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Abstract

In development of a rotating accelerometer gravity gradiometer (RAGG)), it is difficult for us
to distinguish the measurement signals and error components in the RAGG output without a
verified and correctness RAGG analytical model. In addition, many key techniques, such as
RAGG analytical model validation, online error compensation, post motion error compen-
sation, are difficult to be verified. RAGG numerical model can provide validation platform
for solving all the above problems, which can speed up the development of the RAGG.
In this study, based on the principle and configuration of the RAGG, we synthetically
consider almost all the error factors, such as circuit gain mismatch, installation errors,
accelerometer scale-factor imbalance, and accelerometer second-order error coefficients,
construct a parameters adjustable RAGG numerical model. In multi-frequency gravitational
gradient simulation experiment, we use the RAGG numerical model simulating the situation
that a test mass rotates about the RAGG with time-varying angular velocity to generate
multi-frequency gravitational gradient excitations; the experiment results are consistent with
the theoretical ones; the RAGG numerical model can recur some phenomenons of a actual
RAGG.
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superconducting gravity gradiometers, cold atomic interfer-
ometer gravity gradiometers (Paik 2007; Difrancesco 2007;
Moody 2011; Liu 2014; Hao 2013). Rotating accelerometer
gravity gradiometer (RAGG) was developed by Ernest Met-

1 Introduction

Airborne gravity gradiometry is an advanced technology

for surveying a gravity field; it acquires gravity field in-
formation with high efficiency and high spatial resolution.
Compared with gravity information, the gravity gradient
tensor provides more information on the field source such
as orientation, depth, and shape (Tang and Hu 2018; Yan
and Ma 2015). There are many different types of gravity
gradiometer: rotating accelerometer gravity gradiometers,
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zger of Bell-Aerospace in the 1980s (Heard 1988). But, over
the past decade, rotating accelerometer gravity gradiometers
are the only commercial moving base gravity gradiometer
in the word; all other types are either in fight testing or
in a laboratory setting. Companies that operate commer-
cial rotating accelerometer gravity gradiometer systems are:
Bell Geospace (Air-FTG), ARKeX (FTGeX), GEDEX (HD-
AGG), and FUGRO (AGG-Falcon) (Rogers 2009; Metzger
1977). In this study, we synthetically consider almost all
the unperfect factors, for example accelerometer installa-
tion errors, accelerometer scale-factor imbalance, etc., and
construct a numerical model. The RAGG numerical model
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is a virtual RAGG with a comprehensive set of precisely
adjustable parameters; based on it, many key techniques, for
example RAGG automatic calibration, post error compensa-
tion, and self-gradient modeling, can be verified.

2 RAGG Numerical Model

A high-precision numerical model of the RAGG is estab-
lished, as shown in Fig. 1. In the numerical model, each
accelerometer has six mounting error parameters: radial dis-
tance, initial phase angle, altitude angle, and misalignment
error angles. Among them, the radial distance, initial phase
angle, and altitude angle determine the mounting position
of the accelerometer; the misalignment error angles deter-
mine the orientation deviation between the accelerometer
measurement frame and the accelerometer nominal frame
of the actual mounting position. The detailed definition of
the mounting error parameters can be found in literature (Yu
and Cai 2019). Moreover, each accelerometer has nine other
output model parameters: zero bias (K ;), linear scale factors
(K1), second-order error coefficients (K2, K4, K5, K,
K7, K3), and current to voltage gain (k;y,;). We use a test
mass to produce gravitational gradients to excite the RAGG.
The specific force of the accelerometer A; in the RAGG
numerical model is given by:

[ =S enm + @im XToya; + @im X (@im X To,1,)
~Gma;s [|4;S[. )
Where f,,,, is the specific force of the RAGG; w;,, is the
angular acceleration of the RAGG with respect to the inertial
frame; @;,, is the angular velocity of the RAGG with respect
to the inertial frame; G is the gravitational constant; r,, 4 ;
is the position vector of accelerometer A; in the RAGG
measurement frame; m represents the weight of the test
mass; and A ;S is the position vector from accelerometer
A; to the test mass. If the test mass is not a point mass,
the gravitational acceleration that the RAGG accelerometers
undergo produced by the test mass can be calculated using
finite element analysis. In addition, the test mass can be
in motion with respect to the RAGG; in this case, 4; S is
time varying. The specific forces of accelerometer A; in the
accelerometer nominal frame of the actual mounting position
(fjx> fiy» fjz) can be calculated from:

fjx:fj'TjX7
fiv=F; Tjy. 2
szzfj'rjz-
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Fig. 1 Principle and program flow of the RAGG numerical model.
(a) Principle of the RAGG numerical model. (b) Program flow of the
RAGG numerical model
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Where 7, Ty, and 7 are unit vectors of the accelerom-
eter nominal frame of the actual mounting position in the
directions of the x-, y-, and z-axes. The specific forces in the
accelerometer measurement frame are:

fji fjx
fjo =C ij s (3)
fir e

where C is the transformation matrix from the accelerom-
eter nominal frame of the actual mounting position to the
accelerometer measurement frame. To make the numerical
model approximate the actual RAGG, we add accelerometer
noise to the accelerometer model:

Vi _ 2 2
ij/IK/'l - fjnoise + fji + KjO + Kj2fji + Kijja
'|'Kj7fjp2 + Kj6fjifja + Kj4fjifjp + stfjf’fjﬁ .

4)

The accelerometer noise fj,oise is simulated by a power
spectral density model (Jekeli 2006):

D(fnoise = af_b + or , (5)

where « and b represent the amplitude and low-frequency
growth of the red noise, and wr denotes the amplitude of the
white noise.

Figure 1b is the program flow of the RAGG numerical
model. Firstly, the RAGG simulation parameters are set up,
including test masses parameters, RAGG rotating disk pa-
rameters, accelerometer mounting parameters, accelerometer
model parameters, RAGG motion parameters, etc. Then sub-
stituting the parameters into the formula (1)—(3) calculates
the specific force in accelerometer measurement frame at
time ¢. According to the formula (4), calculating the out-
put voltage of the RAGG accelerometer, the RAGG output
before demodulation at time t is calculated by: G, (f) =
Vi(t) 4+ Va(t) — V3(t) — V4(t). The above process is repeated
until time 7 is equal to the simulation duration time. Finally,
the RAGG output data is input to the quadrature amplitude
modulation (QAM) demodulator to extract gravitational gra-
dient.

Let Iy, I'xy, Iy, Iy, and Iy, represent the five inde-
pendent gravitational gradient elements at the origin of the
RAGG measurement frame. When mass is far enough away
from the RAGG, the gravitational acceleration measured
by the RAGG accelerometers is a first-order approximation
of the gravitational acceleration and gravitational gradient
tensor at the center of the rotating disc; in this case, the
inline channel measurement and the cross channel mea-
surement of the RAGG approximate Iy, — Iy, and Iy;
otherwise, the inline channel measurement and cross channel
measurement of the RAGG are the sum of Iy, — I},
I'yy, and high-order gravitational gradient tensor elements.

To distinguish between Iy, — Iy, Iy, and the measure-
ments of the RAGG, Iy, — Iy,, Iy is called as center
gravitational gradients; Iy, — I, is the inline channel of
the center gravitational gradients; I, is the cross channel
of the center gravitational gradients. In RAGG analytical
model, gravitational acceleration that the RAGG accelerom-
eter undergoes is a first-order taylor approximation of the
gravitational acceleration and gravitational gradient tensor
at the center of the rotating disc; but in the numerical
model, the gravitational accelerations are calculated using
Newton’s law of gravitation instead of a linear approxima-
tion. Therefore the numerical model are close to the actual
RAGG.

3 Multi-frequency Gravitational
Gradient Simulation Experiment

In multi-frequency gravitational gradient simulation
experiment, a test mass rotates about the RAGG with
time-varying angular velocity producing multi-frequency
gravitational gradient excitations. Based on the angular
velocity of the test mass and its initial coordinate in the
RAGG measurement frame, we can obtain the coordinates
of the test mass in the RAGG measurement frame at
any time. We then calculate the gravitational gradient
tensor at the origin of the RAGG measurement frame
and then calculate the center gravitational gradients.
The RAGG numerical model simulates a perfect RAGG
without accelerometer mounting errors, accelerometer
scale-factor imbalances, accelerometer second-order
error coefficients and accelerometer noise, so we set
the accelerometer mounting errors, the accelerometer
second-order error coefficients, accelerometer noise
parameters to zero. The linear scale factor of the
four accelerometers is k;; = 10 mA/g, the current-
to-voltage gain is kjy;; = 10° ohm, the nominal
mounting radius R is 0.1 m, and the rotation frequency

Fig. 2 A test mass rotating about the RAGG with time-varying angular
velocity
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Fig. 3 Accelerometer voltage outputs in RAGG numerical model
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Fig. 4 Output voltage of the numerical model before demodulation

of the RAGG disc is 0.25 Hz. Figure 2 shows a point
mass of 486 kg with an initial position in the RAGG
measurement frame of (1.1,0.5,0) and rotating about
the RAGG with time-varying angular speed w(f) =
500 + 4005sin(0.0628¢)° /h.

Figure 3 shows the voltage outputs of the four accelerom-
eters in the RAGG numerical model excited by the rotating
point mass. Figure 4 shows the output voltage before demod-
ulation of the numerical model. Figures 5 and 6 show the
demodulated gravitational gradient comparison among the
RAGG model and the center gravitational gradients; we can
see that the inline channel and the cross channel of the RAGG
numerical model are overlapped with that of the center
gravitational gradients and only one curve is displayed; to
distinguish the outputs of numerical model and the center
gravitational gradients, their differences are calculated and
shown in Figs.7 and 8; the differences are in the order of
10 ~! E, and they are caused by the high-order gravitational
gradient tensor.
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4 Conclusion

Based on the measurement principle and configuration of the
RAGG, we considered the factors of circuit gain mismatch,
installation error, accelerometer scale-factor imbalance, and
accelerometer second-order error coefficients, then devel-
oped a high-precision numerical model. The parameters of
the RAGG prototypes are unknowable and uncontrollable,
but the parameters of the RAGG numerical model are ad-
justable and knowable; to some extent, the RAGG numerical
model are more suitable for verifying some technique solu-
tions of the RAGG.
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