

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 277 – 288, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Optimized Web Services Security Performance with
Differential Parsing

Masayoshi Teraguchi1, Satoshi Makino1, Ken Ueno1, and Hyen-Vui Chung2

1 Tokyo Research Laboratory, IBM Research
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502 Japan

{teraguti, mak0702, kenueno}@jp.ibm.com
2 IBM Software Group

11501 Burnet Rd. Austin, TX 78758-3415, USA
hychung@us.ibm.com

Abstract. The focus of this paper is to exploit a differential technique based on
the similarities among the byte sequences of the processed SOAP messages in
order to improve the performance of the XML processing in the Web Service
Security (WS-Security) processing. The WS-Security standard is a
comprehensive and complex specification, and requires extensive XML
processing that is one of the biggest overheads in WS-Security processing. This
paper represents a novel WS-Security processing architecture with differential
parsing. The architecture divides the byte sequence of a SOAP message into the
parts according to the XML syntax of the message and stores them in an
automaton efficiently in order to skip unnecessary XML processing. The
architecture also provides a complete WS-Security data model so that we can
support practical and complex scenarios. A performance study shows that our
new architecture can reduce memory usage and improve performance of the
XML processing in the WS-Security processing when the asymmetric signature
and encryption algorithms are used.

Keywords: Web Services, Web Services Security, Performance, XML parsing.

1 Introduction

Service-oriented architecture (SOA) is now emerging as the important integration and
architecture framework in today's complex and heterogeneous enterprise computing
environment. It promotes loose coupling so that Web services are becoming the most
prevalent technology to implement SOA applications. Web services use a standard
message protocol (SOAP [1]) and service interface (WSDL [2]) to ensure widespread
interoperability even within an enterprise environment. Especially for the enterprise
applications, securing these Web services is crucial for trust and privacy reasons and
to avoid any security risks, such as malicious and intentional changes of the messages,
repudiations, digital wiretaps, and man-in-the-middle attacks. The Web Services
Security (WS-Security) specifications were released by OASIS in March 2004 [3].

They describe security-related enhancements to SOAP that provide end-to-end
security with integrity, confidentiality, and authentication. As described in [7], WS-
Security processing is categorized into two major operations: cryptographic processing

278 M. Teraguchi et al.

Crypto

XML

Misc

(a) Asymmetric case
Integrity – RSA-SHA1
Confidentiality – 3DES & RSA

(b) Symmetric case
Integrity – HMAC-SHA1
Confidentiality – 3DES

6%

18%

76% 71%

19%

10%

Fig. 1. Analysis of performance contribution of WS-Security processing on a DOM based
implementation

and XML processing. In fact, we confirmed that these two operations contribute to the
performance overhead of WS-Security processing through a preliminary experiment on
a DOM based WS-Security implementation that we have developed using XML
Security Suite technology [4] as the basis. The left side of Figure 1 shows the XML
processing is the second constraint on performance when asymmetric algorithms are
used. The right side of Figure 1 shows the XML processing is the primary limitation on
throughput when symmetric algorithms are used.

An interesting characteristic of Web services is that all SOAP messages sent to a
service have the almost same message structure. Based on this characteristic, some
differential techniques that skip unnecessary XML processing, but which instead do
only byte matching, have been proposed. [8][9] focus on reducing the general XML
processing overhead (such as parsing, serialization, deserialization, and document tree
traversal). In [8], only one template that memorizes the optimized basic structure of
the message is constructed in advance. This template is used to extract only the
differences between the input byte sequence and the data stored in the template. [9]
also uses a single template, but it can be dynamically updated because the parser
context is also stored in the template and this allows partial parsing. However it is
difficult to apply these technologies to WS-security processing because WS-Security
support is out of the scope of [9]. On the other hand, [10] considers improvements of
the security-related XML processing (such as canonicalization and transformation). In
[10], a message is divided into fixed parts and variable parts. A finite state automaton
(“automaton” below) memorizes these parts as the basic structure of the message. But
since the parser context is not stored in the automaton, it is impossible to partially
parse the message or to optimize the data structure in the automaton.

In this paper, we address many of the problems in that previous works and describe
a novel WS-Security processing architecture based on [10]. The architecture divides
the byte sequence of a message into fixed parts and variable parts according to the
XML syntax in the message and stores them in an automaton. The automaton consists
of two parts: the states which store both the parser contexts and the WS-Security
contexts, and the transitions which store the corresponding parts. Since the processor
can extract the parser contexts from the automaton, it can resume a partial parsing and
can dynamically update the data in the automaton without invoking another processor
as in [10]. In addition, the data model in the automaton can be optimized even when
the same structure appears repeatedly in the byte sequence. We also provide a more
complete WS-Security data model relative to the one in [10], so we can support a

 Optimized Web Services Security Performance with Differential Parsing 279

Fig. 2. Architecture of WS-Security processing with differential parsing

wider variety of practical scenarios than [10] covers. In this paper, we also conduct a
performance study to evaluate memory usage and performance metrics. The
performance study shows that our new architecture can reduce memory usage but
retains almost same performance as the existing technology when the asymmetric
algorithms are used, even though our method is more practical and more flexible.

The rest of the paper is organized as follows. We describe the details of our new
architecture for WS-Security processing in Section 2. We introduce some related
work using differential techniques in Section 3. We present our performance study in
Section 4. Finally, we conclude the paper in Section 5.

2 WS-Security Processing with Differential Parsing

In this section, we describe a novel WS-Security processing architecture with
differential parsing. Figure 2 shows the architecture of WS-Security processing. The
architecture has two major components: the WSS preprocessor and the WSS
processor. The WSS preprocessor manages an automaton, which has a more flexible
and powerful internal data structure than the one described in [10]. It matches the byte
sequence of an input SOAP message against the data that was previously processed
and stored in the automaton, and constructs a new complete but still lightweight data
model for the WS-Security processing. The WSS processor secures the SOAP
message using the WS-Security data model. We can support a wider variety of
practical scenarios than [10] supports by our new data model.

2.1 Internal Data Structure in an Automaton

Given a new input SOAP message as a byte sequence, the WSS preprocessor invokes
its matching engine to match the byte sequence with the ones that were previously
processed and stored in the automaton, without doing any analysis of the XML syntax
in the message. If a part of the message (or the whole message) does not match any of
the data stored in the automaton, then the matching engine parses only that part of the
message and dynamically updates the automaton. When the matching engine parses
the byte sequence, it is subdivided into the parts corresponding to the XML syntax in
the message, according to the suggestion in [11]. Each divided part can be represented
as either a fixed part or a variable part in the internal data structure. Figure 3 shows
the internal data structure in the automaton. The data structure includes states (Si in

WS-Security Implementation

Preprocessor

AutomatonAutomaton
Refer Update

Matching Engine

Processor

WSS Processor

Signature
Processor

<Envelope>
…
<Security>
…

</Security>
…

<Body>
<EncryptedData>

…
</EncryptedData>

</Body>

<Envelope>
…
<Security>
…

</Security>
…

<Body>
<EncryptedData>

…
</EncryptedData>

</Body>

input output

WS-Security
Data Model

WSSObj

Sign
Enc

Ref
Ref

WSSObj

Sign
Enc

Ref
Ref

Transition
sequence

$value

Body

EncData

/EncData

/Body

Transition
sequence

$value

Body

EncData

/EncData

/Body

Encryption
Processor

Invoke

280 M. Teraguchi et al.

Fig. 3. The internal data structure in an automaton

Figure 3) and transitions (Tj in Figure 3). As shown in Figure 3, there is a difference
between in the automaton in [10] and in our new automaton. In [10], it can’t
efficiently handle the same structure that appears repeatedly in the input because it
doesn’t consider the XML syntax. In Figure 3, the elements appear repeatedly
but they are stored as different transitions, such as T1, T3, T5, and T7. On the other
hand, our new automaton can efficiently handle that. In Figure 3, the elements
are stored only in the transitions T2 and T4. In our new automaton, the state
corresponds with the internal state in a parser and stores the parser context for partial
parsing and the WS-Security context for construction of a WS-Security data model.
The transition stores one fixed part or one variable part. The transition also stores a
reference to the byte sequence, and the byte offset and the length of the snippet in
order to get the original byte sequence without any additional concatenation,
especially during encryption of the outbound message. The automaton doesn’t allow
two different states to have the same parser context and the same WS-Security
context. This reduces the total memory usage even when same data structure appears
repeatedly in the payload of a SOAP message. In Figure 3, we can merge two states
into S1 because there is no difference between the context after processing T1 and the
context after processing T4. When the context before the processing of a transition is
the same as after the processing, then the transition, such as T3, can be a self-loop.

2.2 Lightweight WS-Security Data Model

[10] uses a very simple data model for WS-Security processing. But this makes it
difficult to apply the data model to a wide variety of practical scenarios such as a
model including multiple XML signatures, because it consists only of pairs of keys
and WS-Security-relevant values. Therefore, we now define the more concrete and
flexible, but still lightweight, WS-Security data model shown in Figure 4. The data
model consists of two types of information: the WS-Security objects and the
transition sequences. A WS-Security object includes all of the necessary information
for the WS-Security processing done by the WSS processor. It is constructed in
parallel as the WSS preprocessor matches the byte sequence with the data in the
automaton. The logical structure of the WS-Security object is similar to the XML
structure in the SOAP message secured by WS-Security. A transition sequence is a
list of transitions that are traversed while matching the byte sequence with the data in
an automaton. The transition sequence is used as the data representation of the input
message instead of the byte sequence when the WSS processor secures the message
based on the WS-Security data model.

<A>foo1foo2foo3
T1 T2 T3 T4 T3

<A>foo1foo2foo3
T1 T5 T7

<A>foo1foo2foo3

Data structure in [10] Data structure in our automaton

T2 T3 T4 T6 T3T2 T4 T2 T4 T5

S0 S1 S2 S3 S4 S5 S6 S7
S0 S1 S2

T1 T2

T3

T4T5

T1 T2 T3 T4 T5 T6 T7

Input

<A>foo1foo2foo3
T1 T2 T3 T4 T3

<A>foo1foo2foo3
T1 T5 T7

<A>foo1foo2foo3

Data structure in [10] Data structure in our automaton

T2 T3 T4 T6 T3T2 T4 T2 T4 T5

S0 S1 S2 S3 S4 S5 S6 S7
S0 S1 S2

T1 T2

T3

T4T5

T1 T2 T3 T4 T5 T6 T7

Input

 Optimized Web Services Security Performance with Differential Parsing 281

Fig. 4. The data model for WS-Security processing

2.3 WS-Security Processing Flow in the WSS Processor

In this section, we describe how the WSS processor applies WS-Security to the input
SOAP message based on the WS-Security data model shown in the previous section.
We use the following scenarios to simplify our explanations:

(1) For the inbound message, the WSS processor decrypts the contents of the SOAP
body element first and then verifies the signature of the SOAP body element.

(2) For the outbound message, the WSS processor signs the SOAP body element first
and then it encrypts the contents of the SOAP body element.

2.3.1 WS-Security Processing Flow for the Inbound Message
For the inbound message, the WSS processor invokes a decryption processor to
decrypt the contents of the SOAP body element based on the WS-Security data
model. The encryption processor extracts the cipher value including the octets of the
encrypted data from the WSS object and invokes an encryption engine to decrypt the
cipher value and to get the byte sequence of the real content of the SOAP body
element. Then the encryption processor invokes its matching engine to match the
decrypted byte sequence with those stored in the automaton and update the transition
sequence for the subsequent WS-Security processing. The matching engine also
dynamically updates the automaton if necessary. Figure 5 shows the processing flow
of decryption for the SOAP body element. In Figure 5, the <EncryptedData> element
is replaced with the actual content of the SOAP body element (the <getQuote>
element).

Fig. 5. Processing flow of decryption

WS-Security object

WSSObj

Sign

SignVal KeyInfo

C14nMeth

Ref

DigestVal

Reference

BSTEnc

EncMethKeyId

EncData

EncMeth CipData

DigestMeth

<SignatureValue>

<Signature>

$value1

$value2

<Envelope>

</SignatureValue>

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence

Automaton
Decrypted data

Automaton
SignedInfo

Automaton
SignedObject

Transform

KeyInfo
DataRef

SignMethCipData

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence (Before)

Enc

DataRef

ABC...

EncData Decryption Processor

WSS Object

E
n

cryp
tio

n
E

n
g

in
e

<getQuote>
IBM

</getQuote>

M
atch

in
g

E
n

g
in

e

Automaton
Encrypted data

Automaton
Encrypted data

Transition sequence (After)

<Body>

</Body>

$value2

</getQuote>

<getQuote>

<Body>

</Body>

$value2

</getQuote>

<getQuote>

CipData

WSSObj

Refer

Update

Decrypted data

Replace

$value2

</getQuote>

<getQuote>

$value2

</getQuote>

<getQuote>

282 M. Teraguchi et al.

Fig. 6. Processing flow of digest value verification

After the decryption process is completed, the WSS processor invokes a signature
processor to verify the signature of the SOAP body element based on the WS-Security

data model. The signature verification process includes two steps: digest value
verification and signature value verification. Figure 6 shows the processing flow for
digest value verification. When the signature processor verifies the digest value, it
first invokes the matching engine to match the input transition sequence with the ones
stored in the automaton for the signed object, which means the SOAP body element in
this case. The internal data structure in the automaton described here is slightly
different from the one described in Section 3.1. This is because we avoid the same
byte matching twice and reuse the input transition sequence to improve its
performance. The state in the automaton for the signed object doesn’t store the parser
context since we don’t use a parser in this case. The transition stores a transition Ti in
the input transition sequence and another transition Ti

’ corresponding to Ti. Ti
’ is used

to construct a post-transform transition sequence.
If there is a mismatch, the signature processor invokes the transformers for the

corresponding transformation algorithm extracted from the WSS object, constructs
the post-transform transition sequence, and dynamically updates the automaton. If the
input matches, the signature processor can skip invocation of the transformers and
automaton update because we can get the same post-transform transition sequence as
would be constructed by the transformers. Figure 7 shows an example of
transformations. In Figure 7, we assume that transformer 1 handles XPath filter2 [5]
and transformer 2 handles the exclusive XML canonicalization [6].

When the post-transform transition sequences are constructed, the signature
processor fills in the values extracted from the WSS object into the variable part in the
transition sequence and serializes it to get a byte sequence. Then the signature
processor invokes a message digest to calculate a digest of the byte sequence and
verifies the digest with the digest value extracted from the WSS object.

The processing flow of signature value verification is basically the same as the
flow of digest value verification shown in Figure 6. Therefore, we omit its details,
though there are some differences in the figure: (1) the input transition sequence
includes a <SignedInfo> element, (2) the automaton is for the <SignedInfo> element,
(3) the transformers are changed to a canonicalizer, and (4) the message digest is
changed to a signature engine.

Sign

DigestVal

Signature Processor

M
atching

E
ngine

WSS Object

<Body……</Body>

Fill &
Serialize

Message
Digest

Check Ok

T
ransform

er 1

T
ransform

er 2

Mismatch

Update

Automaton
SignedObject

Automaton
SignedObject

Transition sequence
(Post-transform)

<Body>

</Body>

$value2

</getQuote>

<getQuote>

Transition sequence
(Pre-transform)

Ref

Transform Transform

<Body>

</Body>

$value2

</getQuote>

<getQuote>

DEF…

WSSObj

Match

Refer

 Optimized Web Services Security Performance with Differential Parsing 283

Fig. 7. Transformation example

2.3.2 WS-Security Processing Flow for the Outbound Message
For the outbound message, the WSS processor invokes a signature processor first to
sign the SOAP body element based on the WS-Security data model. The signing
process is a two-step process: digest value calculation and signature value calculation.
The processing flow of digest value calculation is basically the same as the flow of
digest value verification described in the previous section and details are not repeated.
The only difference is that the signature processor for the outbound message stores
the digest value in the WSS object after it invokes a message digester to calculate the
digest value of the SOAP body element. The processing flow of the signature value
calculation is also basically the same as the flow for signature value verification as
described in the previous section, so we again skip the details. The only difference is
that the signature processor for the outbound message stores the signature value in the
WSS object after it invokes the signature engine to calculate the signature value of the
<SignedInfo> element.

After signing, the WSS processor invokes an encryption processor to encrypt the
content of the SOAP body element based on the WS-Security data model. The
encryption processor extracts the original byte sequence of the content of the SOAP
body element from the WSS object and invokes an encryption engine to encrypt the
byte sequence. The WSS processor stores the encrypted cipher value in the WSS
object, wraps the encrypted octet with the <EncryptedData> element, and updates the
transition sequence for the subsequent WS-Security processing. Figure 8 shows the

Fig. 8. Processing flow of encryption

<S:Body>aaabbb</S:Body>

<S:Body>${text1}${text2}</S:Body>

<S:Body xmlns:S=...>${text1}</S:Body>

Input (A list of transitions)

Pre-transform transition sequence

Post-transform transition sequence

<S:Body xmlns:S=...>aaa</S:Body>

Serialized byte sequence

T1 T2-2 T2-3 T2-4 T2-5 T3 T4T2-1 T5

T’1 T’2-2 T’2-3 T’2-4 T’2-5 T’3T’2-1

S0 S1

T1

T5

T’1

T’5

S2

T2

T3

T4

T2

T’2

T’2
T’3

T’4

S4 T7

T8

T6

T6 T7 T8

T’4 T’5

Transformer 1 (XPath filter 2) : Subtraction of the element

Transformer 2 (Exclusive XML canonicalization)

Automaton for the signed object

Skip

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

$value2

<Body>

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

</Body>

Transition sequence (Before)

Enc

DataRef
ABC...

EncData

Encryption Processor

WSS Object

E
n

cryp
tio

n
E

n
g

in
e

ABC…

Transition sequence (After)
<Body>

</Body>

$value2

</getQuote>

<getQuote>

<Body>

</Body>

$value2

</getQuote>

<getQuote>

CipData

WSSObj

Encrypted data

Replace

$value2

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

$value2

<EncryptedData>

<CypherValue>

</CypherValue>

</EncryptedData>

<Envelope> </Envelope><getQuote> </getQuote>

Original byte sequence of a message

Store

284 M. Teraguchi et al.

processing flow of encryption of the SOAP body element. In Figure 8, the content of
the SOAP body element has been replaced with the <EncryptedData> element.

3 Related Work

General Web cache and our processor share some things in common. For instance,
they both store multiple received messages for later reuse. Usually Web cache stores
the entire request URL and query string as cache key, which is highly inefficient in
terms of memory usage. Only one-byte difference between messages tends to create
separate cache entries, each representing the entire message. On the other hand, our
processor divides a message into multiple pieces and common pieces are stored only
once (merging commonalities between messages and collapsing repeating structure in
one message), leading to an efficient data structure.

Some differential techniques, especially byte matching, have been proposed to
avoid extensive XML processing in recent years. [8] assumes that a receiver knows in
advance the structure of the SOAP messages (including the number of white spaces)
to be exchanged. The receiver has to divide the message into two parts based on the
XML syntax: fixed parts corresponding to element tags and variable parts
corresponding to text nodes and attribute values, and hold them as a template before it
processes the message. However this means that the entire message processing fails
whenever any part mismatches the template, because the processor can’t dynamically
update the template. In addition, the processor can’t hold more than one template at
the same time.

In [9], an XML message was divided into fixed-length pieces. The pieces (P1, …,
Pn) are held as a template. The template also stores the parser context at each
boundary of the portions so that the processor can resume a partial parsing by using
the parser context between Pi-1 and Pi when the input byte sequence doesn’t match
with Pi. The processor can terminate the partial parsing and restart byte matching if
the parser context becomes the same as the one already stored in the template.
However it is difficult to reduce the number of pieces even when the same data
structure appears repeatedly in the payload of the message. In addition, the processor
holds only one template, since the mismatched portions are replaced with the ones
generated during partial parsing.

Similar to [8], [10] divides a message into fixed parts and variable parts. These parts
are held in an automaton. The advantage of this approach is that the processor can hold

Table 1. The differences in the related work, where (a) is dynamic template generation, (b) is
partial parsing, (c) is holding multiple templates, (d) is distinguishing between fixed parts and
variable parts in the data model, and (e) is data model optimization

 (a) (b) (c) (d) (e)
Web cache yes no yes no no

[8] no no no yes yes
[9] yes yes no no no

[10] yes no yes yes No
This paper yes yes yes yes yes

 Optimized Web Services Security Performance with Differential Parsing 285

multiple message templates in the automaton. However since the parser context is not
stored, it is impossible to optimize the data structure in the automaton.

This paper addresses many of the problems in these systems. Our processor divides
the message into fixed parts and variable parts according to the XML syntax in the
input byte sequence and holds them in an automaton. The automaton also stores parser
contexts. Therefore, the processor can resume a partial parsing and dynamically update
the data in the automaton without invoking another processor as in [10]. In addition,
the data model in an automaton can be optimized even when the same structure
appears repeatedly in the byte sequence. Table 1 shows a summary of the differences
in the related work, where Web cache can be regarded as holding multiple templates,
each containing one large fixed part which representing the entire message..

4 Performance Study

This section describes a performance study that we conducted to evaluate the memory
usage and performance of our differential technique. Section 4.1 presents the
experiment in terms of memory usage and Section 4.2 shows the experiment in terms
of performance.

4.1 Experiment in Terms of Memory Usage

We conducted an experiment to examine how the memory required for our data
model differs from the memory needed for the data model in [10] on the service
provider. We ran all of the tests on a ThinkPad1 T42 (Intel Pentium2 M 745 1.8 GHz,
1.5 GB RAM, Windows3 XP Professional Edition). Five different services were used

Fig. 9. Memory usage comparison between our data model and the data model in [10]

in the experiment. Then we prepared five different messages per service (for a total of
25 different messages). Each message included the same XML structure that appeared
repeatedly in the payload of the SOAP body element. We sent them three times to the
services with a Web services client. Therefore, the client sent a total of 75 messages

1 ThinkPad is a trademark of Lenovo in the United States, other countries, or both.
2 Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or

both.
3 Windows is a trademark of Microsoft Corporation in the United States, other countries, or

both.

100

150

200

250

300

350

400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
Number of messages

M
em

or
y

fo
ot

 p
rin

t
(M

B
)

Our data model
Data model in [10]

114

116

118

120

122

124

126

128

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Number of messages

M
em

or
y

fo
ot

 p
rin

t
(M

B
)

Our data model

Data model in [10]

1st iteration 2nd iteration 3rd iteration1st iteration 2nd iteration 3rd iteration

Message size = 134KBMessage size = 6KB

150MB4MB

286 M. Teraguchi et al.

Message size = 6KB

0

20

40

60

80

100

120
es/qer:tuphguorh

T
)retteb

sirehgih(

DOM-based method

The method in [10]

Our method

Fig. 10. Performance comparison between our method and the method in [10]

to the services. Figure 9 shows the experimental results. Figure 9 indicates that our
data model can save about 150 MB of memory when sending the 13 KB of message
though it required slightly more memory when sending the 6KB of message.

4.2 Experiments in Performance Number

We conducted an experiment to compare the performance of our method and the
performance of the method in [10] on the service provider. We ran all of the tests with
on an IBM xSeries4 365 (Intel Xeon5 MP 3.0 GHz, 4-way, 4 MB L3 Cache, 8 GB
RAM, with HyperThreading disabled, on Windows Server 2003 Enterprise Edition).
Figure 10 shows the experimental results when asymmetric signature and encryption
algorithms are used and the 6KB of message is received on the service provider. In
the graph, the x-axis is the kind of implementation (DOM-based method, the method

DOM-based method

The method in [10]

Our method

Fig. 11. Path length comparison between our method and the method in [10]

in [10], and our method) and the y-axis is throughput (requests/sec). Since the XML
processing constitutes a second greater portion of the total WS-Security processing in

4 IBM and xSeries are trademarks of International Business Machines Corporation in the

United States, other countries, or both.
5 Xeon is a trademark of Intel Corporation in the United States, other countries, or both.

 Optimized Web Services Security Performance with Differential Parsing 287

Asymmetric case
Integrity – RSA-SHA1
Confidentiality – 3DES & RSA

4%
10%

86%

Crypto

XML

Misc

Fig. 12. Analysis of performance contribution in our method

the case using asymmetric algorithms, our method makes a contribution to
performance improvement. Figure 10 also indicates that performance number of our
method is faster than the method in [10], even though our method is more practical
and more flexible.

We also conducted an experiment to examine the path lengths required for our
processing method compared to the path lengths needed for the processing method in
[10]. We ran all of the tests on an IBM xSeries 365 (Intel Xeon MP 3.0
GHz, 4-way, 4 MB L3 Cache, 8 GB RAM, with HyperThreading disabled, on
Windows Server 2003 Enterprise Edition). In the experiment, we first used an
internally developed tool to get a call graph. Then we analyzed the path lengths
calculated from the call graph. Figure 11 shows the experimental results. Figure 11
indicates that our method can shorten path lengths required for the XML processing,
compared with the method in [10].

Finally we conducted an experiment to analyze the performance contribution in our
method. Figure 12 shows the experimental results. Figure 12 represents that our
method can reduce the percentage of the XML processing in the while WS-Security
processing compared with the percentage of the XML processing shown in the
asymmetric case in Figure 1.

5 Concluding Remarks

In this paper, we have presented a new architecture for WS-Security processing with
differential parsing to improve the XML performance in the WS-Security processing.
In our architecture, the WSS preprocessor matches the byte sequence of an input
SOAP message with the data that were previously processed and stored in an
automaton. If the byte sequence completely matches with the data in the automaton, it
means that we can skip all unnecessary XML processing in the WS-Security
processing. On the other hand, if there is any mismatch, the processor can partially
parse only the unmatched parts of the byte sequence of the message because the
parser contexts are also stored in the automaton. While parsing the parts, it divides
into the fixed parts and the variable parts according to the XML syntax in the
message, and updates the automaton with the divided parts. We also proposed a more
complete and more flexible data model for WS-Security processing so that we could
support a wider variety of practical scenarios that [10] does not cover.

The performance study in terms of memory usage showed that our architecture
requires less memory than needed for the architecture described in [10]. The

288 M. Teraguchi et al.

performance study in terms of performance number also showed that there is not a
large difference between the performance of our architecture and the architecture
described in [10] when the asymmetric signature and encryption algorithms are used,
though the internal data structure in the automaton is more flexible and the data model
for WS-Security processing is more complete.

References

1. Simple Object Access Protocol (SOAP) Version 1.2, http://www.w3.org/TR/soap12/
2. Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
3. Web Services Security: SOAP Message Security 1.1, http://www.oasis-open.org/

committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
4. XML Security Suite, http://www.alphaworks.ibm.com/tech/xmlsecuritysuite
5. XML-Signature XPath Filter 2.0, http://www.w3.org/TR/xmldsig-filter2/
6. Exclusive XML Canonicalization Version 1.0, http://www.w3.org/TR/xml-exc-c14n/
7. Hongbin Liu, Shrideep Pallickara, and Geoffrey Fox, Performance of Web Services

Security, Technical Report, 2004, http://grids.ucs.indiana.edu/ptliupages/publications/
WSSPerf.pdf

8. Yoichi Takeuchi, Takashi Okamoto, Kazutoshi Yokoyama, and Shigeyuki Matsuda, "A
Differential-analysis Approach for Improving SOAP Processing Performance," The 2005
IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE'05),
pp. 472-479, 2005

9. Nayef Abu-Ghazaleh and Michael J. Lewis, "Differential Deserialization for Optimized
SOAP Performance," ACM/IEEE SC 2005 Conference (SC'05), pp. 21-31, 2005

10. Satoshi Makino, Michiaki Tatsubori, Kent Tamura, and Yuichi Nakamura, "Improving
WS-Security Performance with a Template-Based Approach," IEEE International
Conference on Web Services (ICWS'05), pp. 581-588, 2005

11. Toshiro Takase, Hisashi MIYASHITA, Toyotaro Suzumura, and Michiaki Tatsubori, "An
adaptive, fast, and safe XML parser based on byte sequences memorization," The 14th
international conference on World Wide Web (WWW 2005), pp. 692-701, 2005

	Introduction
	WS-Security Processing with Differential Parsing
	Internal Data Structure in an Automaton
	Lightweight WS-Security Data Model
	WS-Security Processing Flow in the WSS Processor

	Related Work
	Performance Study
	Experiment in Terms of Memory Usage
	Experiments in Performance Number

	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

