
A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 591 – 600, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Service Oriented Architecture Supporting Data
Interoperability for Payments Card Processing Systems

Joseph M. Bugajski1, Robert L. Grossman2, and Steve Vejcik2

1 Visa International, P.O. Box 8999, Foster City, CA 94128
2 Open Data Group, 400 Lathrop Ave, Suite 90, River Forest IL 60305

JBugajsk@visa.com, rlg1@opendatagroup.com,
vejcik@opendatagroup.com

Abstract. As the size of an organization grows, so does the tension between a
centralized system for the management of data, metadata, derived data, and
business intelligence and a distributed system. With a centralized system, it is
easier to maintain the consistency, accuracy, and timeliness of data. On the
other hand with a distributed system, different units and divisions can more
easily customize systems and more quickly introduce new products and
services. By data interoperability, we mean the ability of a distributed
organization to work with distributed data consistently, accurately and in a
timely fashion. In this paper, we introduce a service oriented approach to
analytics and describe how this is used to measure and to monitor data
interoperability.

Keywords: data quality, data interoperability, service oriented architectures for
analytics, payments card processing systems.

1 Introduction

VisaNet is the largest private payment data network in the world. The annual total
payment volume on VisaNet recently exceeds USD $4 trillion. The network can
handle about 10,000 payment messages per second. It supports every payment card
brand including approximately 1.0 billion Visa cards. It permits card holders to make
secure payments in 120 countries and most currencies through over 20 million
businesses, who operate over 100 million point-of-sales acceptance devices. Above
all, member banks that own Visa require that all the transactions be completed among
all the member banks error free and with extremely high system reliability.

The systems that comprise VisaNet were, until recently, controlled by one
information technology division. That division assured data interoperability. They
enforced a rule that permitted only one source for defining and modifying payment
transaction record format and semantic definitions. The computing and network
infrastructure ran on IBM TPF and IBM MVS mainframe computers. Each
mainframe ran an identical code base in one of several processing centers strategically
situated around the world. Hence, data interoperability was assured because all data in
VisaNet, and all processes that operated on data, were always the same.

592 J.M. Bugajski, R.L. Grossman, and S. Vejcik

The current guaranteed “uniformity” system environment for data interoperability
comes at a not insignificant price with respect to time to market capability and cost
effectiveness for faster growing economies; e.g., the Asia Pacific and Latin American
regions. Visa determined that the old model for interoperability had to change to meet
the demands of its member banks for quicker market entry for product modification
and entirely new types of payment products.

In this paper, we describe an approach to measuring and monitoring data
interoperability using large numbers of baseline models that are each individually
estimated. These are examples of what, in the context of data interoperability, we call
Key Interoperability Indicators or KIIs. The first contribution of this paper is the
introduction of baseline models as an effective procedure for measuring and
monitoring data interoperability.

The second contribution of this paper is the introduction of a service oriented
architecture for computing the analytics required for estimating, updating, and scoring
using these baseline models.

Section 2 contains background and related work. Section 3 discusses data inter-
operability and baseline models. Section 4 describes a service oriented architecture
supporting baseline models. Section 5 describes a deployed application based upon a
service oriented architecture for analytical models and which is scalable enough to
support millions of baseline models.

2 Background and Related Work

Loosely speaking, the interoperability of data and services means that data and
services can be defined and used independently of the application, programming
language, operating system, or computing platform which implements them.
Interoperability has a long history in computing. Major phases include: Electronic
Data Interchange, object models, virtual machines, and web services, which we now
describe briefly.

Electronic Data Interchange (EDI). EDI introduced a standard syntax and a standard
set of messages for various common business transactions. EDI began by introducing
standard formats for purchase orders, invoices, and bills of lading so that these could
be processed without human intervention. In other words, EDI approached
interoperability by requiring all applications using purchase orders to use a standard
structured format. Each different business document had its own structured format.

Object Models. With the introduction of object models, interfaces for both data and
methods became formalized. A wide variety of object models have been introduced,
including Microsoft’s COM and DCOM, Sun Microsystems Java Beans and
Enterprise Java Beans, and the Object Management Group’s (OMG) Object and
Component Models. OMG’s Common Object Request Broker Architecture or
CORBA is an architecture providing interoperability for objects across different
languages, operating systems, and platforms. For more details, see [4].

 A Service Oriented Architecture Supporting Data Interoperability 593

Virtual Machines. Java popularized the idea of supporting interoperability by
mapping a language to an intermediate format (byte code) which could be executed
on any machine which had an interpreter for byte code (virtual machine). In this way,
the same code could be executed on different operating systems and platforms. Note
though that the same language (Java) must be used.

Service Oriented Architectures. More recently, web services and service oriented
architectures have popularized the use of XML to define data and message formats.
In particular the Web Services Description Language or WSDL provides a way to
define services that can be bound to different programming languages (e.g. Java, Perl,
C/C++) and protocols (http, smtp, etc.)

Our approach to data interoperability is based upon a service oriented architecture
that is specifically designed to support statistical and other analytical models, as well
as various services employing them.

3 Data Interoperability

Not all data in a complex, distributed system needs to be interoperable. In this
section, we distinguish between data that must be interoperable, which we call global
data, and other data, which we call local data.

Our approach is based upon introducing two new primitive concepts: a new class
of data called global data and a new class of services called global services. Data that
is not global and services that are not global are called local. Not all data and not all
services are expected to be global; rather, in general data and services are local and
only when they need to interoperate across the enterprise are then required to be
global. Global data and global services are designed so that different applications
storing, accessing, querying or updating global data using global services can easily
interoperate.

In our approach, the interoperability of global data is measured using statistical
models called Key Interoperability Indicators or KIIs. In the remainder of this
section, we define global data and global services, as is usual for service based
architectures.

3.1 Global Data

Global data is any data with the following properties:

• The schema is defined using UML® or XML.
• Data is accompanied by XML based metadata.
• Associated metadata must be accessible through a metadata repository and

discoverable through discovery services.
• Associated metadata must also specify one or more access mechanisms. Access

mechanisms include service-based mechanisms, message-oriented mechanisms, or
data protocol based mechanisms.

• Permitted values for individual field elements are also stored using XML and
corresponding discovery services

594 J.M. Bugajski, R.L. Grossman, and S. Vejcik

3.2 Global Services

Global services are any services or functions with the following properties:

• Global services operate on data through interfaces. By inspecting the interface, a
service can specify the operation it wants to perform and marshal the arguments it
needs to send. Interfaces are independent of programming languages; on the other
hand, to be useful, interfaces, such as J2EE or the Web Service’s Web Service
Description Language (WSDL), have mappings or bindings to common
programming languages, such as C, C++, Java, Python, Perl, etc.

• Global services transport data using an agreed upon wire protocol. For example,
web service based global services use the protocol specified in the WSDL
corresponding to the service.

• Global services are registered. For example, web services may be discovered
through Universal Description, Discovery & Integration (UDDI) services.

• Global services follow from UML descriptions of requisite functionality to remove
details concerning implementation in the matter of the Model Driven Architecture
(MDA®) and Meta-Object Facility (MOF®), both defined by the Object
Management Group (OMG)1.

Interoperability is achieved in several ways. First, separating interfaces from
implementations facilitates interoperability. Services can inspect interfaces but not
implementations. In this way, multiple languages can be bound to the same interface
and implementations can be moved to a different platform. Second, by supporting
multiple wire protocols, global services can improve their interoperability. Third,
registration provides a mechanism for a client application to obtain sufficient
metadata to ensure that it is bound to the correct global service.

3.3 Key Interoperability Indicators (KIIs)

Our approach to measuring the interoperability of global data is to measure and
monitor a number of indicators of interoperability using statistical baseline models.

• We measure whether the values of fields and tuples of field values change
unexpectedly as transactions move from one system to another.

• We measure whether the values of fields and tuples of field values change
unexpectedly after changes and updates to the processing system and
components of the processing system.

• We measure whether the values of fields and tuples of field values are
correlated to various exception conditions in the system’s processing of data.

These measurements are done by establishing baseline behavior with a statistical
model, and then each day measuring changes and deviations from the expected
baseline. Here is a simple example. A table of counts characterizing certain
behavior in a specified reference baseline period can be measured. Counts during an
observation period can then be computed and a test used to determine whether a

1 UML, MDA, MOF and OMG are registered trademarks of the Object Management Group,

Inc.

 A Service Oriented Architecture Supporting Data Interoperability 595

difference in counts is statistically significant. If so, an alert can be generated, and
used as a basis by subject matter experts for further investigation.

Value %
00 76.94
01 21.60
02 0.99
03 0.27
04 0.20
Total 100.00

Value %
00 76.94
01 20.67
02 0.90
03 0.25
04 1.24
Total 100.00

Table 1. The distribution on the left is the baseline distribution. The distribution

on the right is the observed distribution. In this example, the value 04 is over 6x more
likely in the observed distribution, although the two dominant values 00 and 01 still
account for over 97% of the mass of the distribution. This example is from [1].

4 A Service Based Architecture for Analytics

In the last section, we gave relatively standard definitions, from a service oriented
architecture point of view, of types of data and services (global) that are designed to
be the basis of data interoperability across an enterprise. In this section, we introduce
a service based architecture for analytics based upon four types of services: services
for preparing data, services for producing analytical models, services for scoring, and
services for producing OLAP reports.

4.1 Services for Preparing Data

In practice, extracting, aggregating, and transforming data in various ways represents
a significant fraction of the cost of developing complex enterprise applications. In
addition, small differences in the transformations can result in the lack of
interoperability of an application. For these reasons, our model singles out services
for preparing or transforming data from one format to another. Data preparation and
transformations are generally comprise much of the work of developing analytical
models.

More formally, derived data is the result of applying global services implementing
one or more of a class of predefined transformations. For our applications, we used
the transformations defined by the Data Mining Group [2]. These include:

• Normalization: A normalization transformation maps values to numbers.
The input can be continuous or discrete.

• Discretization: A discretization transformation maps continuous values to
discrete values.

• Value mapping: A value mapping transformation maps discrete values to
discrete values.

• Aggregation: An aggregation transformation summarizes or collects groups
of values, for example by computing counts, sums, averages, counts by
category

596 J.M. Bugajski, R.L. Grossman, and S. Vejcik

The Data Mining Group’s Predictive Model Markup Language or PMML allows
these types of data transformations to be defined in XML. Although these four types
of transformations may seem rather restrictive, in practice, a surprisingly large class
of transformations can be defined from these.

4.2 Services for Producing Models

In our service-oriented approach to analytical processes, services operate on data and
derived data to produce rules, statistical models and data mining models, which we
refer to collectively as analytics. See Figures 1 and 2.

Data Services for
preparing data

Derived
data

Model Producers

OLAP services

Models

Reports

Data

Metadata

InformationData

metadata metadata

Model Consumers

Scores

Fig. 1. Specialized global services applied to global data produces global derived data, which in
turn produces global information such as analytical models, scores, and reports

The DMG’s PMML markup language captures the most common analytical
models [2]. These include statistical models for regression, clustering, tree based
regression and classification models, association rules, neural networks, and baseline
models. So, to be very concrete, analytical services for producing models can be
thought of as operating on data and derived data to produce PMML models. Because
of this, these types of analytical services are sometimes called Model Producers.

4.3 Services for Scoring

Given an analytical model described in PMML, a scoring service processes a stream
of data, computes the required inputs to the analytical models, and then applies the
analytical model to compute scores.

Sometimes scoring services are called Model Consumers since they consume
analytical models to produce scores, in contrast to Model Producers, which consume
data sets, viewed as learning sets, to produce analytical models.

 A Service Oriented Architecture Supporting Data Interoperability 597

data
derived

data

services for
preparing data

services for
producing model

models

data
derived

data scores

model

services for
producing scores

services for
preparing data

+

Fig. 2. This diagram illustrates three types of services used in our service oriented architecture
for analytics: services for preparing data, services for producing models (model producers), and
services for producing scores (model consumers)

One of the main advantages of a service oriented architecture for analytics, is that it
is very common for the model producers and consumers to be deployed on different
systems, with quite different requirements. For example, in the case study described
in Section 5 below, the model producer can be deployed on several systems, while the
model consumer must run on an operational system with very stringent security
requirements.

For many applications, including the application described in Section 5 below,
these scores are then post-processed using various rules to produce reports and alerts.

4.4 Services for Reports

In the same way, although outside of the scope of this paper, one can define OLAP
services as services that operate on global data and global derived data to produce
OLAP reports.

598 J.M. Bugajski, R.L. Grossman, and S. Vejcik

5 Case Study – Key Interoperability Indicators for Monitoring
Data Interoperability

5.1 Introduction

For approximately one year, the Visa KII Monitor, based upon a service oriented
architecture, has been measuring and monitoring millions of separate baselines
models in order to monitor data interoperability.

Separate PMML-based baseline models are estimated periodically and used to
monitor each day behavior for twenty thousand member banks, millions of merchants
and various other entities. Given the very large numbers of individual baseline
models involved and the quantity of data processed each, the production of the
models, scores, alerts, and reports are, by and large, automated by the KII Monitor
and require little human intervention.

5.2 KII Monitor Architecture

The Visa KII Monitor consists of the following components:

• A service oriented application that transforms and prepares data, either for
producing models or producing scores.

• A data mart containing data for the observation period, as well as historical and
historical analytical models.

• A Baseline Producer, which takes a data set over the learning period and estimates
parameters of baseline models.

• A Baseline Consumer / Scorer, which takes the current baseline model and the data
for the current observation period and produces scores indicating the likelihood
that the data differs in a statistically significant fashion from the baseline model.

• A service oriented application that produces alerts and reports by analyzing the
scores produced by the Baseline Consumer and applying certain rules.

5.3 Baseline Models

The Visa KII Monitor measures a large number of different baselines, including the
following.

• The KII Monitor measures whether the values of payment fields change in
unexpected manners as transactions move from one system to another.

• The KII Monitor measures whether the values of payment fields change in
unexpected manners after changes and updates to the processing system and
components of the processing system.

• The KII Monitor measures whether the values of payment fields are correlated to
declines and other exceptions to the normal processing of transactions.

Separate baselines are computed for each member bank, and for merchant, and for
various other entities. This results in millions of individual baselines being computed
and monitored.

 A Service Oriented Architecture Supporting Data Interoperability 599

5.4 KII Alerts and Reporting

Here is an overview of the basic steps that the KII Monitor uses to generate alerts and
reports.

First, parameters used for segmenting baseline models are selected. These include
the time period, the region, the specific payment field values being monitored, and the
various logical entities, such as banks, merchants, etc. For each separate segment, a
baseline model is estimated and periodically updated.

Using the baseline model, during each observation period, usually a day or a week,
the following steps are performed.

1. Scores that represent statistically significant deviations from baselines are
generated by the Baseline Consumer / Scorer.

2. The approximate business value for the scenario associated with the baseline is
estimated. If the business value is above a threshold, a report containing one or
more alerts is generated.

3. The report is passed to a subject matter expert for investigation, and, if
appropriate, for remediation.

4. The scenarios are monitored for future compliance.

5.5 Standards

The Visa KII Monitor described in this section was one of the motivating examples
for a proposal for baseline models that is currently under consideration by the
Predictive Model Markup Language Working Group of the Data Mining Group [3]
for inclusion in PMML version 3.2.

6 Summary and Conclusion

In this paper, we have described how Visa used service oriented architecture to
measure and monitor payment data interoperability. The interoperability of payment
data has emerged as a key requirement as Visa introduces its distributed computing
environment where six operating regions have more local control of their computing
environments.

Data interoperability was defined by introducing the concepts of global data and
global services, which can be defined relatively easily using the standard concepts of
a service oriented architecture.

In this paper, we used baseline models to measure data interoperability and a
service oriented analytics architecture to produce baseline models, as well as alerts
and reports based upon them.

Working with the KII Monitor during the past year has taught us several lessons
concerning data interoperability and the implementation of a service oriented
architecture for analytics:

1. Baseline models are effective for uncovering certain important data
interoperability and data quality problems for complex, distributed systems, such
as the payments card processing system described above.

600 J.M. Bugajski, R.L. Grossman, and S. Vejcik

2. An important practical consideration when using baseline models for monitoring
data interoperability is to select a sufficient number of segments and appropriate
threshold levels so that the number of alerts produced have business meaning and
relevance, but not so many different segments that so many alerts are produced
that they are not manageable.

3. An important design decision for the project was to use the Predictive Model
Markup Language (PMML) to represent baseline models.

4. Once PMML was chosen, it was natural to design the system using services for
preparing data (using PMML-defined transformations), services for producing
PMML models, PMML-based services for scorings, and services for producing
alerts and reports.

For the past year, this service oriented architecture for analytics has provided a
solid foundation for the weekly alerts that are produced by the KII Monitor.

References

1. Joseph Bugajski, Robert Grossman, Eric Sumner, Tao Zhang, A Methodology for
Establishing Information Quality Baselines for Complex, Distributed Systems, 10th
International Conference on Information Quality (ICIQ), 2005

2. Data Mining Group, retrieved from http://www.dmg.org on June 10, 2006.
3. Data Mining Group, PMML 3.1 - Baseline Model, RFC Version 5.2.7, retrieved from

www.dmg.org on June 10, 2006.
4. Aniruddha Gokhale, Bharat Kumar, Arnaud Sahuguet, Reinventing the Wheel? CORBA vs.

Web Services, The Eleventh International World Wide Web Conference, retrieved from
http://www2002.org/CDROM/alternate/395/ on June 20, 2003.

5. Web Services Interoperability Organization, retrieved from http://ws-i.org/ on June 20,
2003.

	Introduction
	Background and Related Work
	Data Interoperability
	Global Data
	Global Services
	Key Interoperability Indicators (KIIs)

	A Service Based Architecture for Analytics
	Services for Preparing Data
	Services for Producing Models
	Services for Scoring
	Services for Reports

	Case Study – Key Interoperability Indicators for Monitoring Data Interoperability
	Introduction
	KII Monitor Architecture
	Baseline Models
	KII Alerts and Reporting
	Standards

	Summary and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

