Skip to main content

Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering

  • Chapter
  • First Online:
Electrospun Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 291))

  • 299 Accesses

Abstract

The repairing procedure in the nervous system is intricate and brings significant difficulties to investigators. The complication of the structure and function of the nervous system, and its slow rate of regeneration, make it further challenging to treat in comparison to other human tissues when damage takes place. Furthermore, the existing therapeutic modalities comprising the utilization of conventional grafts and pharmacological actives have numerous shortcomings and cannot completely rehabilitate injuries to the nervous system. Though the peripheral nerves regenerate to some extent, the consequent findings are not satisfactory, especially for severe injuries. The continuing functional loss owing to inadequate regeneration of the nerve is a significant problem around the world. Therefore, a successful therapeutic approach to bring functional rehabilitation is immediately required. Lately, tissue engineering methods have enticed many scientists to lead tissue regeneration efficiently. Majorly, the electrospinning method has come into the limelight for the fabrication of the scaffolds as they can develop fibrous meshes with fiber diameter in nanoscale dimensions. The electrospun substrates have a high prospective in mimicking the structure of the natural extracellular matrix. These produced fibers can be random or oriented to assist the extension of neurite via contact guidance.

In this book chapter, we have demonstrated the principal parameters necessary for suitable electrospinning. Further, we have discussed the recent advances of electrospun polymeric scaffolds in neural tissue engineering. Finally, the challenges and future potentialities have been addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9:328–339

    CAS  Google Scholar 

  2. Robinson LR (2000) Traumatic injury to peripheral nerves. Muscle Nerve 23:863–873

    CAS  Google Scholar 

  3. Battiston B, Papalia I, Tos P, Geuna S (2009) Chapter 1 peripheral nerve repair and regeneration research: a historical note. Academic Press, pp 1–7

    Google Scholar 

  4. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    CAS  Google Scholar 

  5. Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    CAS  Google Scholar 

  6. Artico M, Cervoni L, Nucci F, Giuffre R (1996) Birthday of peripheral nervous system surgery: the contribution of Gabriele Ferrara (1543–1627). Neurosurgery 39:380–383

    CAS  Google Scholar 

  7. Trumble TE, Shon FG (2000) The physiology of nerve transplantation. Hand Clin 16:105–122

    CAS  Google Scholar 

  8. Evans PJ, Midha R, Mackinnon SE (1994) The peripheral nerve allograft: a comprehensive review of regeneration and neuroimmunology. Prog Neurobiol 43:187–233

    CAS  Google Scholar 

  9. Platt JL, Vercellotti GM, Dalmasso AP, Matas AJ, Bolman RM, Najarian JS, Bach FH (1990) Transplantation of discordant xenografts: a review of progress. Immunol Today 11:450–456

    CAS  Google Scholar 

  10. Gonzalez-Perez F, Cobianchi S, Heimann C, Phillips JB, Udina E, Navarro X (2017) Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery 80:465–474

    Google Scholar 

  11. Yang R, Xu C, Wang T, Wang Y, Wang J, Quan D, Deng DY (2017) PTMAc-PEG-PTMAc hydrogel modified by RGDC and hyaluronic acid promotes neural stem cells’ survival and differentiation in vitro. RSC Adv 7:41098–41104

    CAS  Google Scholar 

  12. Jain A, Kim Y-T, McKeon RJ, Bellamkonda RV (2006) In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497–504

    CAS  Google Scholar 

  13. Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11:51–59

    CAS  Google Scholar 

  14. Berthiaume F, Moghe PV, Toner M, Yarmush ML (1996) Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: hepatocytes cultured in a sandwich configuration. FASEB J 10:1471–1484

    CAS  Google Scholar 

  15. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59:1392–1412

    CAS  Google Scholar 

  16. Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    CAS  Google Scholar 

  17. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    CAS  Google Scholar 

  18. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiar (2003) Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J Control Release 89:341–353

    CAS  Google Scholar 

  19. Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12:435–447

    CAS  Google Scholar 

  20. Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater 84B:34–48

    CAS  Google Scholar 

  21. Teo W-E, He W, Ramakrishna S (2006) Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J 1:918–929

    CAS  Google Scholar 

  22. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223

    CAS  Google Scholar 

  23. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    CAS  Google Scholar 

  24. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90:4836–4846

    CAS  Google Scholar 

  25. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys 87:4531–4547

    CAS  Google Scholar 

  26. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151–160

    CAS  Google Scholar 

  27. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    CAS  Google Scholar 

  28. Gu X (2015) Progress and perspectives of neural tissue engineering. Front Med 9:401–411

    Google Scholar 

  29. Khaing ZZ, Schmidt CE (2012) Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 519:103–114

    CAS  Google Scholar 

  30. Veith M, Aktas OC, Lee J, Miró MM, Akkan CK (2010) Biphasic nano-materials and applications in life sciences: 1D Al/Al2O3 nanostructures for improved neuron cell culturing. Nanostructured Mater Syst:117–121

    Google Scholar 

  31. Tavangarian F, Li Y (2012) Carbon nanostructures as nerve scaffolds for repairing large gaps in severed nerves. Ceram Int 38:6075–6090

    CAS  Google Scholar 

  32. Jeans LA, Gilchrist T, Healy D (2007) Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: a comparison with microsurgical epineurial repair. J Plast Reconstr Aesthet Surg 60:1302–1308

    CAS  Google Scholar 

  33. Yu X, Bellamkonda RV (2003) Tissue-engineered scaffolds are effective alternatives to autografts for bridging peripheral nerve gaps. Tissue Eng 9:421–430

    CAS  Google Scholar 

  34. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108

    Google Scholar 

  35. Cen L, Liu W, Cui L, Zhang W, Cao Y (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res 63:492–496

    CAS  Google Scholar 

  36. Blackstone BN, Gallentine SC, Powell HM (2021) Review collagen-based electrospun materials for tissue engineering: a systematic review. Bioengineering 8:1–16

    Google Scholar 

  37. Gomes ME, Rodrigues MT, Domingues RMA, Reis RL (2017) Tissue engineering and regenerative medicine: new trends and directions – a year in review. Tissue Eng B Rev 23:211–224

    Google Scholar 

  38. Lombardi VRM (2012) New challenges in CNS repair: the immune and nervous connection. Curr Immunol Rev 8:87–93

    CAS  Google Scholar 

  39. Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 8:1–21

    CAS  Google Scholar 

  40. Tofighi Nasab S, Roodbari NH, Goodarzi V, Khonakdar HA, Mansoori K, Nourani MR (2022) Novel electrospun conduit based on polyurethane/collagen enhanced by nanobioglass for peripheral nerve tissue engineering. J Biomater Sci Polym Ed:1–22

    Google Scholar 

  41. Kijeńska-Gawrońska E, Bolek T, Bil M, Swieszkowski W (2019) Alignment and bioactive molecule enrichment of bio-composite scaffolds towards peripheral nerve tissue engineering. J Mater Chem B 7:4509–4519

    Google Scholar 

  42. Behtaj S, Ekberg JAK, St John JA (2022) Advances in electrospun nerve guidance conduits for engineering neural regeneration. Pharmaceutics 14:219

    CAS  Google Scholar 

  43. Zhao R, Jiang L, Du J, Xu B, Li A, Wang W, Zhao S, Li X (2022) Fluffy sponge-reinforced electrospun conduits with biomimetic structures for peripheral nerve repair. Compos B Eng 230:109482

    CAS  Google Scholar 

  44. Mohamadi F, Ebrahimi-Barough S, Reza Nourani M, Ali Derakhshan M, Goodarzi V, Sadegh Nazockdast M, Farokhi M, Tajerian R, Faridi Majidi R, Ai J (2017) Electrospun nerve guide scaffold of poly (ε-caprolactone)/collagen/nanobioglass: an in vitro study in peripheral nerve tissue engineering. J Biomed Mater Res A 105:1960–1972

    CAS  Google Scholar 

  45. Ebrahimi-Barough S, Hoveizi E, Yazdankhah M, Ai J, Khakbiz M, Faghihi F, Tajerian R, Bayat N (2017) Inhibitor of PI3K/Akt Signaling pathway small molecule promotes motor neuron differentiation of human endometrial stem cells cultured on electrospun biocomposite polycaprolactone/collagen scaffolds. Mol Neurobiol 54:2547–2554

    CAS  Google Scholar 

  46. Zhu B, Li W, Chi N, Lewis RV, Osamor J, Wang R (2017) Optimization of glutaraldehyde vapor treatment for electrospun collagen/silk tissue engineering scaffolds. ACS Omega 2:2439–2450

    CAS  Google Scholar 

  47. Zheng R, Duan H, Xue J, Liu Y, Feng B, Zhao S, Zhu Y, Liu Y, He A, Zhang W, Liu W (2014) The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 35:152–164

    Google Scholar 

  48. Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV (2014) PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed 25:325–340

    CAS  Google Scholar 

  49. Wu SC, Chang WH, Dong GC, Chen KY, Chen YS, Yao CH (2011) Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds. J Bioact Compat Polym 26:565–577

    CAS  Google Scholar 

  50. Farzamfar S, Naseri-Nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, Samadian H, Hamidieh AA, Ghorbani S, Goodarzi A, Azimi A (2018) Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellul 25:1229–1238

    CAS  Google Scholar 

  51. Vashisth P, Kar N, Gupta D, Bellare JR (2020) Three dimensional quercetin-functionalized patterned scaffold: development, characterization, and in vitro assessment for neural tissue engineering. ACS Omega 5:22325–22334

    CAS  Google Scholar 

  52. Behtouei E, Zandi M, Askari F, Daemi H, Zamanlui S, Arabsorkhi-Mishabi A, Pezeshki-Modaress M (2022) Bead-free and tough electrospun PCL/gelatin/PGS ternary nanofibrous scaffolds for tissue engineering application. J Appl Polym Sci 139:51471

    CAS  Google Scholar 

  53. Niu Y, Stadler FJ, Fu M (2021) Biomimetic electrospun tubular PLLA/gelatin nanofiber scaffold promoting regeneration of sciatic nerve transection in SD rat. Mater Sci Eng C 121:111858

    CAS  Google Scholar 

  54. KarbalaeiMahdi A, Shahrousvand M, Javadi HR, Ghollasi M, Norouz F, Kamali M, Salimi A (2017) Neural differentiation of human induced pluripotent stem cells on polycaprolactone/gelatin bi-electrospun nanofibers. Mater Sci Eng C 78:1195–1202

    CAS  Google Scholar 

  55. Lee S-J, Nowicki M, Harris B, Zhang LG (2017) Fabrication of a highly aligned neural scaffold via a table top stereolithography 3D printing and electrospinning. Tissue Eng A 23:491–502

    Google Scholar 

  56. Marino A, Tonda-Turo C, De Pasquale D, Ruini F, Genchi G, Nitti S, Cappello V, Gemmi M, Mattoli V, Ciardelli G, Ciofani G (2017) Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim Biophys Acta Gen Subj 1861:386–395

    CAS  Google Scholar 

  57. Wang S, Guan S, Li W, Ge D, Xu J, Sun C, Liu T, Ma X (2018) 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. Mater Sci Eng C 93:890–901

    CAS  Google Scholar 

  58. Arlov Ø, Aachmann FL, Sundan A, Espevik T, Skjåk-Bræk G (2014) Heparin-like properties of sulfated alginates with defined sequences and sulfation degrees. Biomacromolecules 15:2744–2750

    CAS  Google Scholar 

  59. Hazeri Y, Irani S, Zandi M, Pezeshki-Modaress M (2020) Polyvinyl alcohol/sulfated alginate nanofibers induced the neuronal differentiation of human bone marrow stem cells. Int J Biol Macromol 147:946–953

    CAS  Google Scholar 

  60. Bozza A, Coates EE, Incitti T, Ferlin KM, Messina A, Menna E, Bozzi Y, Fisher JP, Casarosa S (2014) Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 35:4636–4645

    CAS  Google Scholar 

  61. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    CAS  Google Scholar 

  62. Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496

    CAS  Google Scholar 

  63. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126

    CAS  Google Scholar 

  64. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032

    CAS  Google Scholar 

  65. Daemi H, Mashayekhi M, Pezeshki Modaress M (2018) Facile fabrication of sulfated alginate electrospun nanofibers. Carbohydr Polym 198:481–485

    CAS  Google Scholar 

  66. Sadeghi A, Pezeshki-Modaress M, Zandi M (2018) Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: fabrication and in vitro evaluation. Int J Biol Macromol 114:1248–1256

    CAS  Google Scholar 

  67. Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM (2017) Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 12:e0180427

    Google Scholar 

  68. Miller RJ, Chan CY, Rastogi A, Grant AM, White CM, Bette N, Schaub NJ, Corey JM (2018) Combining electrospun nanofibers with cell-encapsulating hydrogel fibers for neural tissue engineering. J Biomater Sci Polym Ed 29:1625–1642

    CAS  Google Scholar 

  69. Golafshan N, Kharaziha M, Fathi M (2017) Tough and conductive hybrid graphene-PVA: alginate fibrous scaffolds for engineering neural construct. Carbon 111:752–763

    CAS  Google Scholar 

  70. Xu W, Shen R, Yan Y, Gao J (2017) Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning. J Mech Behav Biomed Mater 65:428–438

    CAS  Google Scholar 

  71. Karimi S, Bagher Z, Najmoddin N, Simorgh S, Pezeshki-Modaress M (2021) Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Int J Biol Macromol 167:796–806

    CAS  Google Scholar 

  72. Li TT, Zhong Y, Yan M, Zhou W, Xu W, Huang SY, Sun F, Lou CW, Lin JH (2019) Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials 9:714

    Google Scholar 

  73. Kołodziejska M, Jankowska K, Klak M, Wszoła M (2021) Chitosan as an underrated polymer in modern tissue engineering. Nanomaterials 11:1–44

    Google Scholar 

  74. Lertwattanaseri T, Ichikawa N, Mizoguchi T, Tanaka Y, Chirachanchai S (2009) Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold. Carbohydr Res 344:331–335

    CAS  Google Scholar 

  75. Saravani S, Ebrahimian-Hosseinabadi M, Mohebbi-Kalhori D (2019) Polyglycerol sebacate/chitosan/gelatin nano-composite scaffolds for engineering neural construct. Mater Chem Phys 222:147–151

    CAS  Google Scholar 

  76. Cheng R, Cao Y, Yan Y, Shen Z, Zhao Y, Zhang Y, Sang S, Han Y (2021) Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering. Int J Polym Mater Polym Biomater:1–11

    Google Scholar 

  77. Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, Chen S, Ramakrishna S, He L (2018) RGD/TAT-functionalized chitosan-graft-PEI-PEG gene nanovector for sustained delivery of NT-3 for potential application in neural regeneration. Acta Biomater 72:266–277

    CAS  Google Scholar 

  78. Sadeghi A, Moztarzadeh F, Aghazadeh Mohandesi J (2019) Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Int J Biol Macromol 121:625–632

    CAS  Google Scholar 

  79. Karimi Tar A, Karbasi S, Naghashzargar E, Salehi H (2020) Biodegradation and cellular evaluation of aligned and random poly (3-hydroxybutyrate)/chitosan electrospun scaffold for nerve tissue engineering applications. Mater Technol 35:92–101

    CAS  Google Scholar 

  80. Gnavi S, Fornasari BE, Tonda-Turo C, Laurano R, Zanetti M, Ciardelli G, Geuna S In vitro evaluation of gelatin and chitosan electrospun fibres as an artificial guide in peripheral nerve repair: a comparative study. J Tissue Eng Regen Med 12:e679–e694

    Google Scholar 

  81. Afrash H, Nazeri N, Davoudi P, FaridiMajidi R, Ghanbari H (2021) Development of a bioactive scaffold based on NGF containing PCL/chitosan nanofibers for nerve regeneration. Biointerface Res Appl Chem 11:12606–12617

    CAS  Google Scholar 

  82. Vieira T, Silva JC, do Rego AB, Borges JP, Henriques C (2019) Electrospun biodegradable chitosan based-poly (urethane urea) scaffolds for soft tissue engineering. Mater Sci Eng C 103:109819

    CAS  Google Scholar 

  83. Du L, Li T, Jin F, Wang Y, Li R, Zheng J, Wang T, Feng ZQ (2020) Design of high conductive and piezoelectric poly (3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation. J Colloid Interface Sci 559:65–75

    CAS  Google Scholar 

  84. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297

    CAS  Google Scholar 

  85. Kang Z, Wang Y, Xu J, Song G, Ding M, Zhao H, Wang J (2018) An RGD-containing peptide derived from wild silkworm silk fibroin promotes cell adhesion and spreading. Polymers 10:1193

    Google Scholar 

  86. Boni R, Ali A, Giteru SG, Shavandi A, Clarkson AN (2020) Silk fibroin nanoscaffolds for neural tissue engineering. J Mater Sci Mater Med 31:1–7

    Google Scholar 

  87. Magaz A, Spencer BF, Hardy JG, Li X, Gough JE, Blaker JJ (2020) Modulation of neuronal cell affinity on PEDOT–PSS nonwoven silk scaffolds for neural tissue engineering. ACS Biomater Sci Eng 6:6906–6916

    CAS  Google Scholar 

  88. Zhao YH, Niu CM, Shi JQ, Wang YY, Yang YM, Wang HB (2018) Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen Res 13:1455

    CAS  Google Scholar 

  89. Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C (2022) Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration. ACS Nano 16:2292–2305

    CAS  Google Scholar 

  90. Revkova VA, Sidoruk KV, Kalsin VA, Melnikov PA, Konoplyannikov MA, Kotova S, Frolova AA, Rodionov SA, Smorchkov MM, Kovalev AV, Troitskiy AV (2021) Spidroin silk fibers with bioactive motifs of extracellular proteins for neural tissue engineering. ACS Omega 6:15264–15273

    CAS  Google Scholar 

  91. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    CAS  Google Scholar 

  92. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335

    CAS  Google Scholar 

  93. Nune M, Manchineella S, Govindaraju T, Narayan KS (2019) Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Mater Sci Eng C 94:17–25

    CAS  Google Scholar 

  94. Sun B, Zhou Z, Li D, Wu T, Zheng H, Liu J, Wang G, Yu Y, Mo X (2019) Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Mater Sci Eng C 94:190–199

    CAS  Google Scholar 

  95. Xue C, Zhu H, Tan D, Ren H, Gu X, Zhao Y, Zhang P, Sun Z, Yang Y, Gu J, Gu Y (2018) Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. J Tissue Eng Regen Med 12:e1143–e1153

    CAS  Google Scholar 

  96. Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31:585–593

    CAS  Google Scholar 

  97. Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866

    CAS  Google Scholar 

  98. de Guzman RC, Saul JM, Ellenburg MD, Merrill MR, Coan HB, Smith TL, Van Dyke ME (2013) Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials 34:1644–1656

    Google Scholar 

  99. Yang Y, Chen J, Migliaresi C, Motta A (2020) Natural fibrous protein for advanced tissue engineering applications: focusing on silk fibroin and keratin. Adv Exp Med Biol 1249:39–49

    CAS  Google Scholar 

  100. Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 149:341–350

    CAS  Google Scholar 

  101. Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S (2019) Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. J Mater Sci Mater Med 30:1–9

    Google Scholar 

  102. Khumalo M, Sithole B, Tesfaye T, Lekha P (2022) Valorization of waste chicken feathers: fabrication and characterization of novel keratin nanofiber conduits for potential application in peripheral nerve regeneration. J Nanomater 2022:7080278

    Google Scholar 

  103. Steel EM, Azar J-Y, Sundararaghavan HG (2020) Electrospun hyaluronic acid-carbon nanotube nanofibers for neural engineering. Materialia 9:100581

    CAS  Google Scholar 

  104. Bazmandeh AZ, Mirzaei E, Ghasemi Y, Kouhbanani MAJ (2019) Hyaluronic acid coated electrospun chitosan-based nanofibers prepared by simultaneous stabilizing and coating. Int J Biol Macromol 138:403–411

    CAS  Google Scholar 

  105. Soleimani M, Mashayekhan S, Baniasadi H, Ramazani A, Ansarizadeh M (2018) Design and fabrication of conductive nanofibrous scaffolds for neural tissue engineering: process modeling via response surface methodology. J Biomater Appl 33:619–629

    CAS  Google Scholar 

  106. Karimi A, Karbasi S, Razavi S, Zargar EN (2018) Poly(hydroxybutyrate)/chitosan aligned electrospun scaffold as a novel substrate for nerve tissue engineering. Adv Biomed Res 7:44

    Google Scholar 

  107. Si J, Yang Y, Xing X, Yang F, Shan P (2019) Controlled degradable chitosan/collagen composite scaffolds for application in nerve tissue regeneration. Polym Degrad Stab 166:73–85

    CAS  Google Scholar 

  108. Li TT, Yan M, Xu W, Shiu BC, Lou CW, Lin JH (2018) Mass-production and characterizations of polyvinyl alcohol/sodium alginate/graphene porous nanofiber membranes using needleless dynamic linear electrospinning. Polymers (Basel) 10:1167

    Google Scholar 

  109. Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P (2018) Fabrication of biocompatible alginate-poly(vinyl alcohol) nanofibers scaffolds for tissue engineering applications. Mater Technol 33:507–512

    CAS  Google Scholar 

  110. Golafshan N, Kharaziha M, Fathi M (2018) Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold. RSC Adv:6381–6389

    Google Scholar 

  111. Saderi N, Rajabi M, Akbari B, Firouzi M, Hassannejad Z (2018) Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med 29:134

    Google Scholar 

  112. Pooshidani Y, Zoghi N, Rajabi M, Haghbin Nazarpak M, Hassannejad Z (2021) Fabrication and evaluation of porous and conductive nanofibrous scaffolds for nerve tissue engineering. J Mater Sci Mater Med 32:46

    CAS  Google Scholar 

  113. Lau YT, Kwok LF, Tam KW, Chan YS, Shum DK, Shea GK (2018) Genipin-treated chitosan nanofibers as a novel scaffold for nerve guidance channel design. Colloids Surf B Biointerfaces 162:126–134

    CAS  Google Scholar 

  114. Rao F, Wang Y, Zhang D, Lu C, Cao Z, Sui J, Wu M, Zhang Y, Pi W, Wang B, Kou Y (2020) Aligned chitosan nanofiber hydrogel grafted with peptides mimicking bioactive brain-derived neurotrophic factor and vascular endothelial growth factor repair long-distance sciatic nerve defects in rats. Theranostics 10:1590–1603

    CAS  Google Scholar 

  115. Naghavi Alhosseini S, Moztarzadeh F, Kargozar S, Dodel M, Tahriri M (2015) Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: in vitro study. Int J Polym Mater Polym Biomater 64:474–480

    CAS  Google Scholar 

  116. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507

    CAS  Google Scholar 

  117. Babaie A, Bakhshandeh B, Abedi A, Mohammadnejad J, Shabani I, Ardeshirylajimi A, Moosavi SR, Amini J, Tayebi L (2020) Synergistic effects of conductive PVA/PEDOT electrospun scaffolds and electrical stimulation for more effective neural tissue engineering. Eur Polym J 140:110051

    CAS  Google Scholar 

  118. Jhang J-C, Lin J-H, Lou C-W, Chen Y-S (2021) Biodegradable and conductive PVA/CNT nanofibrous membranes used in nerve conduit applications. J Ind Text:15280837211032086

    Google Scholar 

  119. Bagheri B, Zarrintaj P, Samadi A, Zarrintaj R, Ganjali MR, Saeb MR, Mozafari M, Park OO, Kim YC (2020) Tissue engineering with electrospun electro-responsive chitosan-aniline oligomer/polyvinyl alcohol. Int J Biol Macromol 147:160–169

    CAS  Google Scholar 

  120. Shabani Z, Rahbarghazi R, Karimipour M, Ghadiri T, Salehi R, Sadigh-Eteghad S, Farhoudi M (2022) Transplantation of bioengineered Reelin-loaded PLGA/PEG micelles can accelerate neural tissue regeneration in photothrombotic stroke model of mouse. Bioeng Transl Med 7:e10264

    CAS  Google Scholar 

  121. Pozzobon LG, Sperling LE, Teixeira CE, Malysz T, Pranke P (2021) Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chem Biol Interact 348:109621

    CAS  Google Scholar 

  122. Farkhondehnia H, Amani Tehran M, Zamani F (2018) Fabrication of biocompatible PLGA/PCL/PANI nanofibrous scaffolds with electrical excitability. Fibers Polym 19:1813–1819

    CAS  Google Scholar 

  123. Aval NA, Emadi R, Valiani A, Kharaziha M, Karimipour M, Rahbarghazi R (2019) Nano-featured poly (lactide-co-glycolide)-graphene microribbons as a promising substrate for nerve tissue engineering. Compos B Eng 173:106863

    CAS  Google Scholar 

  124. Zhao Y, Liang Y, Ding S, Zhang K, Mao HQ, Yang Y (2020) Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 255:120164

    CAS  Google Scholar 

  125. Shrestha S, Shrestha BK, Kim JI, Ko SW, Park CH, Kim CS (2018) Electrodeless coating polypyrrole on chitosan grafted polyurethane with functionalized multiwall carbon nanotubes electrospun scaffold for nerve tissue engineering. Carbon 136:430–443

    CAS  Google Scholar 

  126. Pan X, Sun B, Mo X (2018) Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering. Front Mater Sci 12:438–446

    Google Scholar 

  127. Zhou X, Yang A, Huang Z, Yin G, Pu X, Jin J (2017) Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly(lactide acid) fibers with cell-derived extracellular matrix. Colloids Surf B Biointerfaces 149:217–225

    CAS  Google Scholar 

  128. Shafei S, Foroughi J, Stevens L, Wong CS, Zabihi O, Naebe M (2017) Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res Chem Intermed 43:1235–1251

    CAS  Google Scholar 

  129. Zha F, Chen W, Hao L, Wu C, Lu M, Zhang L, Yu D (2020) Electrospun cellulose-based conductive polymer nanofibrous mats: composite scaffolds and their influence on cell behavior with electrical stimulation for nerve tissue engineering. Soft Matter 16:6591–6598

    CAS  Google Scholar 

  130. Heidari M, Bahrami SH, Ranjbar-Mohammadi M, Milan PB (2019) Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater Sci Eng C 103:109768

    CAS  Google Scholar 

  131. Liu S, Sun L, Zhang H, Hu Q, Wang Y, Ramalingam M (2021) High-resolution combinatorial 3D printing of gelatin-based biomimetic triple-layered conduits for nerve tissue engineering. Int J Biol Macromol 166:1280–1291

    CAS  Google Scholar 

  132. Entekhabi E, Haghbin Nazarpak M, Shafieian M, Mohammadi H, Firouzi M, Hassannejad Z (2021) Fabrication and in vitro evaluation of 3D composite scaffold based on collagen/hyaluronic acid sponge and electrospun polycaprolactone nanofibers for peripheral nerve regeneration. J Biomed Mater Res A 109:300–312

    CAS  Google Scholar 

  133. Habibizadeh M, Nadri S, Fattahi A, Rostamizadeh K, Mohammadi P, Andalib S, Hamidi M, Forouzideh N (2021) Surface modification of neurotrophin-3 loaded PCL/chitosan nanofiber/net by alginate hydrogel microlayer for enhanced biocompatibility in neural tissue engineering. J Biomed Mater Res A 109:2237–2254

    CAS  Google Scholar 

  134. Chen T, Jiang H, Li X, Zhang D, Zhu Y, Chen X, Yang H, Shen F, Xia H, Zheng J, Xie K (2022) Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int J Biol Macromol 197:103–110

    CAS  Google Scholar 

  135. Ghaderinejad P, Najmoddin N, Bagher Z, Saeed M, Karimi S, Simorgh S, Pezeshki-Modaress M (2021) An injectable anisotropic alginate hydrogel containing oriented fibers for nerve tissue engineering. Chem Eng J 420:130465

    CAS  Google Scholar 

  136. Fuenteslópez CV, Ye H (2020) Electrospun fibres with hyaluronic acid-chitosan nanoparticles produced by a portable device. Nanomaterials 10:2016

    Google Scholar 

  137. Garrudo FF, Mikael PE, Xia K, Silva JC, Ouyang Y, Chapman CA, Hoffman PR, Yu Y, Han X, Rodrigues CA, Cabral JM (2021) The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie 182:61–72

    CAS  Google Scholar 

  138. Hu J, Kai D, Ye H, Tian L, Ding X, Ramakrishna S, Loh XJ (2017) Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater Sci Eng C 70:1089–1094

    CAS  Google Scholar 

  139. Saudi A, Rafienia M, Zargar Kharazi A, Salehi H, Zarrabi A, Karevan M (2019) Design and fabrication of poly (glycerol sebacate)-based fibers for neural tissue engineering: synthesis, electrospinning, and characterization. Polym Adv Technol 30:1427–1440

    CAS  Google Scholar 

  140. Saudi A, Amini S, Amirpour N, Kazemi M, Kharazi AZ, Salehi H, Rafienia M (2019) Promoting neural cell proliferation and differentiation by incorporating lignin into electrospun poly(vinyl alcohol) and poly(glycerol sebacate) fibers. Mater Sci Eng C 104:110005

    CAS  Google Scholar 

  141. Saudi A, Zebarjad SM, Alipour H, Katoueizadeh E, Alizadeh A, Rafienia M (2022) A study on the role of multi-walled carbon nanotubes on the properties of electrospun poly(caprolactone)/poly(glycerol sebacate) scaffold for nerve tissue applications. Mater Chem Phys 282:125868

    CAS  Google Scholar 

  142. Davoodi B, Goodarzi V, Hosseini H, Tirgar M, Shojaei S, Asefnejad A, Saeidi A, Oroojalian F, Zamanlui S (2022) Design and manufacturing a tubular structures based on poly(ɛ-caprolactone)/poly(glycerol-sebacic acid) biodegradable nanocomposite blends: suggested for applications in the nervous, vascular and renal tissue engineering. J Polym Res 29:54

    CAS  Google Scholar 

  143. Atari M, Mohammadalizadeh Z, Zargar Kharazi A, Haghjooy Javanmard S (2022) The effect of different solvent systems on physical properties of electrospun poly(glycerol sebacate)/poly(ɛ-caprolactone) blend. Polym Technol Mater:1–14

    Google Scholar 

  144. Denis P, Wrzecionek M, Gadomska-Gajadhur A, Sajkiewicz P (2019) Poly(glycerol Sebacate)–poly(l-lactide) nonwovens. Towards attractive electrospun material for tissue engineering. Polymers 11:2113

    CAS  Google Scholar 

  145. Imani F, Karimi-Soflou R, Shabani I, Karkhaneh A (2021) PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer (Guildf) 218:123487

    CAS  Google Scholar 

  146. Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708

    CAS  Google Scholar 

  147. Kang Y, Chen P, Shi X, Zhang G, Wang C (2018) Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer (Guildf) 156:250–260

    CAS  Google Scholar 

  148. Gangolphe L, Leon-Valdivieso CY, Nottelet B, Déjean S, Bethry A, Pinese C, Bossard F, Garric X (2021) Electrospun microstructured PLA-based scaffolds featuring relevant anisotropic, mechanical and degradation characteristics for soft tissue engineering. Mater Sci Eng C 129:112339

    CAS  Google Scholar 

  149. Fang Y, Zhu X, Wang N, Zhang X, Yang D, Nie J, Ma G (2019) Biodegradable core-shell electrospun nanofibers based on PLA and γ-PGA for wound healing. Eur Polym J 116:30–37

    CAS  Google Scholar 

  150. Barroca N, Marote A, Vieira SI, Almeida A, Fernandes MH, Vilarinho PM, Silva OA (2018) Electrically polarized PLLA nanofibers as neural tissue engineering scaffolds with improved neuritogenesis. Colloids Surf B Biointerfaces 167:93–103

    CAS  Google Scholar 

  151. Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y (2009) Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh. Biomaterials 30:2683–2693

    CAS  Google Scholar 

  152. Abbushi A, Endres M, Cabraja M, Kroppenstedt SN, Thomale UW, Sittinger M, Hegewald AA, Morawietz L, Lemke AJ, Bansemer VG, Kaps C (2008) Regeneration of intervertebral disc tissue by resorbable cell-free polyglycolic acid-based implants in a rabbit model of disc degeneration. Spine (Phila Pa 1976) 33:1527–1532

    Google Scholar 

  153. Arslantunali D, Dursun T, Yucel D, Hasirci N, Hasirci V (2014) Peripheral nerve conduits: technology update. Med Devices (Auckl) 7:405–424

    CAS  Google Scholar 

  154. Dehnavi N, Parivar K, Goodarzi V, Salimi A, Nourani MR (2019) Systematically engineered electrospun conduit based on PGA/collagen/bioglass nanocomposites: the evaluation of morphological, mechanical, and bio-properties. Polym Adv Technol 30:2192–2206

    CAS  Google Scholar 

  155. Liu C, Li B, Mao X, Zhang Q, Sun R, Gong RH, Zhou F (2019) Controllable aligned nanofiber hybrid yarns with enhanced bioproperties for tissue engineering. Macromol Mater Eng 304:1900089

    Google Scholar 

  156. Guarino V, Zuppolini S, Borriello A, Ambrosio L (2016) Electro-active polymers (EAPs): a promising route to design bio-organic/bioinspired platforms with on demand functionalities. Polymers (Basel) 8:185

    Google Scholar 

  157. Praharaj Bhatnagar M, Kelkar S, Mahanwar P (2017) Synthesis and characterization of poly(3,4-ethylenedioxythiophene)/poly(lactic acid) nanofibres by electrospinning. Polym Int 66:359–365

    CAS  Google Scholar 

  158. Sordini L, Silva JC, Garrudo FF, Rodrigues CA, Marques AC, Linhardt RJ, Cabral J, Morgado J, Ferreira FC (2021) PEDOT:PSS-coated polybenzimidazole electroconductive nanofibers for biomedical applications. Polymers (Basel) 13:2786

    CAS  Google Scholar 

  159. Song Q, Jiang Z, Li N, Liu P, Liu L, Tang M, Cheng G (2014) Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials 35:6930–6940

    CAS  Google Scholar 

  160. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS (2010) Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186

    CAS  Google Scholar 

  161. Kim T-H, Lee K-B, Choi J-W (2013) 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials 34:8660–8670

    CAS  Google Scholar 

  162. Ginestra P (2019) Manufacturing of polycaprolactone – graphene fibers for nerve tissue engineering. J Mech Behav Biomed Mater 100:103387

    CAS  Google Scholar 

  163. Magaz A, Li X, Gough JE, Blaker JJ (2021) Graphene oxide and electroactive reduced graphene oxide-based composite fibrous scaffolds for engineering excitable nerve tissue. Mater Sci Eng C 119:111632

    CAS  Google Scholar 

  164. Wang X, Guo M, Liu Y, Niu K, Zheng X, Yang Y, Wang P (2021) Reduced graphene oxide fibers for guidance growth of trigeminal sensory neurons. ACS Appl Bio Mater 4:4236–4243

    CAS  Google Scholar 

  165. Jiang H, Wang X, Li X, Jin Y, Yan Z, Yao X, Yuan WE, Qian Y, Ouyang Y (2022) A multifunctional ATP-generating system by reduced graphene oxide-based scaffold repairs neuronal injury by improving mitochondrial function and restoring bioelectricity conduction. Mater Today Bio 13:100211

    CAS  Google Scholar 

  166. Fang X, Guo H, Zhang W, Fang H, Li Q, Bai S, Zhang P (2020) Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration. J Mater Chem B 8:10593–10601

    CAS  Google Scholar 

  167. Lee W, Parpura V (2009) Carbon nanotubes as substrates/scaffolds for neural cell growth. Prog Brain Res 180:110–125

    Google Scholar 

  168. Gheith MK, Pappas TC, Liopo AV, Sinani VA, Shim BS, Motamedi M, Wicksted JP, Kotov NA (2006) Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes. Adv Mater 18:2975–2979

    CAS  Google Scholar 

  169. Xia Y, Li S, Nie C, Zhang J, Zhou S, Yang H, Li M, Li W, Cheng C, Haag R (2019) Multivalent polyanion-dispersed carbon nanotube toward highly bioactive nanostructured fibrous stem cell scaffolds. Appl Mater Today 16:518–528

    Google Scholar 

  170. Nazeri N, Karimi R, Ghanbari H (2021) The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering. J Biomed Mater Res A 109:159–169

    CAS  Google Scholar 

  171. Eivazi Zadeh Z, Solouk A, Shafieian M, Haghbin Nazarpak M (2021) Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Mater Sci Eng C 118:111403

    CAS  Google Scholar 

  172. Nazeri N, Derakhshan MA, Faridi-Majidi R, Ghanbari H (2018) Novel electro-conductive nanocomposites based on electrospun PLGA/CNT for biomedical applications. J Mater Sci Mater Med 29:168

    Google Scholar 

  173. Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, Wang Z, Liu H, Ding J, Yang H (2021) Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Adv Healthc Mater 10:2000604

    CAS  Google Scholar 

  174. Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI (2021) Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 168:175–186

    CAS  Google Scholar 

  175. Nazarpak MH, Entekhabi E, Najafi F, Rahmani M, Hashjin MS (2019) Synthesis and characterization of conductive neural tissue engineering scaffolds based on urethane-polycaprolactone. Int J Polym Mater Polym Biomater 68:827–835

    CAS  Google Scholar 

  176. Saudi A, Zebarjad SM, Salehi H, Katoueizadeh E, Alizadeh A (2022) Assessing physicochemical, mechanical, and in vitro biological properties of polycaprolactone/poly(glycerol sebacate)/hydroxyapatite composite scaffold for nerve tissue engineering. Mater Chem Phys 275:125224

    CAS  Google Scholar 

  177. Yen CM, Shen CC, Yang YC, Liu BS, Lee HT, Sheu ML, Tsai MH, Cheng WY (2019) Novel electrospun poly(ε-caprolactone)/type I collagen nanofiber conduits for repair of peripheral nerve injury. Neural Regen Res 14:1617–1625

    CAS  Google Scholar 

  178. Mohamadi F, Ebrahimi-Barough S, Nourani MR, Mansoori K, Salehi M, Alizadeh AA, Tavangar SM, Sefat F, Sharifi S, Ai J (2018) Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. Artif Cells Nanomed Biotechnol 46:1731–1743

    CAS  Google Scholar 

  179. Mohamadi F, Ebrahimi-Barough S, Nourani MR, Ahmadi A, Ai J (2018) Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat. Artif Cells Nanomed Biotechnol 46:34–45

    CAS  Google Scholar 

  180. Luginina M, Schuhladen K, Orrú R, Cao G, Boccaccini AR, Liverani L (2020) Electrospun PCL/PGS composite fibers incorporating bioactive glass particles for soft tissue engineering applications. Nanomaterials 10:978

    CAS  Google Scholar 

  181. Yu L, Zhang W, Jiang Y, Guo C (2020) Gradient degradable nerve guidance conduit with multilayer structure prepared by electrospinning. Mater Lett 276:128238

    CAS  Google Scholar 

  182. Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P (2019) Investigation of poly(vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J Drug Deliv Sci Technol 54:101276

    CAS  Google Scholar 

Download references

Acknowledgments

Author SP would like to thank the Indian Institute of Technology Madras for providing financial assistantship and resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vignesh Muthuvijayan .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflict of interest.

Funding

Not applicable.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pramanik, S., Muthuvijayan, V. (2022). Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. In: Jayakumar, R. (eds) Electrospun Polymeric Nanofibers. Advances in Polymer Science, vol 291. Springer, Cham. https://doi.org/10.1007/12_2022_130

Download citation

Publish with us

Policies and ethics