV is a good example of changing host selective pressures through chronic
infection at the intra-host level. HCV populations progress through different stages.
Firstly, right after infection, the viral population establishes under relaxed selective
pressures, before triggering the immune response. As the viral population size
increases, the immune response activates. Consequently, population diversity also
increases, whereas escape variants appear and become fixed under positive selection.
In the last stage, purifying selection predominates. This suggests that the virus has
adapted steadily to its host (Jackowiak et al. 2014).

4.2 Antiviral Drug Therapies

The evolution of pathogenic microorganisms — including viruses — and the emer-
gence of drug resistances are major concerns for public health. Drug resistance
is usually related to treatment failure and results in increasing deaths, hospitaliza-
tions, and treatment duration as well as huge economic costs (Wilson et al. 2016;
McGowan 2001; WHO Scientific Working Group 1983).

Some features of RNA viruses, as with immune escape, allow them to adapt
rapidly in response to the strong selective pressures exerted by antiviral treatments.
These features (including high mutation rates, large population sizes, and recombi-
nation or reassortment) facilitate the emergence of de novo resistance mutations. In
the absence of drug-selective pressures, resistance mutations may be deleterious or,
occasionally, neutral, which implies that their evolution will be governed mainly
by genetic drift. For this reason, in the absence of treatment, drug-resistant variants
are usually found as minority variants that increase their relative frequency in



Population Genomics of Human Viruses

the population only in the presence of antiviral drugs. Hence, the possibility of
transmission of resistance mutations between hosts must be taken into account in
order to predict the effectiveness of a particular antiviral therapy. Next-generation
sequencing is necessary to detect resistance variants at low frequencies prior to the
start of treatment. The development of drug resistance may depend on the presence
of various permissive mutations in the same haplotype in order to decrease the
genetic barrier (Wilson et al. 2016; Pybus and Rambaut 2009; Chabria et al. 2014).

It is expected that strong and directional positive selection, which is restricted to
periods of time when a patient is undergoing antiviral treatment, will increase the
relative frequency of resistance alleles, whereas the genetic variability of those
regions close to selected loci will decrease due to selective sweeps (Renzette et al.
2014; Murrell et al. 2012). The evolution of HIV since the introduction of early
antiretroviral therapies is a good example of this process. Modern treatments —
highly active antiretroviral therapy (HAART) — are more effective than single
drug-based early therapies. HAART consists in a customized combination of
drugs. Therefore, several resistance mutations are necessary to develop simultaneous
resistance against every drug included in the treatment. In contrast, early, single
drug-based therapies were prone to the rapid emergence of drug resistance (Smyth
et al. 2012; Martin et al. 2008). Due to the high efficiency of treatments consisting of
different drugs, resistance mutations are uncommon and emerge rarely. Thus,
positive selection results in strong selective sweeps that reduce genetic diversity
and slow down virus evolution (Feder et al. 2016). The opposite situation was found
in influenza A virus resistance to oseltamivir. One of several resistance mutations to
oseltamivir (H274Y) underwent rapid and global spread during the influenza seasons
between 2007 and 2009. However, the rapid increase in H274Y frequency did
not substantially alter the viral genomic diversity. It is perhaps a consequence of
emergence of different mutations conferring resistance to oseltamivir (Renzette et al.
2014).

4.3 Secondary RNA Structures: Protein Structure
and Function

The presence of structural elements at the nucleotide and amino acid levels is of
major significance for viral genome evolution because they contribute to increasing
genome stability, controlling viral replication, and avoiding genome recognition by
RNAses and innate antiviral defenses (Baird et al. 2006; Watts et al. 2009). Struc-
tural elements are often highly conserved. Mutations that disrupt RNA secondary
structures or protein domains may have strong deleterious effects (Thurner et al.
2004; Simmonds et al. 2004).

Coding regions are under strong purifying selection, and, therefore, they are
highly conserved at the amino acid level, particularly those involved in the mainte-
nance of protein secondary structure and function (Snoeck et al. 2011). This is true
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for genes or segments that code for RNA polymerase in different viruses (Rambaut
et al. 2008; Zanini et al. 2015; Rothenberger et al. 2016).

RNA secondary structures are frequent in viral genomes, particularly in those of
single-stranded RNA viruses. RNA secondary structures may be relevant for repli-
cation and transmission of the virus as well as for drug resistance and host interaction
(Cuypers et al. 2016; Simon-Loriere et al. 2013; Thurner et al. 2004; Simmonds et al.
2004; Sanjuan and Borderia 2011). In this case, purifying selection operates at the
nucleotide sequence level. As nucleotide changes driven by positive selection might
disrupt RNA secondary structures, this will result in conflict between purifying
selection and positive selection acting on coding regions (Snoeck et al. 2011;
Sanjuan and Borderia 2011). In other words, the maintenance of RNA secondary
structures may restrict protein evolution, and, in turn, selection at the protein level
may restrict the pairing of nucleotides that maintain RNA secondary structures. The
disruption of RNA secondary structures produced by amino acid changes could
explain the fitness decrease in drug-resistant viruses in the absence of selective
pressure by antiviral therapies (Sanjudn and Borderia 2011).

The case of HIV illustrates this situation. Although HIV evolution is largely
driven by positive selection, more than 60% of its amino acid sites are strongly
conserved. RNA secondary structures and a-helix domains mainly determine con-
servation in the HIV genome (Snoeck et al. 2011).

4.4 Genome Size and Gene Overlapping

Due to their high mutation rates, RNA viruses are under selective pressures favoring
small genome sizes. Because most spontaneous mutations are deleterious, high
mutation rates in large genomes result in excessive mutational load that may lead
to population extinction. More deleterious and even lethal mutations emerge in large
genomes per replication cycle than in small genomes although mutation rates can be
similar. Moreover, a trend toward small genome size may also be influenced by the
rate of replication, because selection favoring rapid replication will, in turn, favor
viruses with minimal genome sizes (Simon-Loriere et al. 2013; Duffy et al. 2008;
Bradwell et al. 2013).

Small genome size implies two problems for viral evolution: firstly, the need for
storing all the genetic information in a limited space and, secondly, the need for
generating genetic novelty while maintaining a small genome size. Consequently,
RNA viruses often use gene overlapping in order to compress genetic information
and avoid the aforementioned problems without increasing their genome size.
However, gene overlapping leads to hypersensitivity to deleterious mutations (i.e.,
an increase in the deleterious effects of mutations in overlapping genome regions) as
they affect more than one gene. Therefore, strong purifying selection operates in
these regions, resulting in a reduced evolutionary rate and adaptation in RNA
viruses. Despite this, the negative effects of gene overlapping on evolutionary rate
depend on the type of overlapping where internal overlapping (i.e., a single gene that



Population Genomics of Human Viruses

contains another gene within its nucleotide sequence) is associated with stronger
negative selection (Simon-Loriere et al. 2013).

In conclusion, small genome sizes limit the generation of genetic diversity as the
nucleotide sequence space is limited and the use of gene overlapping as a mechanism
of genome compression leads to hypersensitivity to deleterious mutations in certain
regions of the genome, thus resulting in stronger purifying selection.

4.5 Epistasis

Epistasis has been described as an evolutionary phenomenon in which the fitness of a
mutation depends on its genetic background (Phillips 2008). In other words, differ-
ent loci along the viral genome interact with each other and determine fitness.
Consequently, the phenotypic effects of a mutation may change in the presence or
absence of certain genetic elements. Therefore, epistasis can significantly influence
how certain mutations navigate the adaptive landscape (Wilson et al. 2016; Cobey
and Koelle 2008; Assis 2014). Epistasis can be relevant in the fitness effects of RNA
secondary structures, drug resistance mutations, and recombination or reassortment
events. Thus, epistasis must be taken into account in order to predict the success of
mutations in a viral population.

A simple form of epistasis occurs in the secondary structures of RNA viruses. The
maintenance of these structures depends on base pairing between sites located on a
single-stranded RNA genome. Nucleotide pairings usually follow the classical
Watson-Crick model (guanine-cytosine [G-C] and adenine-uracil [A-U]). As
expected, any mutation disrupting Watson-Crick pairs will alter highly conserved
RNA secondary structures. Thus, they are often deleterious, and we expect that
strong purifying selection operates on Watson-Crick sites, resulting in a reduced rate
of evolution. This pattern has been observed in HIV, HCV, and influenza A virus.
However, G-U pairs are also stable and they can maintain RNA structures. Although
G-U pairs usually show fewer effects on fitness than Watson-Crick pairs, the fitness
difference is relatively small. G-U pairs can operate as intermediates between
adaptive peaks (i.e., G-C and A-U pairs), thus relaxing negative selective pressures
on Watson-Crick sites. Moreover, G-U can remain in the population because, after
all, G-U pairs show higher fitness than unpaired nucleotides (Assis 2014).

Epistasis is also relevant for the emergence of drug resistance. The fate of new
drug resistance mutations depends on their efficiency in avoiding antiviral drugs
effects and on their deleterious effects, mainly on viral replication. However, a
permissive mutation can interact epistatically with drug resistance mutations in
order to increase their fitness and, therefore, their relative frequencies in the viral
population (Wilson et al. 2016; Chabria et al. 2014). The emergence of oseltamivir
resistance in influenza A virus during the influenza seasons of 2007-2009 illustrates
this phenomenon (see Sect. 4.2). Highly deleterious effects were predicted for the
H274Y drug resistance mutation. However, H274Y spread rapidly and globally,
thanks to two permissive mutations that made the mutant fitness equal to that of the



F. Gonzilez-Candelas et al.

non-mutated genotype in the absence of oseltamivir (Neverov et al. 2015; Duan et al.
2014; Kryazhimskiy et al. 2011).

Influenza A virus can also be used as an example to highlight the relevance of
genetic background for genetic exchange between different strains. Most segment
combinations resulting from genetic reassortment are probably deleterious due to
epistatic interactions (Rambaut et al. 2008; Renzette et al. 2014; Sobel Leonard et al.
2017).

In conclusion, epistatic interactions must be taken into account in order to predict
virus evolution and, specifically, the epidemiological consequences of drug resis-
tance mutations. Complete genome sequencing can be used in this context to detect
epistatic interactions between distant genome regions (Rambaut et al. 2008; Wilson
et al. 2016).

5 Mutation Rate and Natural Selection

Mutation is a key factor in the generation of genetic variability. In addition, the rate
of mutation is a viral character evolving under natural selection. Natural selection
favors high mutation rates in viruses as they increase their adaptive capacity,
particularly regarding infection, host adaptation, and immune escape. In this light,
viral mutation rates might be considered a virulence factor. The presence of local
RNA secondary structures in the viral genome may operate as a mechanism of
modulation for genome variability. RNA secondary structures flank hypervariable
regions, which are prone to low-fidelity replication because they are usually located
in single-stranded segments, thus focusing higher mutation rates in genomic regions
involved in immune escape (Geller et al. 2016; Cuevas et al. 2015; Dufty et al. 2008;
Sanjudn and Borderfa 2011).

However, variability in viral genomes has an upper limit. Mutation rates are often
close to the error threshold. Beyond the error threshold, deleterious mutations
emerge too frequently, resulting in population extinction (error catastrophe). There-
fore, purifying selection purges variants exceeding certain mutation rates. In this
context, it must be noted that viral genome hypermutation exerted by host deami-
nases constitutes a potential mechanism against viral infection. This is apparently the
case in HIV infection (Snoeck et al. 2011; Cuevas et al. 2015; Duffy et al. 2008;
Holmes 2003; Neogi et al. 2013; Noguera-Julian et al. 2016).

6 Within and Among Patient Diversification

The evolutionary dynamics of genetic diversity in RNA viruses can differ markedly
between levels of biological organization, within individuals (intra-host), and at the
epidemiological level (inter-hosts). This prominent feature has been analyzed in
depth in some viruses that produce chronic or persistent infections, such as HIV or
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hepatitis C virus (HCV). However, it is also possible to analyze the genetic changes
at the intra- and inter-hosts levels in viruses that produce acute infections, such as
influenza A virus. Viral evolution during chronic infection occurs simultaneously in
different parts of the genome and, depending on the virus, independently in the
segments. Hence, it is important to analyze genetic diversity in complete genomes,
because different genome regions can be under distinct, even opposed, selective
pressures (Pybus and Rambaut 2009; Holmes 2004; Luciani and Alizon 2009;
Lythgoe and Fraser 2012; Sobel Leonard et al. 2016).

Viral infections usually start by a founder virus or a population of a few viral units
with very similar genomes (Joseph et al. 2015; Jackowiak et al. 2014; Sobel Leonard
et al. 2016). It is unlikely that there is only one genome sequence in the founder
population shared by all the viruses. However, among the many variants present
in the source individual, the fittest phenotypes for transmission will be more
represented in the infecting population. Shortly after the infection, the process
known as clonal expansion starts. This process results from the rapid replication of
the virus that leads to an increasingly diverse population in which new mutations
accumulate from the initial sequence. This genetically diverse population is usually
known as a viral quasispecies (Eigen 1996), a set of highly diverse, evolutionarily
close, nonidentical haplotypes (because they derive from the same virus or a reduced
population) undergoing diversification, competition, and selection (Chabria et al.
2014; Domingo et al. 2012; Khiabanian et al. 2014). In later stages of infection, the
initially homogeneous viral population will be more diverse. This indicates that,
during transmission, there are several bottlenecks that reduce diversity at the inter-
host level (Gray et al. 2011; Joseph et al. 2015).

Many pathogens produce chronic infections that evolve so rapidly that late
variants in the infection are very different from the genetic variants in the founders
(Luciani and Alizon 2009; Vrancken et al. 2015). During the early stages of chronic
infection by RNA viruses, such as HIV, mutations that contribute to evade the
host’s immune system may appear and increase in frequency (Goonetilleke et al.
2009; Kearney et al. 2009; Liu et al. 2011). Hence, chronically infecting viral
populations become adapted to their hosts and this may compromise their capacity
for transmission (Wright et al. 2010; Brockman et al. 2010).

During infection, viral populations explore the adaptive landscape — the set of
variants close to a given genotype that might increase the fitness of the population —
around the founder virus. This is supported by the fact that the same reversions are
observed in unrelated individuals. In HIV, some nucleotide substitutions produced
during intra-host evolution are reversions to that global consensus sequence (Zanini
et al. 2015; Li et al. 2007). This trend suggests that in chronic infections, directional
natural selection is the main evolutionary force determining the diversity of the viral
population. But most mutations are neutral or reduce rather than increase fitness.
Nevertheless, in populations with high recombination rates, such as in HIV, adap-
tation to the host may be concurrent with a sustained exploration of the adaptive
landscape. This trend is more evident for globally conserved genome positions, and
it can also be observed in viruses producing acute infections (Zanini et al. 2015;
Sobel Leonard et al. 2016; Wang et al. 2014; Gire et al. 2014). However, the number
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of positions under directional positive selection in the HIV genome is limited. Most
of the genome is under purifying selection or accumulates neutral mutations. The
action of diversifying selection, which acts in an opposite sense to directional
selection, and the emergence of neutral mutations may disguise the convergence
toward a global consensus sequence in positively selected positions (Snoeck et al.
2011; Ross and Rodrigo 2002).

Selective pressures acting on a viral population can differ intra- or inter-host and
can often have opposing effects, leading to a trade-off. At the intra-host level, natural
selection favors fast replicating variants, those that can evade the immune response,
and, if the patient is being treated, those with resistance mutations against the
corresponding drugs. At the inter-host level, natural selection will favor variants
that can propagate rapidly in the host population, that is, those that are more easily
transmitted from one host to another (Alizon and Fraser 2013).

One of the most remarkable differences between intra- and inter-host dynamics is
the faster evolutionary rate associated with intra-host differentiation compared to the
inter-host rate of evolution (Alizon and Fraser 2013; Lythgoe and Fraser 2012;
Khiabanian et al. 2014). Intra-host evolutionary rates can be from two to six times
higher than those among hosts (Lythgoe and Fraser 2012). Viral evolutionary rates
show a trend to slow down in the long term. This trend is reinforced by the
bottlenecks and selective pressures operating at transmission events (Zanini et al.
2015). Due to their dependence on infecting other hosts, inter-host evolutionary rates
are also dependent on the transmission rate (Gray et al. 2011).

The difference in intra- and inter-host evolutionary rates means that, in chronic
infections, viral populations are not homogeneous in their capacity for transmission
to another host. If this were the case, we would not observe such different values
between the corresponding rates (Alizon and Fraser 2013; Lythgoe and Fraser 2012).
To explain this difference, we should also take into account that the viral population
needs to adapt to the immune system of a specific host after each transmission.
Therefore, intra-host evolution is governed by strong, continuous selective pressures
leading to fast evolutionary dynamics with high evolutionary rates. Furthermore, the
heterogeneity of the viral population and the different lineages that can coinfect an
individual may affect the action of the immune system and, in consequence, the viral
evolutionary dynamics (Grenfell et al. 2004).

However, although the intra-host rate of evolution is generally higher throughout
the genome of these viruses, the pattern of evolution and the intra- and inter-host
differences vary among genomic regions (Alizon and Fraser 2013). In some viruses,
different genome regions can evolve independently due to recombination, such as in
HIV (Zanini et al. 2015), thus minimizing the effect of selective sweeps (see below).
For instance, some genes encoding for viral proteins targeted by the immune
response show a faster intra-host evolution, with high levels of positive selection
as a consequence of the selective pressures by the host’s immune system (Gray et al.
2011; Sobel Leonard et al. 2016).
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The reasons for the differences between intra- and inter-host evolutionary rates
are not fully understood. Among potential alternatives, we can mention the follow-
ing: (a) preferential transmission of slow-evolving lineages, (b) reduced intra-host
rate of evolution over time, (c) reversion to genotypes similar to the founder virus
that are likely better adapted to infecting other hosts, and (d) changes in selective
pressures over the course of infection (Gray et al. 2011; Pybus and Rambaut 2009;
Lythgoe and Fraser 2012). In HCV, it has been shown that the large differences
between intra- and inter-host evolutionary rates in genome regions related to evasion
from the immune system can be explained by reversions of host-specific adaptations
to genotypes similar to those of the founder virus. The hypothesis of a preferential
transmission of slow-evolving lineages seems to be quite unlikely, at least for HCV
(Gray et al. 2011). In other viruses, such as HIV, the contribution of reversions to
evolution has not been studied in detail (Zanini et al. 2015). Another contributing
factor is that inter-host evolution is shaped by many bottlenecks produced in every
transmission event (Gray et al. 2011; Joseph et al. 2015), which act reducing the
evolutionary rate. As a consequence, phylogenies including isolates serially sampled
within patients usually present long external but short internal branches, the latter
corresponding to evolutionary changes occurring among patients.

7 Conflict Between Selective Pressures Within and Among
Hosts

Intra- and inter-host selective pressures can be in conflict because mutations favoring
adaptations to exploit the host, that is, those that are favored at the intra-host level
(including immune system evasion and resistance mutations), are unlikely to also
increase transmissibility to other hosts. Consequently, such mutations will be neu-
tral, or selection at the inter-host level may act against them. The viral population
evolves at the intra-host level during infection, becoming adapted to each new host.
However, genotypes carrying host-specific adaptations do not seem to be the most
efficient in being transmitted to new hosts (Alizon and Fraser 2013). The study of
this conflict, known as “short-sighted evolution,” was initiated in the last decade of
the past century and applied to different pathogens (Levin and Bull 1994). Although
until recently this conflict had been studied at the genomic scale only in HIV, its
presence in other viruses such as HCV or Marburg virus has led to question whether
this is a common feature of RNA viruses (Gray et al. 2011). Would it be possible
then that less fit variants, presumably purged by natural selection or belonging to
minority classes, persist and be transmitted in a population?

Several mechanisms have been proposed to explain the transmission of those less
fit variants (intra-host) to new hosts. For instance, HIV populations “archive”
resistance variants in latent T-cells, which act as reservoirs of variants that can be
transmitted later. Alternatively, mutations reverting to the founder virus, the one
initially infecting the host and presumably fitter for transmission (Joseph et al. 2015;



F. Gonzilez-Candelas et al.

Zanini et al. 2015; Jackowiak et al. 2014; Alizon and Fraser 2013; Chabria et al.
2014), might be transmitted preferentially to variants better adapted to the current
host. These mechanisms might help to explain the persistence and transmission of
resistance mutations to drugs in untreated hosts because, in an analogous way,
resistance mutations usually reduce viral fitness in the host in the absence of
selective pressure by drugs (Chabria et al. 2014).

When studying the virus rate of replication, we find a trade-off that represents a
nice example of the conflict between selection pressures at the intra- and inter-host
levels. The rate of replication of the founder virus is an important factor for the
epidemiological success of the disease as well as for the natural history of the viral
population in the infected individual. The rate of replication influences the interac-
tion between the viral population and the immune system of the host, which is a key
factor determining the outcome of the infection (acute or chronic). The rate of
replication is a quantitative trait that also evolves throughout an infection. There
are observations of groups of variants in subpopulations, both within and among
hosts, with different RNA polymerase activity. Hence, diverse variants with different
ranges in their rates of replication can coexist in the same individual (Luciani and
Alizon 2009). High rates of growth lead to a stronger immune response against the
virus. Consequently, at the inter-host level, the prevalence of slow-replicating
variants is favored by natural selection, because it allows a longer time of infection
in the host and, as a result, maximizes the reproductive number (R,) of the infection.
In epidemiology, R is defined as the number of new infections caused by an infected
individual in a susceptible population and is very closely related to the intrinsic rate
of growth of a population in ecological models. However, at the intra-host level,
variants with a high rate of replication are favored, because they allow a faster
exploitation of the host’s resources.

Therefore, it seems likely that this trade-off results in variants with intermediate
rates of replication, which maximize the number of infected individuals from a
single host and the exploitation of resources, being favored by natural selection
(Luciani and Alizon 2009; Alizon et al. 2009).

Studying the intra- and inter-host dynamics and variation provides relevant
information about the transmission and epidemiology of infectious diseases. This
is highly relevant in the case of outbreaks, because groups of patients that share
similar and even identical viral genotypes usually also show patterns of transmission
coincident in time and suggest links that can help to determine the origin or the
routes of transmission of the outbreak (Gire et al. 2014). In addition, understanding
the evolution and diversity of viruses and their intra- and inter-host dynamics is
relevant at the clinical level. The viral diversity and its dynamics are crucial for the
design of vaccines (Cuypers et al. 2016; Gaschen et al. 2002) and for determining
whether an infection leads to a chronic or acute disease or the chances of success of
the antiviral therapy (Gray et al. 2011; Chabria et al. 2014).

The recent advances in sequencing technologies, more specifically in high-
throughput sequencing (HTS), have led to significant improvements for the analysis
of viral diversity and how it affects intra- and inter-host dynamics. The development
of ultra-deep sequencing has been very important for research on chronic viral
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infections, which can show high levels of intra-host diversity such as HIV and HCV.
Its higher sensitivity compared to traditional Sanger sequencing allows a deeper
analysis of viral diversity, identifying minority variants and rare polymorphisms
that, on the one hand, are invisible for classical techniques, which usually involve
reconstructing consensus sequences, and, on the other hand, can be very relevant for
basic and applied research (Chabria et al. 2014; Khiabanian et al. 2014). Further-
more, the capability of HTS to sequence a large number of molecules in parallel
allows obtaining large datasets, which also help in reducing the economic costs of
sequencing (Hall 2007; Churko et al. 2013).

The efforts to investigate evolutionary dynamics at the genome level have
focused mainly on RNA viruses causing chronic infections, for which the study of
changes in genomic diversity at the intra-host level is more relevant. Among these,
HIV and HCV have received most attention due to their evident clinical and
epidemiological relevance for humans. In addition, there have also been studies at
the genome level aimed at relating intra- and inter-host dynamics in acute disease-
causing viruses such as influenza A (Sobel Leonard et al. 2016). Hence, lack of
representative data for some viruses is still a major obstacle for studying their
population evolution and dynamics.

8 Spatial Distribution of Viruses

The spatial distribution of rapidly evolving viruses depends on ecological and
evolutionary processes that interact with each other. In RNA viruses, ecological
processes, such as spatial spread, and epidemiological processes occur in a similar
time scale to that of evolutionary processes, as a result of their high mutation and
evolutionary rates (Holmes 2008). This makes them very appropriate model organ-
isms to study the dynamics of microevolutionary changes, because these can be
observed “in real time.” In addition, there is a bias toward studying RNA viruses
rather than those with a DNA genome that derives not only from their fast evolution
(Duffy et al. 2008) but because, in general, they are more relevant in epidemics and
emerging diseases (Holmes 2004; WHO 2017).

Avise (2000) defined phylogeography as the field of study concerned with the
principles and processes governing the distribution of geographical lineages at the
intraspecific level as well as the interspecific level for related species. In other words,
from a more applied perspective, phylogeography includes studies using phyloge-
netic trees to combine genetic data with spatial information and analyze the spatial
patterns suggested in these trees (Holmes 2004; Pybus et al. 2015). Holmes (2004)
used a wider definition in which phylogeography incorporates spatial and temporal
patterns as well as their interactions. The rapid evolution of viruses can generate
enough genetic variation, even at the intra-host level, in just a few days to perform
phylogenetic analyses at the infected individual level. This allows applying phylo-
genetic methods to emerging diseases and to build highly resolved phylogenetic
trees (Holmes 2004; Avise 2000; Pybus et al. 2015). The most basic way to
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integrate spatial and genetic information consists of localizing cases of infections
and associating them to different variants (subtypes, genotypes, etc.) of the disease-
causing virus (Pybus et al. 2015).

Phylogeographic methods are a powerful tool to infer migration and transmission
routes and to reconstruct the evolutionary history of a lineage from genetic data.
When applied to viruses, these methods are useful to track the origin of outbreaks
and the source of emerging diseases and to reconstruct transmission histories not
only between individual hosts but also among social groups of the hosts, among host
species, and even their dispersion within body compartments within an individual
(De Maio et al. 2015; Alcala et al. 2016).

Due to the coincidence of time scales between molecular evolution and ecological
processes that shape their diversity, virus phylogenies provide not only spatial
information (i.e., lineages that cluster in geographically defined clades) but also
temporal information (i.e., lineages ordered according to sampling times). The
molecular clock is a statistical model that establishes a relationship between time
and genetic distances in nucleotide sequences. If samples are identified with known
dates, then the branching events and the common ancestor in a phylogeny can be
placed in a temporal scale. This information can be integrated with spatial informa-
tion to reconstruct the dispersal history of a virus, linking each branch of the
phylogeny with its geographic location. Therefore, with models based on the
molecular clock, it is possible to analyze the spread of an epidemic (in months or
years) complementing the phylogeny of the isolates with a time scale (Pybus and
Rambaut 2009; Pybus et al. 2015). The simplest models for the molecular clock, also
known as “strict clock” models, assume a single, constant evolutionary rate for all
the lineages. However, more complex, “relaxed clock” models have incorporated
variation in the evolutionary rate among lineages or through time (Drummond et al.
2006).

However, the application of phylogeographic tools is valuable only if the spatial
epidemiology leaves a signal in the viral genome. This depends both on the rate of
molecular evolution and on the rate of transmission in space. If the genome accrues
diversity too quickly compared to the rate of spatial spread, then the information
provided by phylogeographic analyses is lost as a result of mutation saturation at
informative positions (Emmett et al. 2015; Pybus et al. 2015).

Using specific genes or regions to build phylogenetic trees is still a current and
complementary approach to analyzing complete genomes (Shen et al. 2016), espe-
cially when these genome regions are important sources of predictive information
because they encode antigenic proteins (McHardy and Adams 2009). However, the
analysis at the genome level is very important to obtain a more complete and
unbiased information. Mechanisms such as recombination and reassortment may
generate genomes in which different portions thereof have different evolutionary
histories (Rambaut et al. 2008; McHardy and Adams 2009; Holmes 2004; Pybus
et al. 2015), and this has to be considered when analyzing complete genomes. Next-
generation sequencing methods have advanced to the “subnucleotide” level in the
analysis of viral sequences. This implies considering the infected individuals as
viral populations rather than repetitive collections of the same consensus genome
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and, additionally, detecting variability within individuals, even very low-frequency
variants (subclonal variants). Studying the intra-host and subclonal variability can
improve the resolution of phylogenetic analyses and, when combined with epide-
miological information, provide a very valuable information to track transmission
chains during an outbreak, especially when the transmission rate is very fast, even
higher than the viral evolutionary rate (Emmett et al. 2015).

9 Transmission Dynamics

In order to study and understand the dynamics of viral epidemics, we need an
approach combining the methods and theories of evolutionary biology, epidemiol-
ogy, and human geography.

For obligate parasites, such as viruses, which are usually unable to survive for a
long time outside their hosts, the mobility and movement patterns of the host are
crucial for understanding their transmission dynamics (Alcala et al. 2016; Hufnagel
et al. 2004; Pybus et al. 2015). This is closely related to the density and communi-
cation between susceptible populations because for virus transmission, a certain
proximity between hosts or hosts and vectors is necessary. The smaller the popula-
tion size of the host, the less likely transmission will be and, consequently, the more
difficult to be sustained long enough to cause acute infections. However, large, dense
host populations can easily sustain a virus that causes short, virulent infections. In
this context, the analysis of the basic reproductive number (R,) is highly relevant.
This number depends on several factors, such as the number of contacts with
susceptible individuals, the probability of transmission, and the length of the infec-
tious period (Dietz 1993). This value is very useful to estimate the speed of
propagation of an infection in a susceptible population (Ridenhour et al. 2014).
The interest in estimating this parameter and its application to the analysis of out-
breaks and epidemics and the design of public health strategies gained momentum
during the influenza A pandemics of 2009 (Fraser et al. 2009; Ridenhour et al. 2014).

Therefore, the spatial distribution of human viruses will reflect, at least partially,
the spatial distribution of human populations, which will also influence the virulence
of the disease. However, we must also consider whether the virus can infect other
animal species or whether they represent a reservoir for human infections (zoono-
ses). This is the case for some viruses, such as Ebola virus, with reservoirs in animal
species but also capable of being transmitted from person to person. Furthermore,
even in RNA viruses well-adapted to humans, there is the possibility of relatively
frequent zoonotic contacts, such as in influenza A and MERS-CoV, which are
usually associated with the emergence of epidemics and pandemics as a result of
genetic exchanges between strains from different species. For vector-borne viruses,
we must consider not only human geography but also the geographic distribution of
the corresponding vectors, such as different mosquitos of the genera Aedes and
Culex, which are vectors for Zika, dengue, or chikungunya viruses. Spatial distribu-
tion analyses should also include ecological features, life history, or migration
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potential of the vectors (Holmes 2004; Faria et al. 2017; Shen et al. 2016; Bullivant
and Martinou 2017; Cunha and Opal 2014).

In the study of the mobility and geographic distribution of humans for under-
standing the distribution and spread of human viruses, it is necessary to take into
account social factors such as international trade and air traffic. The global commu-
nications and interrelationships of human populations are growing continuously and
represent new opportunities for the transmission, propagation, and colonization of
new regions by viruses and their vectors. These can move viruses across geographic
barriers and bring into contact with previously isolated populations. This process has
contributed to the emergence and reemergence of viral epidemics such as Zika,
dengue, and chikungunya. However, we are just starting to understand the effects
of global mobility of people and goods on the genetic diversity and evolution of
viruses (Alcala et al. 2016; Pybus et al. 2015). To better control epidemics and to
understand the evolution and ecology of viruses, it will be necessary to integrate
spatial and genomic information along with information about human mobility in a
single mathematical framework (Pybus et al. 2015). One example in this direction is
BEAST, a framework for Bayesian statistical analysis that allows inference of
phylogeographic relationships including spatial and temporal dynamics of migration
(Lemey et al. 2009; Drummond and Rambaut 2007).

Clear examples of the relevance of this approach are the analyses of emerging viral
epidemics such as SARS or Zika virus. The international spread of Zika virus is likely
due to a global increase in air traffic. Specifically, using phylogeographic methods,
the origin of the epidemics has been traced to Brazil, where it was detected in 2015,
dating its origin in this country between 2013 and 2014 (Worobey 2017). These dates
were coincident with several events that brought an important flow of international
air traffic to Brazil, such as the 2014 FIFA World Cup (June—July 2014) and the
2013 FIFA Confederations Cup (June 2013) of football (Faria et al. 2016). This
highlights the importance of integrating genomic and epidemiologic information
about the global movement of persons when surveillance systems are implemented.
The large-scale patterns of people’s movements can suggest useful hypotheses to
study the introduction of viruses and the emergence of epidemics (Faria et al. 2016,
2017; Shen et al. 2016).

From a population genomics perspective, how does this increase in international
trade and movements impact the spread of infectious diseases, the population
dynamics of viruses, and their genetic diversity?

Isolation and subsequent secondary contact of viral populations are common in
natural host populations and can occur at short time scales. These events, facilitated
by a higher mobility and contact among human populations, are usually associated to
epidemics and pandemics. This has been observed in viruses such as influenza A
virus, HIV, and human cytomegalovirus. Furthermore, these processes are important
for understanding the evolutionary trajectory of zoonotic viruses, such as Ebola
virus.

While they are isolated, viral populations from the same species diverge and adapt
to the specific features of their host populations. Hence, during this period, natural
selection and demographic changes, such as expansions and bottlenecks, acting on



Population Genomics of Human Viruses

either the viral or the host population will affect the evolution of the virus. After the
viral populations are connected again, gene flow, recombination, or reassortment will
influence the evolution of the virus, leading to a “mixture” at the genome level.
Although selection and demographic changes still act during the reconnection, the
other processes act more intensely and rapidly. This mixture impacts on diversity at
the genome level: isolated populations have evolved independently, diverging and
adapting to the specific conditions of their host populations. After reconnection, the
diversity that has accumulated separately increases, which also leads to higher
adaptive potential since recombination and reassortment allow the combination of
polymorphisms selected in different environments into the same genome. If these
polymorphisms are compatible in that particular genomic context, this opens the
opportunity for the development of new features which might have not developed
(or do so only after very long periods) by just mutation and selection. The second
consequence of this shared genetic diversity is a progressive trend toward the
homogenization of the populations. Due to the increase in human mobility, these
events are expected to be more frequent in the future (Alcala et al. 2016).

10 Epidemiological Surveillance and Genomic Surveillance

Phylogenetic and phylogeographic analyses complement each other, and both
are used in epidemiological surveillance systems to control infectious diseases.
Phylogeographic information can be used to confirm the source(s) of epidemic out-
breaks, and it can also provide valuable information when surveillance is not well
implemented or the data it generates are uncertain, unavailable, or insufficient to
reconstruct or predict the propagation of the virus (Faria et al. 2017; Pybus et al.
2015). It is even possible to talk about “genomic surveillance” (Emmett et al. 2015) in
which the sequencing and analysis of complete genomes contribute to tracking
evolution at the genome level as the disease spreads. On the other hand, phylogenetic
analysis combined with epidemiological information is useful to study the routes of
infection in human populations or the number of introductions that have caused an
epidemic (Blackley et al. 2016; Gire et al. 2014; Shen et al. 2016; Drummond et al.
2006; Emmett et al. 2015; Faria et al. 2016).

Another goal of virus phylogeography is to ascertain the future propagation of the
organisms and the potential for epidemics by asking which variants are more likely
to become predominant and which places are more likely to be colonized and
through which ways. This implies building a predictive framework integrating social
and environmental factors associated to virus movement and transmission along
with genomic and epidemiological information (McHardy and Adams 2009; Pybus
et al. 2015).

Influenza A is a good example of how a well-established, global epidemiological
surveillance system provides useful information for disease control and vaccine
design. It also facilitates the collection of genome sequences at temporal and spatial
scales that can be used in evolutionary and phylogeographic analyses. Conversely, at
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the beginning of the Zika virus epidemics in Brazil in 2015, the country lacked a
surveillance system for this virus, and, 1 year later, this task still rested on the passive
diagnostics of the disease. This problem, along with the added difficulties for the
diagnosis of Zika due to its coexistence with dengue and chikungunya virus, has
been a major hurdle in the epidemiological study of the disease and the gathering of
abundant genomic information. The example of Zika reinforces the relevance of
epidemiological surveillance for the phylogeographic analysis of the virus (Faria
et al. 2016; Worobey 2017; Metsky et al. 2017).

The phylogenetic analysis of a virus can help in evaluating the efficiency of
surveillance systems. Estimating the most recent common ancestor of a group of
sequences can inform about the delay in the detection and notification of the
pathogen with respect to the moment of its introduction in the population (Pybus
et al. 2015).

One of the limitations in the phylogeographic analysis of viruses is the choice of
the correct model. A wrong model selection can lead to erroneous inferences about
the transmission history of the pathogen. As epidemiological investigations rely
increasingly on genome sequencing to study the origin and spread of infections, the
use of accurate phylogeographic methods will be crucial to stop their propagation
and design public health preventive measures. De Maio et al. (2015) review different
models used to infer transmission rates and spread patterns for viruses, and they
illustrate a trade-off between computational costs and speed, on the one hand, and
the reliability of the conclusions, on the other hand. The more reliable approaches
(continuous models) are, in general, the slowest and most costly with regard to
computational resources.

Recently, and partly to fulfill the need for a fast response in cases of outbreaks
and emerging epidemics, the so-called discrete character models have gained popu-
larity (Gire et al. 2014). These models treat locations as if they were discrete traits
evolving as alleles in a locus. This approach allows a much faster analysis; however,
its results are not reliable. They are very sensitive to sampling bias and not robust
to scarce genetic data. Different models can yield very different results for the same
dataset and, in general, lead to very different and wrong biological interpretations
when applied to the study of virus transmission (rather than to the evolution of
discrete traits, their original target). De Maio et al. (2015) suggested a model for
phylogeographic analysis that combines the advantages of both approaches, discrete
and continuous (reliability and precision along with speed and computational effi-
ciency). This model has been used recently in the study of emerging epidemics, such
as Zika in Brazil (Faria et al. 2017).

Another limitation for phylogeographic analyses is the public availability of
sequences. This depends, in part, on the relevance of the disease caused by the
virus, the implementation of an efficient epidemiological surveillance, and the stage
of the epidemics. For instance, in 2016 the number of genome sequences for Zika
virus available in GenBank was very limited (Shen et al. 2016) as a result of being a
recent epidemic and inefficient surveillance. On the contrary, the availability in the
public domain of influenza A virus sequences is much higher (Pybus et al. 2015).
The rapid publication of genome sequences during emerging epidemics is important
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to improve genomic and epidemiological surveillance and to monitor the spread of
the disease and the adaptive processes in the virus (Gire et al. 2014).

11 Conclusions

Viruses, especially those with RNA genomes, have high mutation rates, short gener-
ation times, and large population sizes and are under strong selective pressures. These
factors make these viruses organisms with fast evolutionary rates, high genetic
variability, and great adaptive capacity.

Understanding the mechanisms that allow human viruses to generate and main-
tain genetic diversity and to adapt to the host’s selective pressure is fundamental for
human health. A better knowledge of the evolution of human viruses at the genome
level can shed light on questions such as the evasion of immune response, the
development and transmission of resistance mutations, vaccine design, the evolution
and virulence of the disease or the control of outbreaks, epidemics, and emerging
diseases.

In general, viruses, as any other pathogen, are under strong selective pressure by
the immune system of their hosts. In addition, human viruses are usually under the
additional pressure of antiviral drugs and treatments. These pressures result in high
mutation rates in those genome regions involved in the interaction with the host and
in those that encode the targets of antiviral drugs. This leads to the development of
drug resistance and of mechanisms to evade the immune system.

The typically high mutation rates of RNA viruses are, most likely, another
consequence of these selective pressures because in a stable environment (very
different from a host infected by the virus), natural selection will favor a low mutation
rate (Kamp et al. 2002). This common feature of RNA viruses is a key factor to
explain their adaptation, and, simultaneously, it keeps viral populations at the extinc-
tion threshold by accumulating an excessive number of deleterious mutations.
Recently, it has been observed that the human immune system might take advantage
of this feature to fight viral infections by forcing hypermutation in the viral genome.

The genomic diversity is also limited by different constraints: the need to keep a
small genome size, RNA secondary structures at the genome level, structural domains
of proteins to sustain their function, and gene overlapping. In some viruses, such as
HCYV, these negative selection pressures might be the main factor driving evolution.
In others, such as HIV, positive selection has a more relevant role.

In this context, it is important to consider how the interactions between genome
positions can affect the “displacement” of different mutations through the adaptive
landscape. Mutations that could be considered as deleterious, such as some resis-
tance mutations or those that disrupt secondary structures, can be retained in a
population and even spread rapidly depending on the genome context where they
appear.

The population dynamics of RNA viruses are different depending on the level of
biological organization at which they are analyzed. Selective pressures acting at the
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intra-host and inter-hosts levels can differ and often act in opposite directions.
Frequently, these selective pressures conflict between the need to adapt to the host
and the ability for transmission to other hosts. Those variants that are favored by
selection within hosts — mutations for evading the immune system and drug resis-
tance — may diminish the capacity for transmission of the virus and, in consequence,
will be selected against at the inter-host level. In addition, every transmission event
represents a bottleneck that reduces drastically the population size of the virus and,
consequently, also its genetic diversity. This leads to slower evolutionary rates at the
inter-host level. For instance, in HIV there seems to be an inverse relationship
between transmission and evolutionary rate (Berry et al. 2007). We must also
consider how and by which means is the virus transmitted. Transmission rates are
higher in air-transmitted virus, such as influenza A, than in those that use the sexual
route. Similarly, those viruses that use arthropod species as vectors have lower rates
of evolution, a cost associated to their need for replication in different hosts (Holmes
2004; Woelk and Holmes 2002).

Another consequence of the high rates of evolution is that ecological and evolu-
tionary processes acting on viral populations occur at similar time scales. Their
interaction affects their spatial distribution. The combination of complete viral
genomes and phylogeographic methods is very useful for tracking the origin of
epidemic outbreaks, locating reservoirs that may act as sources of infection for
humans or of new potentially virulent strains (such as influenza A), to reconstruct
transmission histories and to monitor the spread of an epidemics. These applications
are very relevant nowadays, in an increasingly connected planet in which trade and
air traffic bring geographically distant populations close and erase natural barriers for
the transmission of diseases. Furthermore, human impacts on previously intact
ecosystems are helping the emergence and global spread of new infectious, as
illustrated by the recent epidemics of Zika and Ebola viruses.

12 Future Perspectives

The development of population genomics is closely linked to advances in sequenc-
ing technologies. Standard techniques, based on deriving consensus sequences, miss
the presence of minor or subclonal variants (low-frequency polymorphisms) which
might be important to understand the dynamics of viral populations as well as the
evolution and spread of the disease. Next-generation sequencing techniques allow
the detection of rare polymorphisms and minor variants and lead to consideration of
infected hosts as viral populations rather than “collections” of the same consensus
genome. Consequently, these methods provide a better view of viral diversity, which
enables an improvement in the study of the epidemiology and evolution of human
viruses. A more widespread use of these technologies to characterize genome
variation will provide increased information about the intra-host dynamics and the
relationship between viral diversity and infection outcome (Liu et al. 2012; Farci
et al. 2000), the inter-host transmission and dynamics (reservoirs for better-
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transmitted variants), the development of resistance and the failure of antiviral
treatments, and the building of highly resolved phylogenies and transmission histo-
ries during epidemic outbreaks. In addition, advances in sequencing technologies
have also allowed the fast and in-depth analysis of complete genomes. The evolution
and accumulation of genetic variation occur differently and simultaneously through-
out the genome. Separate regions of the same genome can interact with each other
(epistasis) and, even, evolve independently and show different phylogenetic histo-
ries. Hence, the possibility of analyzing complete genomes — as opposed to the
analysis of individual loci or isolated genome regions — provides a more complete,
resolved, and less biased view of genomic variation, the phylogeny and population
dynamics of the virus.

Finally, an important limitation in the population genomic study of virus
populations is the availability of genomic information for many viruses. This is
intimately related to the clinical and epidemiological relevance of the disease caused
by most viruses. Human diseases with high prevalence and important consequences
such as HIV, hepatitis C, or influenza receive much attention in the public health
realm and have a more efficient surveillance. This translates in higher availability of
viral genomes and epidemiological information, which are necessary for the evolu-
tionary analysis of virus populations.

The evolutionary analysis of viral genomes and epidemiological surveillance are,
in consequence, necessarily complementary. Implementing a “genomic surveil-
lance” can contribute to control and monitor the spread of infectious diseases and
to design better public health strategies to achieve these goals.
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