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Abstract. The focus of this paper is to exploit a differential technique based on 
the similarities among the byte sequences of the processed SOAP messages in 
order to improve the performance of the XML processing in the Web Service 
Security (WS-Security) processing. The WS-Security standard is a 
comprehensive and complex specification, and requires extensive XML 
processing that is one of the biggest overheads in WS-Security processing. This 
paper represents a novel WS-Security processing architecture with differential 
parsing. The architecture divides the byte sequence of a SOAP message into the 
parts according to the XML syntax of the message and stores them in an 
automaton efficiently in order to skip unnecessary XML processing. The 
architecture also provides a complete WS-Security data model so that we can 
support practical and complex scenarios. A performance study shows that our 
new architecture can reduce memory usage and improve performance of the 
XML processing in the WS-Security processing when the asymmetric signature 
and encryption algorithms are used. 

Keywords: Web Services, Web Services Security, Performance, XML parsing. 

1   Introduction 

Service-oriented architecture (SOA) is now emerging as the important integration and 
architecture framework in today's complex and heterogeneous enterprise computing 
environment. It promotes loose coupling so that Web services are becoming the most 
prevalent technology to implement SOA applications. Web services use a standard 
message protocol (SOAP [1]) and service interface (WSDL [2]) to ensure widespread 
interoperability even within an enterprise environment. Especially for the enterprise 
applications, securing these Web services is crucial for trust and privacy reasons and 
to avoid any security risks, such as malicious and intentional changes of the messages, 
repudiations, digital wiretaps, and man-in-the-middle attacks. The Web Services 
Security (WS-Security) specifications were released by OASIS in March 2004 [3]. 

They describe security-related enhancements to SOAP that provide end-to-end 
security with integrity, confidentiality, and authentication. As described in [7], WS-
Security processing is categorized into two major operations: cryptographic processing  
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Fig. 1. Analysis of performance contribution of WS-Security processing on a DOM based 
implementation 

and XML processing. In fact, we confirmed that these two operations contribute to the 
performance overhead of WS-Security processing through a preliminary experiment on 
a DOM based WS-Security implementation that we have developed using XML 
Security Suite technology [4] as the basis. The left side of Figure 1 shows the XML 
processing is the second constraint on performance when asymmetric algorithms are 
used. The right side of Figure 1 shows the XML processing is the primary limitation on 
throughput when symmetric algorithms are used. 

An interesting characteristic of Web services is that all SOAP messages sent to a 
service have the almost same message structure. Based on this characteristic, some 
differential techniques that skip unnecessary XML processing, but which instead do 
only byte matching, have been proposed. [8][9] focus on reducing the general XML 
processing overhead (such as parsing, serialization, deserialization, and document tree 
traversal). In [8], only one template that memorizes the optimized basic structure of 
the message is constructed in advance. This template is used to extract only the 
differences between the input byte sequence and the data stored in the template. [9] 
also uses a single template, but it can be dynamically updated because the parser 
context is also stored in the template and this allows partial parsing. However it is 
difficult to apply these technologies to WS-security processing because WS-Security 
support is out of the scope of [9]. On the other hand, [10] considers improvements of 
the security-related XML processing (such as canonicalization and transformation). In 
[10], a message is divided into fixed parts and variable parts. A finite state automaton 
(“automaton” below) memorizes these parts as the basic structure of the message. But 
since the parser context is not stored in the automaton, it is impossible to partially 
parse the message or to optimize the data structure in the automaton. 

In this paper, we address many of the problems in that previous works and describe 
a novel WS-Security processing architecture based on [10]. The architecture divides 
the byte sequence of a message into fixed parts and variable parts according to the 
XML syntax in the message and stores them in an automaton. The automaton consists 
of two parts: the states which store both the parser contexts and the WS-Security 
contexts, and the transitions which store the corresponding parts. Since the processor 
can extract the parser contexts from the automaton, it can resume a partial parsing and 
can dynamically update the data in the automaton without invoking another processor 
as in [10]. In addition, the data model in the automaton can be optimized even when 
the same structure appears repeatedly in the byte sequence. We also provide a more 
complete WS-Security data model relative to the one in [10], so we can support a  
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Fig. 2. Architecture of WS-Security processing with differential parsing 

wider variety of practical scenarios than [10] covers. In this paper, we also conduct a 
performance study to evaluate memory usage and performance metrics. The 
performance study shows that our new architecture can reduce memory usage but 
retains almost same performance as the existing technology when the asymmetric 
algorithms are used, even though our method is more practical and more flexible. 

The rest of the paper is organized as follows. We describe the details of our new 
architecture for WS-Security processing in Section 2. We introduce some related 
work using differential techniques in Section 3. We present our performance study in 
Section 4. Finally, we conclude the paper in Section 5. 

2   WS-Security Processing with Differential Parsing 

In this section, we describe a novel WS-Security processing architecture with 
differential parsing. Figure 2 shows the architecture of WS-Security processing. The 
architecture has two major components: the WSS preprocessor and the WSS 
processor. The WSS preprocessor manages an automaton, which has a more flexible 
and powerful internal data structure than the one described in [10]. It matches the byte 
sequence of an input SOAP message against the data that was previously processed 
and stored in the automaton, and constructs a new complete but still lightweight data 
model for the WS-Security processing. The WSS processor secures the SOAP 
message using the WS-Security data model. We can support a wider variety of 
practical scenarios than [10] supports by our new data model. 

2.1   Internal Data Structure in an Automaton 

Given a new input SOAP message as a byte sequence, the WSS preprocessor invokes 
its matching engine to match the byte sequence with the ones that were previously 
processed and stored in the automaton, without doing any analysis of the XML syntax 
in the message. If a part of the message (or the whole message) does not match any of 
the data stored in the automaton, then the matching engine parses only that part of the 
message and dynamically updates the automaton. When the matching engine parses 
the byte sequence, it is subdivided into the parts corresponding to the XML syntax in 
the message, according to the suggestion in [11]. Each divided part can be represented 
as either a fixed part or a variable part in the internal data structure. Figure 3 shows 
the internal data structure in the automaton. The data structure includes states (Si in  
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Fig. 3. The internal data structure in an automaton 

Figure 3) and transitions (Tj in Figure 3). As shown in Figure 3, there is a difference 
between in the automaton in [10] and in our new automaton. In [10], it can’t 
efficiently handle the same structure that appears repeatedly in the input because it 
doesn’t consider the XML syntax. In Figure 3, the <B> elements appear repeatedly 
but they are stored as different transitions, such as T1, T3, T5, and T7. On the other 
hand, our new automaton can efficiently handle that. In Figure 3, the <B> elements 
are stored only in the transitions T2 and T4. In our new automaton, the state 
corresponds with the internal state in a parser and stores the parser context for partial 
parsing and the WS-Security context for construction of a WS-Security data model. 
The transition stores one fixed part or one variable part. The transition also stores a 
reference to the byte sequence, and the byte offset and the length of the snippet in 
order to get the original byte sequence without any additional concatenation, 
especially during encryption of the outbound message. The automaton doesn’t allow 
two different states to have the same parser context and the same WS-Security 
context. This reduces the total memory usage even when same data structure appears 
repeatedly in the payload of a SOAP message. In Figure 3, we can merge two states 
into S1 because there is no difference between the context after processing T1 and the 
context after processing T4. When the context before the processing of a transition is 
the same as after the processing, then the transition, such as T3, can be a self-loop. 

2.2   Lightweight WS-Security Data Model 

[10] uses a very simple data model for WS-Security processing. But this makes it 
difficult to apply the data model to a wide variety of practical scenarios such as a 
model including multiple XML signatures, because it consists only of pairs of keys 
and WS-Security-relevant values. Therefore, we now define the more concrete and 
flexible, but still lightweight, WS-Security data model shown in Figure 4. The data 
model consists of two types of information: the WS-Security objects and the 
transition sequences. A WS-Security object includes all of the necessary information 
for the WS-Security processing done by the WSS processor. It is constructed in 
parallel as the WSS preprocessor matches the byte sequence with the data in the 
automaton. The logical structure of the WS-Security object is similar to the XML 
structure in the SOAP message secured by WS-Security.  A transition sequence is a 
list of transitions that are traversed while matching the byte sequence with the data in 
an automaton. The transition sequence is used as the data representation of the input 
message instead of the byte sequence when the WSS processor secures the message 
based on the WS-Security data model. 
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Fig. 4. The data model for WS-Security processing 

2.3   WS-Security Processing Flow in the WSS Processor 

In this section, we describe how the WSS processor applies WS-Security to the input 
SOAP message based on the WS-Security data model shown in the previous section. 
We use the following scenarios to simplify our explanations: 

(1) For the inbound message, the WSS processor decrypts the contents of the SOAP 
body element first and then verifies the signature of the SOAP body element. 

(2) For the outbound message, the WSS processor signs the SOAP body element first 
and then it encrypts the contents of the SOAP body element. 

2.3.1   WS-Security Processing Flow for the Inbound Message 
For the inbound message, the WSS processor invokes a decryption processor to 
decrypt the contents of the SOAP body element based on the WS-Security data 
model. The encryption processor extracts the cipher value including the octets of the 
encrypted data from the WSS object and invokes an encryption engine to decrypt the 
cipher value and to get the byte sequence of the real content of the SOAP body 
element. Then the encryption processor invokes its matching engine to match the 
decrypted byte sequence with those stored in the automaton and update the transition 
sequence for the subsequent WS-Security processing. The matching engine also 
dynamically updates the automaton if necessary. Figure 5 shows the processing flow 
of decryption for the SOAP body element. In Figure 5, the <EncryptedData> element 
is replaced with the actual content of the SOAP body element (the <getQuote> 
element). 

 

Fig. 5. Processing flow of decryption 
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Fig. 6. Processing flow of digest value verification 

After the decryption process is completed, the WSS processor invokes a signature 
processor to verify the signature of the SOAP body element based on the WS-Security 
 

data model. The signature verification process includes two steps: digest value 
verification and signature value verification. Figure 6 shows the processing flow for 
digest value verification. When the signature processor verifies the digest value, it 
first invokes the matching engine to match the input transition sequence with the ones 
stored in the automaton for the signed object, which means the SOAP body element in 
this case. The internal data structure in the automaton described here is slightly 
different from the one described in Section 3.1. This is because we avoid the same 
byte matching twice and reuse the input transition sequence to improve its 
performance. The state in the automaton for the signed object doesn’t store the parser 
context since we don’t use a parser in this case. The transition stores a transition Ti in 
the input transition sequence and another transition Ti

’ corresponding to Ti. Ti
’ is used 

to construct a post-transform transition sequence. 
If there is a mismatch, the signature processor invokes the transformers for the 

corresponding transformation algorithm extracted from the WSS object, constructs 
the post-transform transition sequence, and dynamically updates the automaton. If the 
input matches, the signature processor can skip invocation of the transformers and 
automaton update because we can get the same post-transform transition sequence as 
would be constructed by the transformers. Figure 7 shows an example of 
transformations. In Figure 7, we assume that transformer 1 handles XPath filter2 [5] 
and transformer 2 handles the exclusive XML canonicalization [6]. 

When the post-transform transition sequences are constructed, the signature 
processor fills in the values extracted from the WSS object into the variable part in the 
transition sequence and serializes it to get a byte sequence. Then the signature 
processor invokes a message digest to calculate a digest of the byte sequence and 
verifies the digest with the digest value extracted from the WSS object. 

The processing flow of signature value verification is basically the same as the 
flow of digest value verification shown in Figure 6. Therefore, we omit its details, 
though there are some differences in the figure: (1) the input transition sequence 
includes a <SignedInfo> element, (2) the automaton is for the <SignedInfo> element, 
(3) the transformers are changed to a canonicalizer, and (4) the message digest is 
changed to a signature engine. 
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Fig. 7. Transformation example 

2.3.2   WS-Security Processing Flow for the Outbound Message 
For the outbound message, the WSS processor invokes a signature processor first to 
sign the SOAP body element based on the WS-Security data model. The signing 
process is a two-step process: digest value calculation and signature value calculation. 
The processing flow of digest value calculation is basically the same as the flow of 
digest value verification described in the previous section and details are not repeated. 
The only difference is that the signature processor for the outbound message stores 
the digest value in the WSS object after it invokes a message digester to calculate the 
digest value of the SOAP body element. The processing flow of the signature value 
calculation is also basically the same as the flow for signature value verification as 
described in the previous section, so we again skip the details. The only difference is 
that the signature processor for the outbound message stores the signature value in the 
WSS object after it invokes the signature engine to calculate the signature value of the 
<SignedInfo> element. 

After signing, the WSS processor invokes an encryption processor to encrypt the 
content of the SOAP body element based on the WS-Security data model. The 
encryption processor extracts the original byte sequence of the content of the SOAP 
body element from the WSS object and invokes an encryption engine to encrypt the 
byte sequence. The WSS processor stores the encrypted cipher value in the WSS 
object, wraps the encrypted octet with the <EncryptedData> element, and updates the 
transition sequence for the subsequent WS-Security processing. Figure 8 shows the  
 

 

Fig. 8. Processing flow of encryption 
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processing flow of encryption of the SOAP body element. In Figure 8, the content of 
the SOAP body element has been replaced with the <EncryptedData> element. 

3   Related Work 

General Web cache and our processor share some things in common. For instance, 
they both store multiple received messages for later reuse. Usually Web cache stores 
the entire request URL and query string as cache key, which is highly inefficient in 
terms of memory usage. Only one-byte difference between messages tends to create 
separate cache entries, each representing the entire message. On the other hand, our 
processor divides a message into multiple pieces and common pieces are stored only 
once (merging commonalities between messages and collapsing repeating structure in 
one message), leading to an efficient data structure. 

Some differential techniques, especially byte matching, have been proposed to 
avoid extensive XML processing in recent years. [8] assumes that a receiver knows in 
advance the structure of the SOAP messages (including the number of white spaces) 
to be exchanged. The receiver has to divide the message into two parts based on the 
XML syntax: fixed parts corresponding to element tags and variable parts 
corresponding to text nodes and attribute values, and hold them as a template before it 
processes the message. However this means that the entire message processing fails 
whenever any part mismatches the template, because the processor can’t dynamically 
update the template. In addition, the processor can’t hold more than one template at 
the same time. 

In [9], an XML message was divided into fixed-length pieces. The pieces (P1, …, 
Pn) are held as a template. The template also stores the parser context at each 
boundary of the portions so that the processor can resume a partial parsing by using 
the parser context between Pi-1 and Pi when the input byte sequence doesn’t match 
with Pi. The processor can terminate the partial parsing and restart byte matching if 
the parser context becomes the same as the one already stored in the template. 
However it is difficult to reduce the number of pieces even when the same data 
structure appears repeatedly in the payload of the message. In addition, the processor 
holds only one template, since the mismatched portions are replaced with the ones 
generated during partial parsing. 

Similar to [8], [10] divides a message into fixed parts and variable parts. These parts 
are held in an automaton. The advantage of this approach is that the processor can hold  
 

Table 1. The differences in the related work, where (a) is dynamic template generation, (b) is 
partial parsing, (c) is holding multiple templates, (d) is distinguishing between fixed parts and 
variable parts in the data model, and (e) is data model optimization 

 (a) (b) (c) (d) (e) 
Web cache yes no yes no no 

[8] no no no yes yes 
[9] yes yes no no no 

[10] yes no yes yes No 
This paper yes yes yes yes yes 
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multiple message templates in the automaton. However since the parser context is not 
stored, it is impossible to optimize the data structure in the automaton. 

This paper addresses many of the problems in these systems. Our processor divides 
the message into fixed parts and variable parts according to the XML syntax in the 
input byte sequence and holds them in an automaton. The automaton also stores parser 
contexts. Therefore, the processor can resume a partial parsing and dynamically update 
the data in the automaton without invoking another processor as in [10]. In addition, 
the data model in an automaton can be optimized even when the same structure 
appears repeatedly in the byte sequence. Table 1 shows a summary of the differences 
in the related work, where Web cache can be regarded as holding multiple templates, 
each containing one large fixed part which representing the entire message.. 

4   Performance Study 

This section describes a performance study that we conducted to evaluate the memory 
usage and performance of our differential technique. Section 4.1 presents the 
experiment in terms of memory usage and Section 4.2 shows the experiment in terms 
of performance. 

4.1   Experiment in Terms of Memory Usage 

We conducted an experiment to examine how the memory required for our data 
model differs from the memory needed for the data model in [10] on the service 
provider. We ran all of the tests on a ThinkPad1 T42 (Intel Pentium2 M 745 1.8 GHz, 
1.5 GB RAM, Windows3 XP Professional Edition). Five different services were used  
 
 

 

Fig. 9. Memory usage comparison between our data model and the data model in [10] 

in the experiment. Then we prepared five different messages per service (for a total of 
25 different messages). Each message included the same XML structure that appeared 
repeatedly in the payload of the SOAP body element. We sent them three times to the 
services with a Web services client. Therefore, the client sent a total of 75 messages  
 

                                                           
1 ThinkPad is a trademark of Lenovo in the United States, other countries, or both. 
2 Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or 

both. 
3 Windows is a trademark of Microsoft Corporation in the United States, other countries, or 

both. 
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Fig. 10. Performance comparison between our method and the method in [10] 

to the services. Figure 9 shows the experimental results. Figure 9 indicates that our 
data model can save about 150 MB of memory when sending the 13 KB of message 
though it required slightly more memory when sending the 6KB of message. 

4.2   Experiments in Performance Number 

We conducted an experiment to compare the performance of our method and the 
performance of the method in [10] on the service provider. We ran all of the tests with 
on an IBM xSeries4 365 (Intel Xeon5 MP 3.0 GHz, 4-way, 4 MB L3 Cache, 8 GB 
RAM, with HyperThreading disabled, on Windows Server 2003 Enterprise Edition). 
Figure 10 shows the experimental results when asymmetric signature and encryption 
algorithms are used and the 6KB of message is received on the service provider. In 
the graph, the x-axis is the kind of implementation (DOM-based method, the method 
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Fig. 11. Path length comparison between our method and the method in [10] 

in [10], and our method) and the y-axis is throughput (requests/sec). Since the XML 
processing constitutes a second greater portion of the total WS-Security processing in  
 

                                                           
4  IBM and xSeries are trademarks of International Business Machines Corporation in the 

United States, other countries, or both. 
5 Xeon is a trademark of Intel Corporation in the United States, other countries, or both. 
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Fig. 12. Analysis of performance contribution in our method 

the case using asymmetric algorithms, our method makes a contribution to 
performance improvement. Figure 10 also indicates that performance number of our 
method is faster than the method in [10], even though our method is more practical 
and more flexible. 

We also conducted an experiment to examine the path lengths required for our 
processing method compared to the path lengths needed for the processing method in 
[10]. We ran all of the tests on an IBM xSeries 365 (Intel Xeon MP 3.0 
GHz, 4-way, 4 MB L3 Cache, 8 GB RAM, with HyperThreading disabled, on 
Windows Server 2003 Enterprise Edition). In the experiment, we first used an 
internally developed tool to get a call graph. Then we analyzed the path lengths 
calculated from the call graph. Figure 11 shows the experimental results. Figure 11 
indicates that our method can shorten path lengths required for the XML processing, 
compared with the method in [10]. 

Finally we conducted an experiment to analyze the performance contribution in our 
method. Figure 12 shows the experimental results. Figure 12 represents that our 
method can reduce the percentage of the XML processing in the while WS-Security 
processing compared with the percentage of the XML processing shown in the 
asymmetric case in Figure 1. 

5   Concluding Remarks 

In this paper, we have presented a new architecture for WS-Security processing with 
differential parsing to improve the XML performance in the WS-Security processing. 
In our architecture, the WSS preprocessor matches the byte sequence of an input 
SOAP message with the data that were previously processed and stored in an 
automaton. If the byte sequence completely matches with the data in the automaton, it 
means that we can skip all unnecessary XML processing in the WS-Security 
processing. On the other hand, if there is any mismatch, the processor can partially 
parse only the unmatched parts of the byte sequence of the message because the 
parser contexts are also stored in the automaton. While parsing the parts, it divides 
into the fixed parts and the variable parts according to the XML syntax in the 
message, and updates the automaton with the divided parts. We also proposed a more 
complete and more flexible data model for WS-Security processing so that we could 
support a wider variety of practical scenarios that [10] does not cover. 

The performance study in terms of memory usage showed that our architecture 
requires less memory than needed for the architecture described in [10]. The 
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performance study in terms of performance number also showed that there is not a 
large difference between the performance of our architecture and the architecture 
described in [10] when the asymmetric signature and encryption algorithms are used, 
though the internal data structure in the automaton is more flexible and the data model 
for WS-Security processing is more complete. 
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