Skip to main content

Solar Water Splitting Using Semiconductor Photocatalyst Powders

  • Chapter
  • First Online:
Solar Energy for Fuels

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 371))

Abstract

Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H2 from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729

    Article  CAS  Google Scholar 

  2. International Energy Agency (2010) World Energy Outlook 2010. International Energy Agency, Paris

    Google Scholar 

  3. National Renewable Energy Laboratory (NREL) (1999) http://rredc.nrel.gov/solar/spectra/am1.5

  4. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Energy Environ Sci 6:1983

    Article  CAS  Google Scholar 

  5. Takanabe K, Domen K (2011) Green 1:313

    Article  CAS  Google Scholar 

  6. Turro NJ, Ramamurthy V, Scaiano JC (eds) (2010) Modern molecular photochemistry of organic molecules. University Science, Sausalito

    Google Scholar 

  7. Nozik AJ (1978) Annu Rev Phys Chem 29:189

    Article  CAS  Google Scholar 

  8. Nosaka Y, Ishizuka Y, Miyama H (1986) Ber Bunsenges Phys Chem 90:1199

    Article  CAS  Google Scholar 

  9. Memming R (1988) Top Curr Chem 143:79

    Article  CAS  Google Scholar 

  10. Hagfeldt A, Grätzel M (1995) Chem Rev 95:49

    Article  CAS  Google Scholar 

  11. Kaneko M, Okura I (eds) (2002) Photocatalysis science and technology. Kodansha/Springer, Tokyo/Berlin

    Google Scholar 

  12. Domen K (2003) In: Horvath IT (ed) Encyclopedia of catalysis. Wiley, Hoboken

    Google Scholar 

  13. Maeda K, Domen K (2007) J Phys Chem C 111:7851

    Article  CAS  Google Scholar 

  14. Kamat PV (2007) J Phys Chem C 111:2834

    Article  CAS  Google Scholar 

  15. Osterloh FE (2008) Chem Mater 20:35

    Article  CAS  Google Scholar 

  16. Kudo A, Miseki Y (2009) Chem Soc Rev 38:253

    Article  CAS  Google Scholar 

  17. Inoue Y (2009) Energy Environ 2:364

    Article  CAS  Google Scholar 

  18. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, Santori EA, Lewis NS (2010) Chem Rev 110:6446

    Article  CAS  Google Scholar 

  19. Abe R (2010) J Photochem Photobiol C 11:179

    Article  CAS  Google Scholar 

  20. Maeda K, Domen K (2010) J Phys Chem Lett 1:2655

    Article  CAS  Google Scholar 

  21. Hisatomi T, Minegishi T, Domen K (2012) Bull Chem Soc Jpn 85:647

    Article  CAS  Google Scholar 

  22. Takanabe K, Domen K (2012) ChemCatChem 4:1485

    Article  CAS  Google Scholar 

  23. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Adv Mater 24:229

    Article  CAS  Google Scholar 

  24. Tachibana Y, Vayssieres L, Durrant JR (2012) Nat Photonics 6:511

    Article  CAS  Google Scholar 

  25. Osterloh FE (2013) Chem Soc Rev 42:2294

    Article  CAS  Google Scholar 

  26. Hisatomi T, Takanabe K, Domen K (2015) Catal Lett 145:95

    Article  CAS  Google Scholar 

  27. Takanabe K, Domen K (2014) Photocatalysis in generation of hydrogen from water. In: Tao F, Schneider WF, Kamat PV (eds) Heterogeneous catalysis at nanoscale for energy applications. Wiley, Hoboken, pp 239–270

    Google Scholar 

  28. Bohren CF, Huffman DR (eds) (2004) Absorption and scattering of light by small particles. Wiley, Weinheim

    Google Scholar 

  29. Dahm DJ, Dahm KD (eds) (2007) Interpreting diffuse reflectance and transmittance. NIR, Chichester

    Google Scholar 

  30. Braslavsky SE, Braun AM, Cassano AE, Emeline AV, Litter MI, Palmisano L, Parmon VN, Serpone N (2011) Pure Appl Chem 83:931

    Article  CAS  Google Scholar 

  31. Chen Z, Dinh HN, Miller E (eds) (2013) Photoelectrochemical water splitting, standards, experimental methods, and protocols. Springer, New York

    Google Scholar 

  32. Wemple SH, Seman JA (1973) Appl Opt 12:2947

    Article  CAS  Google Scholar 

  33. Di Giulio M, Micocci G, Rella R, Siciliano P, Tepore A (1993) Phys Status Solidi A 136:K101

    Article  Google Scholar 

  34. Lodenquai JF (1994) Sol Energy 53:209

    Article  CAS  Google Scholar 

  35. Swanepoel R (1983) J Phys E Sci Instrum 16:1214

    Article  CAS  Google Scholar 

  36. Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2005) Microwave electronics: measurement and materials characterization. Wiley, Chichester

    Google Scholar 

  37. Le Bahers T, Rérat M, Sautet P (2014) J Phys Chem C 118:5997

    Article  CAS  Google Scholar 

  38. Green MA (2008) Sol Energy Mater Sol Cells 92:1305

    Article  CAS  Google Scholar 

  39. Džimbeg-Malčić V, Barbarić-Mikočević Ž, Itrić K (2011) Technical Gazette 18:117

    Google Scholar 

  40. Wood DL, Tauc J (1972) Phys Rev B 5:3144

    Article  Google Scholar 

  41. Schubert EF (ed) (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  42. Bae D, Pedersen T, Seger B, Malizia M, Kuznetsov A, Hansen O, Chorkendorff I, Vesborg PCK (2015) Energy Environ Sci 8:650

    Article  CAS  Google Scholar 

  43. Sze SM, Ng KK (eds) (2006) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  44. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, Hoboken

    Google Scholar 

  45. Kim DW, Leem YA, Yoo SD, Woo DH, Lee DH, Woo JC (1993) Phys Rev B 47:2042

    Article  CAS  Google Scholar 

  46. Liang WY (1970) Phys Educ 5:226

    Article  CAS  Google Scholar 

  47. Bastard G, Mendez EE, Chang LL, Esaki L (1982) Phys Rev B 26:1974

    Article  CAS  Google Scholar 

  48. Gerischer H (1984) J Phys Chem 88:6096

    Article  CAS  Google Scholar 

  49. van der Pauw LJ (1958) Philips Res Rep 13:1

    Google Scholar 

  50. Heaney MB (2000) Electrical conductivity and resistivity. In: The measurement, instrumentation and sensors handbook. CRC, Boca Raton

    Google Scholar 

  51. Nagel H, Berge C, Aberle AG (1999) J Appl Phys 86:6218

    Article  CAS  Google Scholar 

  52. Law ME, Solley E, Liang M, Burk DE (1991) IEEE Electron Device Lett 12:401

    Article  Google Scholar 

  53. Shockley W, Read WT Jr (1952) Phys Rev 87:835

    Article  CAS  Google Scholar 

  54. Hall RN (1952) Phys Rev 87:387

    Article  CAS  Google Scholar 

  55. Auger P (1952) C R A S 177:169

    Google Scholar 

  56. Zhang Z, Yates JT Jr (2012) Chem Rev 112:5520

    Article  CAS  Google Scholar 

  57. Yoneyama H (1993) Crit Rev Solid State Mater Sci 18:69

    Article  CAS  Google Scholar 

  58. Grätzel M (2001) Nature 414:338

    Article  Google Scholar 

  59. Gelderman K, Lee L, Donne SW (2007) J Chem Educ 84:685

    Article  CAS  Google Scholar 

  60. van de Krol R, Grätzel M (2012) Photoelectrochemical hydrogen production. Springer, New York

    Book  Google Scholar 

  61. Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, Amsterdam

    Google Scholar 

  62. Tung RT (2014) Appl Phys Rev 1:011304

    Article  CAS  Google Scholar 

  63. Cohen ML (1979) J Vac Sci Technol 16:1135

    Article  CAS  Google Scholar 

  64. Cendula P, Tilley SD, Gimenez S, Bisquert J, Schmid M, Grätzel M, Schumacher JO (2014) J Phys Chem C 118:29599

    Article  CAS  Google Scholar 

  65. Mills TJ, Lin F, Boettcher SW (2014) Phys Rev Lett 112:148304

    Article  CAS  Google Scholar 

  66. Lin F, Boettcher SW (2014) Nat Mater 13:81

    Article  CAS  Google Scholar 

  67. Kamat PV (2002) Pure Appl Chem 74:1693

    Article  CAS  Google Scholar 

  68. Jakob M, Levanon H, Kamat PV (2003) Nano Lett 3:353

    Article  CAS  Google Scholar 

  69. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943

    Article  CAS  Google Scholar 

  70. Yoshida M, Yamakata A, Takanabe K, Kubota J, Osawa M, Domen K (2009) J Am Chem Soc 131:13218

    Article  CAS  Google Scholar 

  71. Lu X, Bandara A, Katayama M, Yamakata A, Kubota J, Domen K (2011) J Phys Chem C 115:23902

    Article  CAS  Google Scholar 

  72. Chen Z, Jaramillo TF, Deutsch TG, Kleiman-Shwarsctein A, Forman AJ, Gaillard N, Garland R, Takanabe K, Heske C, Sunkara M, McFarland EW, Domen K, Miller EL, Turner JA, Dinh HN (2010) J Mater Res 25:3

    Article  CAS  Google Scholar 

  73. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, pp 736–768

    Google Scholar 

  74. Fukasawa Y, Takanabe K, Shimojima A, Antonietti M, Domen K, Okubo T (2011) Chem Asian J 6:103

    Article  CAS  Google Scholar 

  75. Albery WJ, Bartlett PN (1984) J Electrochem Soc 131:315

    Article  CAS  Google Scholar 

  76. Chamousis RL, Osterloh FE (2014) Energy Environ Sci 7:736

    Article  CAS  Google Scholar 

  77. Butler MA, Ginley DS (1978) J Electrochem Soc 125:228–232

    Article  CAS  Google Scholar 

  78. Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Nat Mater 10:456

    Article  CAS  Google Scholar 

  79. Esposito DV, Levin I, Moffat TP, Talin AA (2013) Nat Mater 12:562

    Article  CAS  Google Scholar 

  80. Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Science 344:1005

    Article  CAS  Google Scholar 

  81. Shinagawa T, Garcia-Esparza AT, Takanabe K (2014) ChemElectroChem 1:1497

    Article  CAS  Google Scholar 

  82. Hamann CH, Hamnett A, Vielstich W (eds) (2007) Electrochemistry, 2nd edn. Wiley, Weinheim

    Google Scholar 

  83. Trasatti S (1972) J Electroanal Chem 32:163

    Article  Google Scholar 

  84. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2006) Nat Mater 5:909

    Article  CAS  Google Scholar 

  85. Matsumoto Y, Sato E (1986) Mater Chem Phys 14:397

    Article  CAS  Google Scholar 

  86. Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Nørskov JK, Rossmeisl J (2011) ChemCatChem 3:1159

    Article  CAS  Google Scholar 

  87. Grimaud A, May KJ, Carlton CE, Lee YL, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Nat Commun 4:3439

    Article  CAS  Google Scholar 

  88. Subbaraman R, Tripkovic D, Chang KC, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Nat Mater 11:550

    Article  CAS  Google Scholar 

  89. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) Science 334:1383

    Article  CAS  Google Scholar 

  90. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu JMK, Trudel S, Berlinguette CP (2013) Science 340:60

    Article  CAS  Google Scholar 

  91. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) J Am Chem Soc 135:8452

    Article  CAS  Google Scholar 

  92. Gong M, Zhou W, Tsai MC, Zhou J, Guan M, Lin MC, Zhang B, Hu Y, Wang DY, Yang J, Pennycook SJ, Hwang BJ, Dai H (2014) Nat Commun 5:5695

    Article  CAS  Google Scholar 

  93. Muller BR, Majoni S, Memming R, Meissner D (1997) J Phys Chem B 101:2501

    Article  Google Scholar 

  94. Yoshida M, Takanabe K, Maeda K, Ishikawa A, Kubota J, Sakata Y, Ikezawa Y, Domen K (2009) J Phys Chem C 113:10151

    Article  CAS  Google Scholar 

  95. Yoshida M, Maeda K, Lu D, Kubota J, Domen K (2013) J Phys Chem C 117:14000

    Article  CAS  Google Scholar 

  96. Townsend TK, Browning ND, Osterloh FE (2012) Environ Sci 5:9543

    CAS  Google Scholar 

  97. Jin J, Walczak K, Singh MR, Karp C, Lewis NS, Xiang C (2014) Energy Environ Sci 7:3371

    Article  CAS  Google Scholar 

  98. Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) J Am Chem Soc 135:9267

    Article  CAS  Google Scholar 

  99. Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X (2014) Angew Chem Int Ed 53:12855

    Article  CAS  Google Scholar 

  100. Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Angew Chem Int Ed 53:5427

    Article  CAS  Google Scholar 

  101. Dionigi F, Vesborg PCK, Pedersen T, Hansen O, Dahl S, Xiong A, Maeda K, Domen K, Chorkendorff I (2011) Energy Environ Sci 4:2937

    Article  CAS  Google Scholar 

  102. Kisch H (2010) Angew Chem Int Ed 49:9588

    Article  CAS  Google Scholar 

  103. Mills A, Wang J (1999) J Photochem Photobiol A 127:123

    Article  CAS  Google Scholar 

  104. Yang X, Ohno T, Nishijima K, Abe R, Ohtani B (2006) Chem Phys Lett 429:606

    Article  CAS  Google Scholar 

  105. Mills A (2012) Appl Catal B 128:144

    Article  CAS  Google Scholar 

  106. Kato H, Asakura K, Kudo A (2003) J Am Chem Soc 125:3082

    Article  CAS  Google Scholar 

  107. Sakata Y, Matsuda Y, Nakagawa T, Yasunaga R, Imamura H, Teramura K (2011) ChemSusChem 4:181

    CAS  Google Scholar 

  108. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K (2006) Nature 440:295

    Article  CAS  Google Scholar 

  109. Maeda K, Xiong A, Yoshinaga T, Ikeda T, Sakamoto N, Hisatomi T, Takashima M, Lu D, Kanehara M, Setoyama T, Teranishi T, Domen K (2010) Angew Chem Int Ed 49:4096

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study presented in this chapter was supported by King Abdullah University of Science and Technology (KAUST). The author thanks Dr. A. Ziani, Mr. A.T. Garcia-Esparza, Mrs. E. Nurlaela, and Mr. T. Shinagawa at KAUST for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Takanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takanabe, K. (2015). Solar Water Splitting Using Semiconductor Photocatalyst Powders. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_646

Download citation

Publish with us

Policies and ethics