Semantic Service Mediation

Liangzhao Zeng?!, Boualem Benatallah?, Guo Tong Xie®, and Hui Lei!

L IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
{lzeng, hlei}@us.ibm.com
2 School of Computer Science and Engineering University of New South Wales,
Sydney, Australia
boualem@cse.unsw.edu.au
3 IBM China Research Laboratory
Building 19, Zhongguancun Software Park, ShangDi, Beijing, 100094, P.R. China

xieguot@cn.ibm.com

Abstract. The service mediation that decouples service interactions is a key
component in supporting the implementation of SOA solutions cross enterprises.
The decoupling is achieved by having the consumers and providers to interact via
an intermediary. The earliest service mediations are keyword and value-based,
which require both service providers and consumers to adhere same data formats
in defining service interfaces and requests. This requirement makes it inadequate
for supporting interactions among services in heterogeneous and dynamic envi-
ronments. In order to overcome this limitation, semantics are introduced into ser-
vice mediations, for more flexible service matchings. In this paper, we proposed
anovel semantic service mediation. Different from existing semantic service me-
diations, our system uses ontologies not only for one-to-one service matchings,
but also for one-to-multiple service matchings. By performing service correla-
tion systematically as part of the service mediation, services can be composted
automatically, without any programming efforts (neither composition rules nor
process models). We argue that a service mediator like ours enables more flexible
and on-demand mediation among services.

1 Introduction

The service mediation enables decoupling among the service providers and consumers,
which is a key component in Enterprise Service Bus (ESB) for supporting SOA solu-
tions cross enterprises. Typically, the service mediation system contains three roles: (1)
service providers, who publish services; (2) service consumers, who request services,
(3) service mediators, who are responsible for service repository management, service
matching, service invocation and invocation result delivery. The earliest service media-
tions are keyword and value-based (e.g., UDDI [6]). There are two major limitations in
such service mediations: (i) the service discovery is keyword-based; (ii) service invoca-
tions are based on value of exchanged messages. For example, a service request is about
retrieving a sports car’s insurance quote, where the input parameter is SportsCar and
output parameter is CarPremium. For the value-based service mediation, only the ser-
vices that have input parameter SportsCar and output parameter Car Premium can
match the request. In case service request and service interfaces’ input/output parame-
ters are not exactly matched, then data format mapping needs to be provided.

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 490-493] 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Semantic Service Mediation 491

Consequently, as an improvement to keyword and type-based solutions, semantics
are introduced into service mediations [1LS5]], wherein ontologies enable richer seman-
tics in service publication and more flexible matchings. However, current semantic ser-
vice mediations only support one-to-one service matchings. Any sophisticate one-to-
multiple services matchings (i.e., composing a collection of services to fulfill a service
request) requires either defining knowledge base (e.g., composition rules) or creating
process models [7U8]. In order to overcome these limitations, in our semantic service me-
diation, one-to-multiple matchings are enabled using correlation-based composition, by
utilizing the semantics derived from service interface definitions. In particular, proposed
correlation-based composition is transparent to service consumers, i.e., requires neither
defining service composition knowledge bases nor creating process models. It should be
noted that our correlation-based solution is complementary to those knowledge-based
and process-based solutions. With our correlation-based solution, either knowledge-
based or process-based service composition developers can focus on high level business
logic to develop composition services, without understanding extraordinary details of
service interfaces. In the case of the expected service interfaces that defined in knowl-
edge bases or process models are not currently available, the service mediator can locate
multiple services and correlate them to a “virtual service” to fulfill the service request.

The remainder of this paper is organized as follows: Section 2] introduces some im-
portant concepts. Section [3] presents the overview of the semantic service mediation.
Section [discusses the correlation-based service composition. Finally, Section [3] dis-
cusses some related work and Section[6] provides concluding remarks.

2 Preliminaries

In our system, we adopt an object-oriented approach to the definition of ontology, in
which the type is defined in terms of classes (See Definition 1) and an instance of a
class is considered as an object (See Definition2). It should be noted that this ontology
formulation can be easily implemented using OWL [4] and IODT [3]]. We will present
details on how to use ontologies to perform semantic matchings and correlation match-
ings in following sections.

Definition 1 (Class). A class C'is defined as the tuple C' =(N, S, P, R), where

N 1is the name of the class;

S is a set of synonyms for the name of class, S = {1, s2,...,Sn} ;

P is a set of properties, P = {p1,p2,...,pn}. For p; € P, p; is a 2-tuple in form
of (T, N,), where T is a basic type such as integer, or a class in an ontology, N, is
the property name. p; (p1 € P) is the key property for identification;

R is a set of parent classes, R = {C1, Cs, ..., Cy }. O

In the definition of class, the name, synonyms, and properties present the connotation
of a class; while parent classes specify relationships among the classes, i.e., present the
denotation of a class. A class may have parent classes for which it inherits attributes. For
example, class sportsCar’s parent class is Car, so the class sportsCar inherits
all the attributes in class Car.

492 L. Zeng et al.

Definition 2 (Object). An object o is a 2-tuple(N., V), o is an instance of a class C,
where

— N, is the class name of C;

-V = {v1,v,...,u,}, are values according to the attributes of the class C. For
v; € V, v; is a 2-tuple in form of (N, V) , where N, is the property name, V}, is
the property value. O

A service interface is denoted as I;(Pip, Pout), where Py, (P, = (C1,Ca,...,Cp))
indicates input parameter classes, and P,y (Pyyt = (Cy, Ca, ..., Cyy,)) indicates output
parameter classes. An example of a service s’s interface can be I (P, (SportsCar),
P,,:(CarInsurance, CarFinance)), which contains one input parameter and two out-
put parameters.

A service request is denoted as Q(Oiy, Fout), where Oy, (Ojy = (01,02, ...,04))
indicates input objects, and F,yt (Fout = (C1, Co, ..., Cy,)) indicates expected output
parameters from the services. An example of a service request can be Q(O;,(car),
E,.{CarInsurance, CarFinance)), which contains one input object car and ex-
pects a service provides two outputs: CarInsurance and CarFinance.

Table 1. Examples

Entity Example

service request Q1(O;y, (sportsCarh), Foyi(CarInsurance, CarFinance))
candidate service’s interface I (Pin(Car), P,,:(CarInsurance, CarFinance))
interface set Iy={I1, I2}, where I (P;n(Car), Poyut(CarInsurance)),
Iy (P;n{Car), Poyt{CarFinance))

3 Service Matching in Semantic Service Mediation

By introducing ontologies into the service mediation, other than exact matching, we
extend the service matching algorithm with two extra steps: semantic matching and
correlation matching. Therefore, three steps are involved in our matching algorithm:-

Step 1. Exact Matching. The first step is to find exact matches, which returns service
interfaces that have exactly the same parameter (input and output) classes as the service
request;

Step 2. Semantic Matching. The system searches service interfaces that have para-
meter classes that are semantically compatible with the service request. In our system,
the semantic matching is based on the notion of Semantic Compatibility.

Definition 3 (Semantic Compatibility). Class C; is semantically compatible with class
C}, denoted as C; = Cj, if in the ontology, either (i) C; is the same as C; (same name
or synonym in an ontology) , or (ii) C}; is a superclass of C;. O

By adopting the definition of semantic compatibility, we say a class C' semantically be-
longs to a class set C (denoted as C' €, C) if 4C; € C, C < Q. Using the notion of

Semantic Service Mediation 493

semantic compatibility, we define a Candidate Service Interface as a service interface
that can accept service request’s input objects and provide all outputs that are seman-
tically compatible with the outputs required by the service request. For example (see
Table[I), with regard to the service query @, the interface I; can be invoked by the ser-
vice request as the input object sportsCarA ”is a” Car (semantic compatibility). At
the same time, I can provide all the outputs required in () since two output parameters
are exactly matched. Therefore, I, is a candidate service interface for Q).

Step 3. Correlation Matching. The system searches a set of service interfaces that
can accept the input object from service request and be correlated to provide expected
output for the service request. It is worth noting that the type-based service media-
tion only performs step 1. Most of the semantic service mediations perform semantic
matching which is step 2. In our semantic service mediation, we also consider correla-
tion matchings, which are unique to our semantic service mediation. In this paper, we
assume that both service consumers and providers use the same ontology for a domain.
If a consumers and providers use different ontologies for a domain, then a common on-
tology can be created. Detailed discussion on creating a common ontology is outside the
scope of the paper. Therefore, by engineering ontologies, our system allows different
services to exchange information using their native information format to define inter-
faces and request. The cost of engineering ontologies is much less than that of develop-
ing object adaptors for value-based service mediations as ontologies are declaratively
defined. Further, ontologies are reusable, while developing object adaptors requires case
by case programming efforts.

4 Correlation-Based Service Composition

Obviously, multiple service interfaces can be correlated to one if they have share some
input parameters and different output parameters. For example, two service interfaces I
and I5 in I, (see Table[T)) can be correlated as they both have the field Car as the input
parameter. Therefore, when the service mediator performs the correlation matching, in
order to compose a service interface that can provide all the required outputs for the
service request, it first searches a correlation service interface set, i.e., a set of service
interfaces that are correlatable by a key input parameter that is specified by the service
request and can provide all the outputs required by the service request. The formal
definition of correlation interface set is shown as follows.

Definition 4 (Correlation Interface Set). I (I = {Iy,I,...,I,}) is a set of service
interfaces, Cp;,, is the class set consists of all the input parameter classes in interface
1;; Cpout, 18 the class set that consists of output parameter classes in I;; () is the service
request where Co;;, is the class set consists of the input object classes, Cgoy: is the
class set that consists of expected output parameter classes; oy is an input object for
correlation key. I is a Correlation Service Interface Set of Q) iff:

1. VC € Cpip, C €5 Coin, where Cpiy(Cpiy, = U, Cpip,;) is union of all the
input parameter class sets in I;

2. VC € Cgout, C €s Cpout, Where Cpout(Cpour = U1 Cpoyt,) is union of all the
output parameter class sets in I;

494 L. Zeng et al.

3. VCpin,, EIC,;, Cp = C’,;, where C’k is class for key object og;
4. v(DP()uti, EIC, C S (CP()uti - (U;;ll CPoutj U U;L:H_l CPoutj)) and C' s CEout-
O

In this definition, four conditions need to be satisfied when correlating a set of service
interfaces to fulfill a service request: condition 1 indicates any outputs required by the
service request can be provided; condition 2 indicates the service request can provide
all the required input for each interface in the set; condition 3 implies all the interfaces
have the key field as an input parameter, therefore, are correlatable; condition 4 evinces
any interfaces in the set contributes at least one unique output. It should be noted that
both condition 1 and 2 are necessary condition of the definition, while condition 3 and
4 are the sufficient conditions for the definition. Using above example, the aggregation
of I1 and I» provides all the required outputs for the service request, which satisfy
condition 1; and their input can be provided by the service request, which satisfies
condition 2. These two interfaces have the input parameter Car and Car is ancestor
of SportsCar, the key class in service request), which satisfies condition 3. Also,
I; (resp. I2) provides unique output CarInsurance (resp. CarFinance), which
satisfied condition 4. Therefore, I; and I, compose a correlation service interface set
for the service request.

5 Related Work

Service mediation is a very active area of research and development. In this section,
we first review some work in area of service discovery (matching), and then we look at
some service composition prototypes.

Service discovery and matching is one of the cornerstones for service mediation.
Current Web service infrastructure have limitation on providing flexibility of choose se-
lection criteria along multiple dimensions. For instance, UDDI provides limited search
facilities that allows only keyword-based search of services. To overcome this limita-
tion, semantic technology [1]] is used to support multiple dimensions searching criteri-
ons for services. In [1]], a flexible matchmaking between service description and request
by adopting Description Logics (DLs). However, most of existing semantic solutions fo-
cus on one-to-one matchings. In our service mediation, semantic information in service
descriptions and request enables one-to-multiple service matchings, which initiates an
other type of automatic service composition.

It should be noted that our correlation-based service composition is different from
existing industrial and academic service composition framework. The industrial solu-
tion typically does not provide explicit goals of the composition and does not describe
the pre- and post-conditions of individual services. A service is viewed as a remote
procedure call.A service composition is quite often specified as a process model (e.g.
BPEL4WS [2])) though a richer process specification is needed. The composition itself
is mostly done manually by IT specialists in an ad-hoc manner. Our approach, using a
semantic ontology and a correlation based composition, enables us to construct a com-
posed service based on the semantics of service interfaces, without much programming
efforts.

Semantic Service Mediation 495

6 Conclusion

In this paper, we propose a novel semantic service mediation, which is another step
forward in the development of current service mediation systems. We introduce seman-
tics to understand the interface of service. Our system not only considers single service
interface for a service request, but also automatically correlates multiple interfaces for
a service request when there is not exactly matched interface. Unlike knowledge-based
or process-based solution, the service correlation in our system is transparent to devel-
opers. We argue that the proposed service mediation is essential to enable cooperative
service interactions in service-oriented computing. Our future work includes optimiza-
tion of semantic service matching and correlation, and a scalability and reliability study
of the system.

References

1. B. Benatallah, M.-S. Hacid, A. Leger, C. Rey, and F. Toumani. On automating web services
discovery. The VLDB Journal, 14(1):84-96, 2005.

2. Business Process Execution Language for Web Services, Version 1.0, 2000. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

3. IBM Integrated Ontology Development Toolkit, 2006. http://www.alphaworks.ibm.com/
tech/semanticstk.

4. OWL, 2006. http://www.w3.org/TR/owl-ref/.

5. M. Paolucci, T. Kawmura, T. Payne, and K. Sycara. Semantic Matching of Web Services
Capabilities. In First International Semantic Web Conference, 2002.

6. Universal Description, Discovery and Integration of Business for the Web, 2005.
http://www.uddi.org.

7. L. Zeng, B. Benatallah, H. Lei, A. Ngu, D. Flaxer, and H. Chang. Flexible Composition
of Enterprise Web Services. Electronic Markets - The International Journal of Electronic
Commerce and Business Media, 2003.

8. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE Transactions on Software Engineering,
30(5):311-327, 2004.

	Introduction
	Preliminaries
	Service Matching in Semantic Service Mediation
	Correlation-Based Service Composition
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

