Skip to main content

Functional Polyolefins: Synthesis and Energy Storage Applications

  • Chapter
  • First Online:
Polyolefins: 50 years after Ziegler and Natta II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 258))

Abstract

This chapter discusses our research into the functionalization of polyolefins (PE, PP etc.) that contain polar groups (such as OH and NH2) in the side chains and chain end, as well as polyolefin graft and block copolymers containing both a polyolefin block and functional polymer blocks (acrylic and methacrylate polymers). In the late 1980s, our research on the functionalization of polyolefins was inspired by the development of homogeneous, single-site metallocene catalysts that showed excellent copolymerization capabilities and a well-controlled polymerization mechanism. We were curious to know how to apply this newly available technology to the direct polymerization (in-reactor) process to circumvent the inevitable deactivation of the transition metal cationic active site by functional (polar) groups containing basic O, N, and halides. Throughout the past two decades, we have developed an effective approach that is centered on specially designed “reactive” comonomers and chain transfer agents. These can deliver three essential properties during the polymerization process: (1) stability (no side reaction) of the active site; (2) solubility in the polymerization media for effective incorporation; and (3) versatility for interconversion to desirable functional groups under mild reaction conditions after polymerization (preferably a one-pot process). With the conjunction of suitable metallocene catalysts, a broad range of polyolefins with “reactive” sites in the side chains or chain end were prepared, and the incorporated reactive groups were interconverted into functional groups to form side-chain- or chain-end-functionalized polyolefins. Some active sites were also transformed into “living” radical or anionic initiator to initiate graft-from polymerization of polar monomers to obtain polyolefin graft and block copolymers (such as PP-g-PMMA and PP-b-PMMA). The resulting functional polyolefins show many desirable properties and applications. This chapter focuses on applications in the area of energy storage. Specifically, I will discuss the usage of new functional polypropylene polymers in the formation of dielectric thin films in capacitors that show significantly higher energy and power densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Natta G, Mazzanti G, Longi P, Bernardini F (1958) Isotactic polymers of silicon-containing vinyl monomers. J Polym Sci 31:181

    Article  Google Scholar 

  2. Lal J (1958) Polymerization of vinyl ethers by Ziegler catalysts. J Polym Sci 31:179

    Article  Google Scholar 

  3. Chung TC (2002) Functionalization of polyolefins. Academic, London

    Google Scholar 

  4. Boor J Jr (1979) Ziegler–Natta catalysts and polymerizations. Academic, London

    Google Scholar 

  5. Heller J, Tszen DO, Parkinson DB (1963) Polymerization of N-vinylcarbazole with Ziegler-type catalyst systems. J Polym Sci 1:125

    CAS  Google Scholar 

  6. Hopkins E, Miller ML (1963) Polymerization of t-butyl acrylate in the presence of n-butyl lithium and titanium tetrachloride. Polymer 4:75

    Article  CAS  Google Scholar 

  7. Bacskai R (1965) Copolymerization of α-olefins with ω-Halo-α-olefins by use of Ziegler Catalysts. J Polym Sci 3:2491

    CAS  Google Scholar 

  8. Clark KJ, Powell T (1965) Polymers of halogen-substituted 1-olefins. Polymer 6:531

    Article  CAS  Google Scholar 

  9. Purgett MD, Vogl O (1988) Polymerization of w-alkenoate derivatives. J Polym Sci A Polym Chem 26:677

    Article  CAS  Google Scholar 

  10. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and α-olefins. J Am Chem Soc 117:6414

    Article  CAS  Google Scholar 

  11. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(ii) catalyst. J Am Chem Soc 118:267

    Article  CAS  Google Scholar 

  12. Correia SG, Marques MM, Ascenso JR, Ribeiro AFG, Gomes PT, Dias AR, Blais M, Rausch MD, Chien JCW (1999) Polymerization with TMA-protected polar vinyl comonomers. II. Catalyzed by nickel complexes containing α-diimine-type ligands. J Polym Sci A Polym Chem 37:2471

    Article  CAS  Google Scholar 

  13. Singh RP (1992) Surface grafting onto polypropylene – a survey of recent developments. Prog Polym Sci 17:251

    Article  CAS  Google Scholar 

  14. Jagur-Grodzinski J (1992) Modification of polymers under heterogeneous conditions. Prog Polym Sci 17:361

    Article  CAS  Google Scholar 

  15. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245

    Article  CAS  Google Scholar 

  16. Sarjeant WJ (1989) Advanced power sources for space missions, NAS-NRC (EEB) committee on advanced spaced based high power technologies. National Academy Press, Washington

    Google Scholar 

  17. Sarjeant W, Zirnheld JJ, MacDougall FW (1998) Capacitors. IEEE Trans Plasma Sci 26:1368

    Article  CAS  Google Scholar 

  18. Reed CW, Cichanowski SW (1994) The fundamentals of aging in HV polymer-film capacitors. IEEE Trans Dielectr Electr Insul 1:904

    Article  CAS  Google Scholar 

  19. Sarjeant WJ, MacDougall FW, Larson DW (1997) Energy storage in polymer laminate structures-ageing and diagnostic approaches for life validation. IEEE Electr Insul Mag 13:20

    Article  Google Scholar 

  20. Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30:1939

    Article  CAS  Google Scholar 

  21. Picci G, Rabuffi M (2000) Pulse handling capability of energy storage metallized film capacitors. IEEE Trans Plasma Sci 28:1603

    Article  CAS  Google Scholar 

  22. Wang Z, Zhang ZC, Chung TC (2006) High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers; synthesis and characterization. Macromolecules 39:4268

    Article  CAS  Google Scholar 

  23. Zhang ZC, Chung TC (2007) Fluoro-terpolymer based capacitors having high energy density, low energy loss, and high pulsed charge-discharge cycles. Macromolecules 40:783

    Article  CAS  Google Scholar 

  24. Zhang ZC, Chung TC (2007) The structure-property relationship of PVDF-based polymers with energy storage and loss under applied electric fields. Macromolecules 2007:9391

    Article  Google Scholar 

  25. Sinn H, Kaminisky W (1980) Ziegler–Natta catalysts. Adv Organomet Chem 18:99

    Article  CAS  Google Scholar 

  26. Wild FRWP, Zsolnai L, Huttner G, Brintzinger HH (1982) ansa-metallocene derivatives IV. Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands. J Organomet Chem 232:233

    CAS  Google Scholar 

  27. Ewen JA (1984) Mechanisms of stereochemical control in propylene polymerizations with soluble group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc 106:6355

    Article  CAS  Google Scholar 

  28. Kaminsky W, Kulper K, Brintzinger HH, Wild FRWP (1985) Polymerization of propene and butene with a chiral zirconocene and methylalumoxane as cocatalyst. Angew Chem Int Ed Engl 24:507

    Article  Google Scholar 

  29. Chung TC (2002) Synthesis of functional polyolefin copolymers with graft and block structures. Prog Polym Sci 27:39

    Article  CAS  Google Scholar 

  30. Chung TC (1988) Synthesis of polyalcohols via Ziegler–Natta polymerization. Macromolecules 21:865

    Article  CAS  Google Scholar 

  31. Ramakrishnan S, Berluche E, Chung TC (1990) Functional groups containing copolymers prepared by Ziegler–Natta process. Macromolecules 23:378

    Article  CAS  Google Scholar 

  32. Chung TC, Rhubright D (1991) Synthesis of functionalized polypropylene. Macromolecules 24:970

    Article  CAS  Google Scholar 

  33. Chung TC (1996) Functionalization of polyolefins using borane monomers and transition metal catalysts. Polym Mater Encyclopedia 4:2681

    Google Scholar 

  34. Chung TC (1999) Polyolefins containing reactive p-methylstyrene groups; from high Tm thermoplastics to low Tg elastomers. J Elastomers Plastics 31:298

    CAS  Google Scholar 

  35. Chung TC (1996) Polyolefin graft copolymers prepared by Borane approach. Polym Mater Encyclopedia 8:6412

    Google Scholar 

  36. Brown HC (1975) Organic syntheses via boranes. Wiley, New York

    Google Scholar 

  37. Chung TC, Rhubright D (1993) Kinetic aspects of the copolymerization between α-olefins and Borane monomers in Ziegler–Natta catalyst. Macromolecules 26:3019

    Article  CAS  Google Scholar 

  38. Dong JY, Manias E, Chung TC (2002) Functionalized syndiotactic polystyrene polymers prepared by the combination of metallocene catalyst and Borane comonomer. Macromolecules 35:3439

    Article  CAS  Google Scholar 

  39. Chung TC, Lu HL, Li CL (1995) Functionalization of polyethylene using Borane reagents and metallocene catalysts. Polym Int 37:197

    Article  CAS  Google Scholar 

  40. Chung TC, Lu HL (1997) Synthesis of poly(ethylene-co-p-methylstyrene) copolymers by metallocene catalysts with constrained ligand geometry. J Polym Sci Polym Chem Ed 35:575

    Article  CAS  Google Scholar 

  41. Chung TC, Lu HL (1998) Kinetic and microstructure studies of poly(ethylene-co-p-methylstyrene) copolymers prepared by metallocene catalysts with constrained ligand geometry. J Polym Sci Polym Chem Ed 36:1017

    Article  CAS  Google Scholar 

  42. Chung TC, Lu HL (1999) Synthesis of poly(propylene-co-p-methylstyrene) copolymers and functionalization. J Polym Sci Polym Chem Ed 37:2795

    Article  Google Scholar 

  43. Chung TC, Hong S, Lu HL (1998) Synthesis of new polyolefin elastomers, poly(ethylene-ter-propylene-ter-p-methylstyrene) and poly(ethylene-ter-1-octene-ter-p-methylstyrene). Macromolecules 31:2028

    Article  Google Scholar 

  44. Lu B, Chung TC (2000) Synthesis of maleic anhydride grafted polyethylene and polypropylene with controlled molecular structures. J Polym Sci Polym Chem Ed 38:1337

    Article  CAS  Google Scholar 

  45. Dong JY, Chung TC (2002) Synthesis of linear ethylene/divinylbenzene copolymers by metallocene catalysts. Macromolecules 35:2868

    Article  Google Scholar 

  46. Dong JY, Hong H, Chung TC, Wang HC, Datta S (2003) Synthesis of linear polyolefin elastomers containing divinylbenzene units and applications in crosslinking, functionalization, and graft reactions. Macromolecules 36:6000

    Article  CAS  Google Scholar 

  47. Gao C, Dong JY, Chung TC (2005) Hydrogen-assisted unique incorporation of 1,4-divinylbenzene in copolymerization with propylene using an iso-specific zirconocene catalyst. Macromol Rapid Commun 26:1936

    Article  Google Scholar 

  48. Lin W, Shao Z, Dong JY, Chung TC (2009) Cross-linked polypropylene prepared by PP copolymers containing flexible styrene groups. Macromolecules 42:3750

    Article  CAS  Google Scholar 

  49. Langston J, Dong JY, Chung TC (2005) One-pot process of preparing long chain branched polypropylene (LCBPP) using C2-symmetric metallocene complex and A “T” reagent. Macromolecules 38:5849

    Article  CAS  Google Scholar 

  50. Langston JA, Colby RH, Shimizu F, Suzuki T, Aoki M, Mike Chung TC (2007) Synthesis and characterization of long chain branched isotactic polypropylene (LCBPP) via metallocene catalyst and T-reagent. Macromolecules 40:2712

    Article  CAS  Google Scholar 

  51. Xu G, Chung TC (1999) Borane chain transfer agent in metallocene-mediated olefin polymerization; synthesis of Borane-terminated polyethylene and diblock copolymers containing polyethylene and polar polymer. J Am Chem Soc 121:6763

    Article  CAS  Google Scholar 

  52. Xu G, Chung TC (1999) Synthesis of syndiotactic polystyrene (s-PS) containing a terminal polar group and diblock copolymers containing s-PS and polar polymers. Macromolecules 32:8689

    Article  CAS  Google Scholar 

  53. Chung TC, Xu G, Lu YY, Hu Y (2001) Metallocene-mediated olefin polymerization with B–H chain transfer agents; synthesis of chain-end functionalized polyolefins and diblock copolymers. Macromolecules 34:8040

    Article  CAS  Google Scholar 

  54. Lin W, Dong JY, Chung TC (2008) Synthesis of chain end functional isotactic polypropylene by the combination of metallocene catalyst and Borane chain transfer agent. Macromolecules 41:8452

    Article  CAS  Google Scholar 

  55. Lin W, Niu H, Chung TC, Dong JY (2010) Borane chain transfer reaction in olefin polymerization using trialkylboranes as chain transfer. J Polym Sci A Polym Chem 48:3534

    Article  CAS  Google Scholar 

  56. Chung TC, Dong JY (2001) A novel consecutive chain transfer reaction to p-methylstyrene and hydrogen during metallocene-mediated olefin polymerization. J Am Chem Soc 123:4871

    Article  CAS  Google Scholar 

  57. Dong JY, Chung TC (2002) Synthesis of polyethylene containing a terminal p-MS group; metallocene-mediated ethylene polymerization with a consecutive chain transfer reaction to P-MS and hydrogen. Macromolecules 35:1622

    Article  CAS  Google Scholar 

  58. Dong JY, Wang ZM, Han H, Chung TC (2002) Synthesis of isotactic polypropylene containing a terminal Cl, OH, and NH2 group via metallocene-mediated polymerization/chain transfer reaction. Macromolecules 35:9352

    Article  CAS  Google Scholar 

  59. Chung TC, Jiang GJ (1992) Synthesis of poly(octene-g-MMA) copolymers. Macromolecules 25:4816

    Article  CAS  Google Scholar 

  60. Chung TC, Jiang GJ, Rhubright D (1993) Synthesis of PP-g-PMMA copolymers by Borane approach. Macromolecules 26:3467

    Article  CAS  Google Scholar 

  61. Chung TC, Janvikul W, Bernard R, Jiang GJ (1994) Synthesis of ethylene-propylene rubber graft copolymers by Borane approach. Macromolecules 27:26

    Article  CAS  Google Scholar 

  62. Chung TC, Lu HL, Ding RD (1997) Synthesis of polyethylene-g-polystyrene and polyethylene-g-poly(p-methylstyrene) copolymers. Macromolecules 30:1272

    Article  CAS  Google Scholar 

  63. Lu HL, Chung TC (1999) Synthesis of PP graft copolymers via anionic living graft-from reactions of polypropylene containing reactive p-methylstyrene units. J Polym Sci Polym Chem Ed 37:4176

    Article  CAS  Google Scholar 

  64. Chung TC, Lu HL (1997) Functionalization and block reactions of polyolefins using metallocene catalysts and Borane reagents. J Mol Catal A Chem 115:115

    Article  CAS  Google Scholar 

  65. Chung TC, Lu HL, Janvikul W (1997) A novel synthesis of PP-b-PMMA copolymers via metallocene catalysts and Borane chemistry. Polymer 38:1495

    Article  CAS  Google Scholar 

  66. Gao C, Zou J, Dong JY, Hu YL, Chung TC (2005) Synthesis of PP graft copolymers by the combination of a PP copolymer containing pendant vinylbenzene groups and ATRP process. J Polym Sci Polym Chem Ed 43:429

    Article  Google Scholar 

  67. Chung TC, Lu HL, Janvikul W (1996) A new “Living” radical initiator based on the oxidation adducts of alkyl-9-BBN. J Am Chem Soc 118:705

    Article  CAS  Google Scholar 

  68. Zhang ZC, Chung TC (2006) Reaction mechanism of Borane/oxygen radical initiators during the polymerization of fluoromonomers. Macromolecules 39:5187

    Article  CAS  Google Scholar 

  69. Yuan X, Matsuyama Y, Chung TC (2010) Synthesis of functionalized isotactic polypropylene dielectrics for electric storage application. Macromolecules 43:4011

    Article  CAS  Google Scholar 

  70. Yuan X, Chung TC (2011) Cross-linking effect on dielectric properties of polypropylene thin films and applications in electric energy storage. Appl Phys Lett 98:62901

    Article  Google Scholar 

  71. Chinsirikul W, Chung TC, Harrison I (1993) Adhesion improvement in polypropylene/aluminum laminates. J Thermoplastic Comp Mater 6:18

    Article  CAS  Google Scholar 

  72. Lee SH, Li CL, Chung TC (1994) Evaluation of poly(propylene-co-hexen-6-ol) as an interfacial agent in PP/glass laminates. Polymer 35:2979

    Google Scholar 

  73. Chung TC, Lee SH (1997) New hydrophilic polypropylene membranes; fabrication and evaluation. J Appl Polym Sci 64:567

    Article  CAS  Google Scholar 

  74. Chung TC, Rhubright D (1994) Polypropylene-g-polycaprolactone; synthesis and applications in polymer blends. Macromolecules 27:1313

    Article  CAS  Google Scholar 

  75. Lu B, Chung TC (1999) New maleic anhydride modified polypropylene copolymers with block structure; synthesis and application in PP/nylon blends, Bing Lu and T. C. Chung. Macromolecules 32:2525

    Article  CAS  Google Scholar 

  76. Wang ZM, Nakajima H, Manias E, Chung TC (2003) Exfoliated PP/clay nanocomposites using ammonium-terminated PP as the organic modification montmorillonite. Macromolecules 36:8919

    Article  CAS  Google Scholar 

  77. Zhang M, Kim HK, Lvov SN, Chung TC (2011) New polyethylene based anion exchange membranes (PE-AEMs) with high Cl conductivity and good ion selectivity. Macromolecules 44:5937

    Article  CAS  Google Scholar 

  78. Kim HY, Zhang M, Yuan X, Chung TC (2012) Synthesis of polyethylene-based proton exchange membranes containing PE backbone and sulfonated poly(arylene ethersulfone) side chains for fuel cell applications. Macromolecules 45:2460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Mike Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chung, T.C.M. (2013). Functional Polyolefins: Synthesis and Energy Storage Applications. In: Kaminsky, W. (eds) Polyolefins: 50 years after Ziegler and Natta II. Advances in Polymer Science, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2013_209

Download citation

Publish with us

Policies and ethics