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Abstract. Vendor strategies to standardize grid computing as the
IT backbone for service-oriented architectures have created business
opportunities to offer grid as a utility service for compute and data–
intensive applications. With this shift in focus, there is an emerging
need to incorporate agreements that represent the QoS expectations (e.g.
response time) of customer applications and the prices they are willing
to pay. We consider a utility model where each grid application (job)
is associated with a function, that captures the revenue accrued by the
provider on servicing it within a specified deadline. The function also
specifies the penalty incurred on failing to meet the deadline. Scheduled
execution of jobs on appropriate sites, along with timely transfer of
data closer to compute sites, collectively work towards meeting these
deadlines. To this end, we present DECO, a grid meta-scheduler that
tightly integrates the compute and data transfer times of each job.
A unique feature of DECO is that it enables differentiated QoS – by
assigning profitable jobs to more powerful sites and transferring the
datasets associated with them at a higher priority. Further, it employs
replication of popular datasets to save on transfer times. Experimental
studies demonstrate that DECO earns significantly better revenue for the
grid provider, when compared to alternative scheduling methodologies.

1 Introduction

Grid computing is a form of distributed computing in which the use of hetero-
geneous resources (computation, storage, applications and data), spread across
geographic locations and administrative domains, is optimized through virtu-
alization and collective management. Initially conceived to support compute–
intensive scientific applications and to share massive datasets, enterprises of
all sizes and shapes are slowly beginning to recognize the technology as a
foundation for management of IT resources, enabling them to better meet
business objectives. Rapid advances in Web services technology have further
provided an evolutionary path from the “stovepipe” architecture of traditional
grids to a standardized, service–oriented, enterprise class grid of the future. The
convergence of SOA and grid computing is embodied by the Global Grid Forum’s
Open Grid Services Architecture (OGSA) [1] that describes a service–oriented
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grid. The specifications provide various capabilities like job execution, data
management, resource management, and security, some of which are illustrated
in Fig.1(a).

It is of little surprise that the IT infrastructure of the future is being
dubbed as the network grid, a universal computing paradigm that takes the
ubiquitous connectivity of the Internet to its next logical step–ubiquitous utility
computing. Grid providers will now store and manage customer data and run
their applications in exchange of a usage fee. Today, a number of major vendors
are advocating utility computing– for example Sun Grid, HP Utility Data Center,
and IBM Deep Computing Capacity On Demand offerings, all promise its
customers the choice and control on how to purchase and leverage IT power
for competitive advantage. What is interesting about this computing model
is its fiscal impact. With the utility grid, IT dollars and resources are not
tied up in hardware and administrative costs. Instead, the focus shifts to the
more strategic aspects of IT, such as Service Level Agreements (SLAs). These
agreements specify QoS–based pricing policies for applications requiring access to
computation referred to as compute in rest of the paper and data resources, and
enable grid customers to delineate and prioritize business deliverables. From the
provider’s point of view, SLAs provide endless possibilities for business revenue
maximization, based on differentiated quality–of–service.

1.1 Towards a Utility Framework for Grids

In a service-oriented grid, several heterogeneous cluster sites are inter-connected
by WAN routers and links. Each cluster site is associated with some compute
power and some storage space. The grid hosts customer data and provides
compute capabilities. It charges each customer application (job) for usage of
compute and storage resources. The conditions for service payments can be
captured by a utility model that guarantees a certain QoS level for the price
associated with it. Utility models have been proposed for scheduling and resource
management in computational grids [2,3].

Since the response time of an application (job) serves as a common service–
level objective for providers, we consider a revenue function illustrated in
Fig.1(b), that captures the QoS requirements in terms of the response time
expected by the job and the price it is willing to pay for it. If a job finishes within
a deadline T , then the provider earns a revenue R. Otherwise, the revenue decays
linearly at a constant rate δ. Eventually, the revenue may decay to a negative
number, indicating a penalty. The penalty may or may not be unbounded. Each
job submitted to the grid is associated with a revenue function. The revenue
functions capture a rich space of policy choices by capturing the importance of
a task (maximum revenue) as well as its urgency (decay) as separate measures.
Each job has some compute requirements in terms of CPU time, and some data
requirements, in terms of data files (objects) required for the computation. The
total response time of a job is dependent on its execution time, as well as the
time taken to transfer its data to the compute site. The execution time depends
on the nature of the job and the compute power of the site assigned to it. The
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Fig. 1. Utility framework for grids

transfer time depends on the network connectivity and the location of the data
objects. Because of the large number and size of data objects, it is unlikely that
a site will have all the data required to execute any job. For data–intensive
jobs, the time taken to complete the data transfers to the compute sites over
WAN links, can thus be potentially significant. Hence, it is of critical importance
that data objects are placed closer to the jobs accessing them. Further, a job
needs to transfer all its data before it can execute. It is, however, possible to
overlap the transfer time of a job with the execution of other jobs that have their
data available locally. Finally, in a utility framework, the order in which the job
executions and data transfers are scheduled have implications on the completion
time of each job and, hence, the revenue earned by the provider.

Traditional grid solutions have inherently decoupled the execution of jobs from
data transfer (and placement) decisions. The Job Execution Service handles the
scheduling of a batch of jobs at different compute sites. The choice of a site
for each job depends upon factors like load on the site, availability of datasets
locally etc. Approaches for assigning job execution have been proposed in [4,5].
Multiple transfers of the same data object is avoided by creating replicas of the
object at selected sites. The Data Replication Service of the grid provides this
functionality. A number of algorithms have been proposed in the literature [6,7]
for data replication in grids. In each case, changes in data placement are
prescribed by a long–term replication process, that studies the history of accesses
to data objects. Data objects are transferred (replicated) across sites using
transfer protocols like GridFTP [8]. However, decoupling execution assignment
from data transfer (and replication) often leads to poor and in-efficient response
time for jobs. Since the finish time of jobs translates directly to dollars earned or
lost, it is very critical to consider both the execution and transfer times of each
job. To do so, job execution service needs to work in close co–ordination with the
data replication service. Asynchronous replication of historically popular objects
is no longer enough— placement decisions need to be based on the compute
locations of jobs, and vice versa. Finally, it is imperative that job and data
transfer scheduling policies incorporate service differentiation, i.e. jobs that have
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higher revenues and/or harsher penalties need to be assigned higher priorities.
This leads towards a utility–based co–scheduling framework for grids.

1.2 Contributions

We present DECO, a system for Data replication and Execution CO-scheduling
in utility grids. DECO is designed for business revenue maximization of the
grid service provider. DECO decides which job to assign to which site, which
objects to replicate at which site, when to execute each job, and finally when to
transfer (or replicate) data across the sites. A unique feature of DECO is that it
enables differentiated QoS based on the revenue functions of the jobs and their
compute/data requirements. Our main contributions include: (i) a co-scheduling
framework that tightly couples the job execution and data replication services
in a utility grid; (ii) a (meta)scheduling system that co-ordinates the placements
of jobs and data objects, and (iii) a differentiated approach for scheduling job
executions and data transfers (replications) aimed at maximizing the revenue
earned by the provider.

2 DECO Architecture

We propose a co–scheduling framework for integrating the execution and data
transfer times of compute and data–intensive applications in grids. Fig.2 gives
a detailed view of the proposed framework. We consider as input a batch of
grid jobs along with compute and data requirements, and SLA descriptions
managed by an SLA Manager. Admission controller selects and places jobs in
the Batch Queue based on business policies, current system state etc. The DECO
Controller is a single point of submission for all jobs. It computes an offline
schedule periodically (for e.g. every 24 hrs), for all unfinished jobs in the queue.
The controller works on the following assumptions: every job needs to execute
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at one cluster site; all the data objects needed by a job should be present at its
execution site; jobs are independent and have no dependencies on other jobs.

The two primary components of the controller are the Execution Service
(ES) and the Replication Service (RS). There exists a tight integration
between the functionalities of these components. The workflow of the controller
is as follows: (1) ES gathers resource availability information from a Resource
Information Service. RS gathers location information from a Replica Location
Service. (2) Depending on the utility values of jobs and the cost benefits obtained
from replication, ES in conjunction with RS, advises job execution sites and
replica creation activities of popular objects. (3) Once the decision is made on
which jobs will execute where and what data is to be placed where, the controller
uses its global view of the grid topology to compute a master schedule containing
an ordered sequence of replication, transfer and execution events across clusters.
(4) From the master schedule, DECO extracts the corresponding cluster-specific
schedule and dispatches it to each cluster site. Finally, at each cluster site, there is
a local job scheduler responsible for intra-cluster job scheduling and management
of resources and a data scheduler responsible for handling data transfers to and
from the site.

3 Utility–Based Data Replication and Execution
Co-scheduling

Assume that the time horizon can be divided into L discrete time intervals,
all not necessarily of equal length. If a job finishes in an interval within its
completion time deadline Tj, it earns a revenue of Revj , else incurs penalty at
the rate of Penj per hour. Let Z denote the net business revenue earned by all
jobs in the workload. The overall approach for maximizing Z is summarized in
two steps:

– Step 1: Weigh the reward of scheduling each job with the risk of delaying it.
Based on these weights decide on which jobs to execute in which time interval
and meet their completion time goals by (a) assigning them to appropriate
cluster sites and (b) replicating their data objects.

– Step 2: Given the entire topology of the provider’s network, determine a
time schedule of when the job executions and the data transfers (replications)
should begin/end.

3.1 Step 1: Integrated Job Assignment and Data Placement

Consider a set of M cluster sites, N data objects and K jobs. Each site i has an
associated compute capacity Ai and a storage capacity Si. Cluster sites a and b
are connected by a WAN link of available bandwidth bwab. Each object o is of
size so and is associated with a replica set Ro that specifies the clusters at which
the object is currently placed. Each job j submitted to the batch queue specifies
a compute requirement ej , and a set of data objects Fj that it will operate on.
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WAN transfer times are assumed to be dominant over the LAN parameters.
Let βio denote 1 if the data object o is replicated at site i, and 0 otherwise. For
job j executing at cluster site i, let teij denote the job execution time, trij denote
the total transfer time of all objects in Fj that are not locally present at i, trio

denote the transfer time of the data object o to site i, and bestReplica(i,o) ∈ Ro,
denote the cluster site that holds the replica of o and is connected by the highest
bandwidth link to i. Then the total time taken to execute job j at site i, tij , is
given by

tij = teij + trij (1)

where
trij =

∑

o∈Fj

trio (2)

and
trio = (1 − βio)so/bw(i, bestReplica(i, o)) (3)

Let αijl be an indicator variable denoting 1 if job j is assigned to site i and
finishes execution in time interval l, and 0 otherwise. Let Ujl denote the utility
value of job j finishing at time l. If αijl = 1 and l ≤ Tj , then Ujl = Revj ,
else Ujl = Revj − (l − Tj) ∗ Penj . The optimal assignment of jobs to sites and
objects to sites such that Z is maximized, can be found by solving for the α and
β assignments in the following program:
Maximize

T =
M∑

i=1

K∑

j=1

L∑

l=1

αijlUjl (4)

subject to
Feasibility constraint:

M∑

i=1

L∑

l=1

αijl = 1, ∀j (5)

Compute execution constraint:

l∑

p=1

K∑

j=1

αijp(teij +
∑

o∈Fj

trio) ≤ Ail, ∀i, l (6)

The feasibility constraint ensures that each job finishes in exactly one time
interval at a site. The compute execution constraint makes sure that the number
of jobs that can complete in time l at a site is atmost Ai times l. The above
problem is Max-SNP hard[9] and hence is difficult even to approximate. To
obtain a solution we present a simplification of the above problem. We begin
with an initial placement P̂ of data objects and consider the following two sub–
problems: AssignJobs:- given the placement of objects, solve the problem for
optimal assignment of jobs to cluster sites that maximizes the earned revenue.
This reduces to solving the above problem in eqn. 4 for the α variables only (with
β equal to 0 or 1). This problem is NP-hard and we design a linear-relaxation
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based heuristic for solving it. We relax α to take real values and then round
the α values to nearest integers. AssignReplicas:- given the job assignments,
determine an optimal assignment of replicas to sites such that the replication
benefit is maximized. The benefit for replication considered here is the increase
in total business profit due to creation of a replica. Consider a replica of object
o created at site i. From among the set of jobs assigned to site i and incurring
penalties, some of them will be able to now meet their deadline. For each such
job j that was paying a penalty of Penj, the increment in revenue obtained is
Revj − Penj . Let cio denote the total increment in revenue obtained by placing
a replica of o at site i. The goal is determine additional replicas of objects such
that the increase in business revenue is maximized:
Maximize

M∑

i=1

N∑

o=1

βiocio (7)

subject to storage constraint:

N∑

o=1

βioso ≤ Si, ∀i (8)

We relax β to take real values and solve the linear program. The β values returned
by the LP are always integral and hence the solution is optimal.

The combination of steps AssignJobs and AssignReplicas returns an
approximate solution to the integrated job assignment and data placement
problem. To bring the solution closer to the optimal, we suggest an iterative
approach where the placement assignments from AssignReplicas serve as input
to step AssignJobs and the procedure is repeated for k iterations. After the
final iteration, an assignment of jobs and data objects to sites is obtained along
with the start-time dj for each job execution at cluster site i.

3.2 Step 2: Computing the Master Schedule

In this step, we derive the time to replicate objects across sites and determine a
master schedule that specifies 1) selection of source replicas from which to initiate
transfers/replications, and 2) computing a master schedule that specifies when
(and where) all data transfers and job executions occur.

Selection of source replicas and computing master schedule. As before,
we consider the time horizon can be divided into discrete time intervals, all not
necessarily of equal length. Let tio denote the time taken to transfer object o
on link i. Let xiol be 1 if transfer of object o on link i completes in the time
interval (l −1, l]. The deadlines before which each data transfer should complete
is given by do. These deadlines represent the maximum time before which the
object o needs to be present at site i, and are obtained from the start time of
jobs (dj) in job execution schedule obtained from the final iteration of Step 1.
When object o is required by multiple jobs with different start times, the earliest
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start time (minimum dj) represents the deadline do. The problem of selecting
source replicas such that these deadlines are satisfied is then essentially finding
a feasible assignment of xiol subject to the constraints:

TotalLinks∑

i=1

L∑

l=1

xiol = 1, ∀o (9)

N∑

o=1

l∑

k=1

xioktio ≤ l, ∀i, ∀l (10)

TotalLinks∑

i=1

L∑

l=1

xioll ≤ do, ∀o (11)

Eqn. 9 makes sure that a transfer finishes in exactly one time interval on one
link; eqn. 10 ascertains that there is no more than one simultaneous transfer on a
link; eqn. 11 guarantees all transfers finish before their respective job start times.
The resulting LP is essentially the one considered by Shmoys [9] and is known
to be NP-hard. We use a rounding heuristic to solve the problem in polynomial
time based on the one outlined in [9]. The heuristic returns a selection of links
on which to schedule the transfer such that the deadlines are met. Finally, we
compute a master schedule that specifies the assignment and ordering of all job
executions and replication/data transfer activities.

4 Performance Evaluation

In this section, we evaluate the performance of the proposed two–step algorithm
and compare it with alternative heuristics. We use the GridSim toolkit with
its new Data Grid capabilities [10], to simulate a compute and data–intensive
grid environment. For evaluation, we use a network topology based on the EU
DataGrid TestBed topology with 11 sites and 23 links . Each site in the topology
is modeled as a cluster site with finite compute and storage resources. The
resource settings are obtained from a real testbed scenario outlined in [10].
To make the simulation feasible, we scaled down the compute and storage
capacities of all sites while ignoring a few sites with very low compute and
network resources. The network link bandwidths are used as specified.

Utility model: The batch of jobs is divided into three classes of Gold, Silver and
Bronze jobs depending on their response time requirements (deadlines) and the
corresponding revenue they are willing to pay. These jobs also differ in the penalty
charged for missing the deadline. Each job has a revenue function associated with
it, as described in Section 1, with unbounded penalty. The maximum revenue for a
job and its penalty rate are picked from normal distributions with mean dependent
on the class that the job belongs to. For the set of results presented here, the ratio
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Fig. 3. Performance of all algorithms (a) Total revenue earned as number of jobs
increase (b) Average CPU wait time of jobs before they are granted CPU (c) Average
transfer wait time of jobs before all their files are available

of the means for Gold, Silver and Bronze is 5:3:2. The mix of Gold, Silver and
Bronze jobs is 20%, 60%, and 20% respectively.

Job distribution: Each job specifies an execution time and a set of files required
to execute the job. The number of files per job follows a normal distribution
with a variance of 0.25. We vary the mean of the distribution between 3 and 6
to simulate various data-intensive scenarios. To model a realistic workload, the
files for a job are chosen based on a Zipf distribution . The execution time for
each job is approximately 20 minutes ± 30%. The job deadline time is a factor of
its execution time and number of file dependencies. In our experimental setting,
gold jobs have smaller (and hence) stricter deadlines than Silver and Bronze
jobs. The ratio of the deadlines for Gold, Silver and Bronze jobs is 3:5:7.

Data distribution: Data objects considered in the experiments have an average
file size of 1 GB, where file sizes follow a power-law(Pareto) distribution. We begin
with a random placement of files at the cluster sites, with each file placed at exactly
one site. Files are replicated as long as storage space is available at a site. The file
replacement policy of the storage manager at a site is assumed to be LRU.

4.1 Alternative Heuristics

Previous approaches exist that use heuristics for value-based scheduling in
computation grids, however they do not consider data requirements. Similarly,
approaches in traditional data grids for compute and data assignments do
not have an associated utility notion. To obtain competitive alternatives, we
combine the best known utility–based scheduling policy [2,3], with the best
known heuristics for compute and data assignment.

For each job j delayed by l hours beyond its deadline Tj , its utility value is
given by Uj = (l ∗ Penj)/Tj, where Penj is the penalty rate. The list of jobs
is sorted based on their utility values. We consider two compute assignment
techniques, earliest fit (EF) and best fit (BF). Starting with the first job in
the sorted list, EF assigns it to the site that can satisfy it at the earliest time
interval. This is a greedy approach, based on the generic Min-Min algorithm
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[4,5], that aims at finishing jobs as early as possible. On the other hand, BF
assigns the job to the site that can satisfy it at the latest time interval but still
meets its deadline [3]. This approach keeps earlier time slots free for later jobs
in the list. Both EF and BF, first transfer the required non-local files before it
begins execution.

Previous work [11,6] outlines a Threshold based replication scheme, where
each site records the number of local data transfers it needs to do for a globally
popular file. When number of local transfers exceed a specified threshold, a
replica is created locally. This Threshold based scheme is used in EF and BF
to replicate files at cluster sites. Note that, both these heuristics have loose
coupling of data replication and job execution. We compare DECO’s tightly
coupled replication and job execution algorithm with the above heuristics. For all
the algorithms, we measure the following: (a) total revenue earned by a batch of
jobs, including the revenues from satisfied jobs and penalties from those missing
their deadlines (b) average time a job has to wait in the queue before it begins
execution (c) business revenue earned by creating replicas.

4.2 Experimental Results

In the first set of experiments, we compare the revenue earned by DECO in
comparison with EF and BF as shown in Fig.3(a). We increase the number of
jobs in a batch, while keeping the system resources constant. We note that for
all the approaches, the revenue steadily increases reaching a peak, and then dips
beyond a knee point. The resource contention is low in the beginning with fewer
jobs entering the system. With increasing number of jobs, system utilization
improves leading to higher revenue. The peak of the curve represents an optimal
system state when the revenue earned is the maximum. Increasing jobs beyond
this point leads to greater resource contention and causes more jobs to miss
their deadlines. Continual increase in the delay incurred by jobs is indicative of
an overloaded system state and leads to reduction in revenue. This is captured
by the zone beyond the knee of the curve. In an under-utilized system state
all algorithms achieve comparable performance. But as the number of jobs is
increased, DECO shows sustained significant improvement over EF and BF.
Even in high resource contention conditions, revenue drop of DECO is less
as compared to the alternative heuristics. This is observed by the sharp fall
in EF and BF beyond the knee point as opposed to graceful degradation of
DECO. On an average, DECO has (30-40)% improvement in revenue earnings
over alternative approaches.

Fig.3(b) and Fig.3(c) report the average wait time of jobs, divided into CPU
wait time and transfer wait time, for increasing number of jobs. The first
component represents the cpu utilization and captures benefits of scheduling
some jobs ahead of others. The second component, represents data availability
and captures the benefits of replication and transfer scheduling. CPU wait
time reduces when a job is assigned to a compute site with low queue lengths.
Similarly, transfer wait time reduces with smart scheduling and parallelizing data
transfers with job executions. With a batch size of 200 jobs, DECO shows about
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30% reduction in CPU wait time over EF and LF. With an average requirement
of 5 files/job, DECO reduces the transfer wait time by as much as 40%.

Fig.4(a) sheds light on the superior performance of DECO over alternative
heuristics. The experiment was conducted with a batch of 200 jobs. For each
job, we determine the total response time and the corresponding revenue earned.
(Note that, the revenue may be positive or negative depending on the scheduled
time interval). The entire region is divided into four revenue zones. From left
to right the vertical regions mean the following: the first vertical represents
revenues earned by jobs that finish within the deadline. The second and third
for jobs that miss their deadlines, but earn 50-99% and 0-49% of their maximum
revenue respectively. The last contains jobs that incur penalties for finishing late.

Fig.4(a) reports the distribution of Gold, Silver and Bronze jobs in the four
revenue zones. The alternative heuristics try to accommodate the heavy penalty
incurring Gold and Silver jobs in the earlier time intervals, so as to avoid missing
their deadlines. As a result most of the Bronze jobs are forced in the penalty
zone and a significant number of Silver jobs earn less than a third of their
maximum revenue. They fail to capture the possibility that the penalty from a
large number of Bronze jobs can overshadow the revenue earned from Gold and
Silver jobs. DECO intelligently chooses the right balance of placing the different
types of jobs in suitable time intervals by weighing both their revenues and
penalties, and thereby accrues significantly higher revenue than its competitors.
Fig.4(b) show the actual data transfers, replications and executions scheduled
by DECO along the timeline. The schedule is shown for three representative jobs
(executing on the a compute site with two compute nodes). The jobs and their
dependencies are as shown in Fig.4(b). In the schedule, replication of object A
from site S1 is initiated along with transfer of object B from site S2. Jobs 1 and
2 begin execution in parallel with the transfer of object C from site S1. Job 3
however executes only after C’s transfer completes and either of Job 1 or Job 2
finishes execution. This snapshot illustration demonstrates how DECO utilizes
the available resources (network links, compute resources) to minimize idle time.
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Table 1. Replica Utility showing Files
per Job (FJ), Avg Replicas per File (AR)
and Avg Replica Utility (ARU)

FJ AR ARU
DECO EF BF DECO EF BF

3 1.3 1.1 1.1 99.7 43.1 35.3
4 1.4 1.2 1.3 88.0 68.6 53.5
5 1.5 1.3 1.3 116.3 62.8 60.0
6 1.7 1.4 1.4 130.2 65.7 61.3

In Fig.5, we compare the revenue earned as the number of jobs and their file
dependencies are scaled for DECO and EF. When a job requires a larger set of
files for its execution, job wait times are more pronounced as transfer times tend
to be larger. The raised surface for DECO can be attributed to the fact that
it creates more beneficial replicas when compared to EF, and achieves better
parallelization of execution and data transfers. We additionally note that for
3–5 files per job, the revenue accrued by DECO steadily increases. Finally, for
larger batch sizes and a larger number of file dependencies, the revenues begin to
dip. This is because the system enters an overloaded state, as explained earlier.

Table-1 shows the replication statistics for each algorithm. We report the
average number of replicas created per object, which captures the degree of
replication. The table also reports the average utility of the replicated objects,
which is defined as the revenue gain per new replica. Table–1 shows that the
algorithms create 1.09–1.68 replicas per object, which is within acceptable limits
for given storage constraints. Though more replicas are created by DECO, they
contribute to significant revenue growth as reflected by the replica utility values.
The replica utility of DECO is much better than the alternative heuristics(87.95–
130.15 vs 43.14–68.55). This indicates that tight coupling of replication with
compute allocation creates more meaningful replicas which are more effectively
utilized while doing job assignment. Decoupled replication as adopted in the
alternative heuristics fails to influence the job assignment directly, resulting in
less optimal utilization of the replicas.

5 Related Work

Market–based economy models have recently received much attention in the grid
utility computing domain [2,3]. [2] presents value-based scheduling heuristics that
attempt to balance risk and reward of a job. [3] presents heuristics for admission
control and resource allocation when jobs come with their own SLA requirements.
However, both approaches do not consider the data transfer/replication as a part
of the schedule. [12] presents a grid service broker for discovery of resources and
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scheduling of jobs. Here, the scheduler minimizes the amount of data transfers by
executing jobs at sites which have “nearer” access to data. The data placement
however remains static. Resource allocation with failure provisioning for business
profit maximization has been studied in [13]. However, co-ordinated placement of
data with jobs has not been addressed. [14] describes a resource allocation ap-
proach for distributed computer systems based on competitive algorithms derived
from Microeconomics. These algorithms however do not consider the problem of
dynamic creation of replicas and its effect on auction pricing.

Among approaches that try to integrate job scheduling and data replication by
incorporating network latencies and data transfer times are the Close-To-Files
[4] and the Time-Budget constrained [5]. However, none of these approaches
consider dynamic replication of data across sites. [6] looks at a number of
techniques to dynamically replicate data across sites and assign jobs to sites.
In this scheme, local monitors keep track of popular objects and preemptively
replicates them at other sites. However, the work assumes homogeneous network
conditions and single input files, both of which may not hold in case of globally
distributed grids. [11,7] consider decoupled approach wherein the replication
is controlled by an asynchronous process and looks at long-term history of
access patterns. Stork [15] introduces a specialized scheduler for data placement
activities and mentions the need for tighter integration between data placement
and job execution. [16] presents an approach for co-scheduling by combining
the Condor scheduler with a storage resource manager (SRM). Although,
match-making is influenced by file placement, replication is performed without
considering compute assignments. The co-scheduling problem addressed in [17]
assumes single data object only. Finally, [18] solves the co-scheduling problem
in a data grids using a genetic algorithm based heuristic. The work however,
does not address the problem of optimal replica source selection and the time
sequencing of job executions and replication/data transfers.

6 Conclusion

In this paper, we propose DECO, a co–scheduling framework for compute and
data–intensive applications in utility grids. DECO employs a two–step algorithm
for maximizing the business revenue of the grid provider. In Step 1, decisions are
made on the assignment of jobs and replication of data objects. Step 2 schedules
the data transfers (and replications) along with the job executions. The main
highlight is that by integrating execution and data transfer times, DECO delivers
significant improvements, both in terms of higher business revenues and lower
job wait times, when compared to alternative approaches. As a part of future
work, we will consider peer-to-peer approaches for resource-sharing among meta-
schedulers. In this perspective, we plan to investigate distributed competitive
algorithms [14]. Further, we are investigating application performance analysis
techniques to help DECO make more up-to-date co-scheduling decisions. Finally,
we plan to enhance the system with failure handling mechanisms.
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