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Abstract. In Asiacrypt 2003, the notion of the universal designated
verifier signature (UDVS) was put forth by Steinfeld, Bull, Wang and
Pieprzyk. In the new paradigm, any signature holder (not necessarily the
signer) can designate the standard signature to any desired designated
verifier (using the verifier’s public key), such that only the designated
verifier will believe that the signature holder holds a valid standard sig-
nature, and hence, believe that the signer has indeed signed the message.
When the signature holder is the signer himself, the UDVS scheme can be
considered as a designated verifier signature (DVS) which was proposed
by Jakobsson, Sako and Impagliazzo in Eurocrypt 1996. In the recent pa-
per published in ICALP 2005, Lipmaa, Wang and Bao introduced a new
security property, called “non-delegatability”, as an essential property of
(universal) designated verifier signature. Subsequently, Li, Lipmaa and
Pei used this new property to “attack” four designated verifier signa-
tures in ICICS 2005 and showed that none of them satisfy the required
property. To date, there is no UDVS scheme that does not suffer from
the delegatability problem. In this paper, we propose the first provably
secure UDVS without delegatability, which can also be regarded as an-
other DVS scheme without delegatability. We also refine the models of
the UDVS schemes and introduce the notion of the strong universal des-
ignated verifier signature (SUDVS). We believe that the model itself is
of an independent interest.

Keywords: Universal Designated Verifier Signatures, Designated Veri-
fier Signatures, Non-delegatability, Bilinear Pairings.

1 Introduction

Digital signatures, introduced in the pioneering paper of Diffie and Hellman [3],
allow a signer with a secret key to sign messages such that anyone with access
to the corresponding public key can verify the authenticity of the message. A
signature verifier can convince any third party about this fact by presenting
a digital signature on a message. The ease of copying and transmitting digital
signatures in some implementations is of great convenience, but it is unsuitable
for many other applications in the real world where a verifier does not want to
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present the publicly verifiable signatures to other parties, such as certificates for
hospital records, income summary, etc.

The notion of the designated verifier signature (DVS) was proposed by Jakobs-
son, Sako and Impagliazzo in [4]. In a DVS, the signature provides authentication
of a message without providing a non-repudiation property of traditional signa-
tures. A DVS can be used to convince a single third party, i.e. the designated
verifier, and only the designated verifier who can be convinced about its validity
or invalidity. This is due to the fact that the designated verifier can always create
a signature intended for himself that is indistinguishable from an original sig-
nature. In the same paper, Jakobsson, Sako and Impagliazzo also introduced a
stronger version of designated verifier signatures called strong designated verifier
signatures (SDVS). In this concept, no third party can even verify the designated
verifier signature as the designated verifier’s secret key is required during the ver-
ification phase. Saeednia, Kremer and Markowitch firstly formalized the notion
of strong DVS [15] and proposed an efficient scheme in the same paper. Some
other recent papers discussing both DVS and SDVS include [5,6,8,9,10].

Universal designated verifier signature, which was introduced by Steinfeld,
Bull, Wang and Pieprzyk [16] in Asiacrypt 2003, is a variant of DVS, in the
sense that, given a standard signature from the signer, a signature holder (not
necessarily the signer) can convert it to a UDVS which is designated to a veri-
fier, such that only this designated verifier can believe that the message has been
signed by the signer. However, any other third party cannot believe it since this
verifier can use his secret key to create a valid UDVS which is designated to
himself. Thus, one cannot distinguish whether a UDVS is created by the signa-
ture holder or the designated verifier himself. When the signature holder and the
signer are the same user, a universal designated signature will form a designated
verifier signature. Therefore, UDVS can be viewed as an application of general
designated verifier signatures where the signer designates a non-interactive proof
statement to a designated verifier.

From BLS short signature[2], Steinfeld, Bull, Wang and Pieprzyk [16] pro-
posed the first UDVS scheme in Asiacrypt 2003. Steinfeld, Wang and Pieprzyk
continued to show how to obtain a UDVS scheme from the Schnorr/RSA sig-
nature scheme in PKC 2004 [17]. Zhang, Susilo, Mu and Chen [21] extended
this notion to the Identity-based setting and proposed two Identity-based UDVS
schemes. The first UDVS scheme without random oracle was proposed by Zhang,
Furukawa and Imai [20] in ACNS 2005, where a variant of BB’s [1] short signa-
ture scheme without random oracle is used as the building block. Very recently,
Vergnaud proposed two extensions of pairing-based signatures into universal
designated verifier signatures [19].

Recently, Lipmaa, Wang and Bao introduced a new security notion for DVS
schemes called non-delegatability [10]. They argued that this notion is necessary
in many applications such as hypothetical e-voting protocol provided in [10].
They also showed that Saeednia-Kremer-Markowitch’s scheme [15], Steinfeld-
Bull-Wang-Pieprzyk’s scheme [16] and Steinfeld-Wang-Pieprzyk’s [17] are dele-
gatable. In ICICS 2005, Li, Lipmaa and Pei presented an “attack” to another
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four schemes, namely Susilo-Zhang-Mu’s scheme [18], Ng-Susilo-Mu’s scheme
[11], Laguillaumie-Vergnaud’s scheme [6] and Zhang-Furukawa-Imai’s scheme
[20], and show that they are delegatable [9]. Together with the analysis in [10]
and [9], there are only two known provably secure DVS schemes without delegata-
bility: one is the scheme proposed in [4] and the other one is in [10]. Nonetheless,
there is no provably secure UDVS without delegatability. Therefore, whether the
delegatability is an inherent problem of UDVS is an open research problem.

Our Contribution
In this paper, we firstly show that the two UDVS schemes which are very re-
cently proposed by Vergnaud in ICALP 2006 [19] are delegatable. Then we refine
the definitions of the UDVS and introduce the notion of the strong universal
designated verifier signature (SUDVS). We proceed by proposing the first con-
struction of non-delegatable UDVS scheme with formal security analysis in the
random oracle model.

Organization of The Paper
In the next section, we will review some preliminaries required throughout the
paper. In Section 3, we review the definition of the delegatability by analyzing
two UDVS schemes which are very recently proposed in ICALP 2006. We provide
the security models of UDVS in Section 4. In Section 5, we propose the first
construction of UDVS without delegatabiity together with its security analysis.
Finally, Section 6 concludes this paper.

2 Preliminaries

In this section, we will review some fundamental backgrounds used through-
out this paper, namely bilinear pairing, complexity assumptions and the formal
models of the universal designated verifier signature.

2.1 Bilinear Pairing

Let G1 and GT be two groups of prime order p and let g be a generator of G1.
The map e : G1 × G1 → GT is said to be an admissible bilinear pairing if the
following three conditions hold true:

– e is bilinear, i.e. e(ga, gb) = e(g, g)ab for all a, b ∈ ZZp.
– e is non-degenerate, i.e. e(g, g) �= 1GT .
– e is efficiently computable.

We say that (G1, GT ) are bilinear groups if there exists the bilinear pairing
e : G1 × G1 → GT as above, and e, and the group action in G1 and GT can be
computed efficiently. See [2] for more details on the construction of such pairings.

2.2 Complexity Assumptions

Definition 1. Computational Diffie Hellman(CDH) Problem in G1
Given g, ga, gb ∈ G1 for some unknown a, b ∈ ZZp, compute gab ∈ G1.
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The probability that a polynomially bounded algorithm A can solve the CDH
problem is defined as:

SuccCDH
A,G1

= Pr[gab ← A(G1, g, ga, gb)].

Definition 2. Computational Diffie-Hellman(CDH) Assumption in G1
Given g, ga, gb ∈ G1 for some unknown a, b ∈ ZZp, SuccCDH

A,G1
is negligible.

2.3 Formal Model of Universal Designated Verifier Signature

There are three parties in the universal designated verifier signature: the Signer
S, the Signature Holder SH and the Verifier V where

1. S is the one who uses his/her secret key to generate a standard signature
σSS on the message m.

2. SH is the one who owns S’s standard signature σSS on the message m and
will generate a universal designated verifier signature σDV to convince V that
S has signed the message m and he owns σSS.

3. V is the designated verifier of the signature σDV and is convinced that S has
signed the message m. However, V cannot convince anyone else that S has
signed the message m, even V sharing his secret key with the one who wants
to be convinced.

The universal designated verifier signature scheme UDVS consists of the fol-
lowing algorithms: (CPG, KG, SS, SV,DS, DS, DV)

1. Common Parameter Generation CPG: a probabilistic algorithm, on input
a security parameter k, outputs a string cp ← CPG(k) which denotes the
common scheme parameters.

2. Key Generation KG: a probabilistic algorithm, on input a common parameter
cp, outputs a secret/public key-pair (sk, pk) ← KG(cp) for the signer S and
verifier V , respectively.

3. Standard Signing SS: a probabilistic (deterministic) algorithm, on input the
common parameter cp, S’s secret key sks and the message m, outputs S’s
standard signature σSS ← SS(cp, sks, m).

4. Standard Verification SV: a deterministic algorithm, on input the common
parameter cp, S’s public key pks, the signed message m and S’s standard sig-
nature σSS, outputs verification decision d ∈ {Acc, Rej} where {Acc, Rej} ←
SV(cp, pks, m, σSS).

5. Designation by Signature Holder DS: a probabilistic (deterministic) algo-
rithm, on input the common parameters cp, S’s public key pks, V ’s public
key pkv, S’s standard signature σSS of the message m, outputs the designated
verifier (DV) signature σDV ← DS(cp, pks, pkv, σSS, m).

6. Simulation by Verifier DS: a probabilistic (deterministic) algorithm, on input
the common parameter cp, S’s public key pks, V ’s secret key skv and the mes-
sage m, outputs the designated verifier(DV) signature σDV ← DS(cp, pks, skv,
m) which is designated to himself.
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7. Designation Verification DV: a deterministic algorithm, on input the common
parameter cp, S’s public key pks, V ’s secret/public key pair (skv, pkv), the
signed message m and the DV signature σDV, outputs the verification decision
d ∈ {Acc, Rej} where {Acc, Rej} ← DV(cp, pks, skv, pkv, m, σDV).

Consistency:
In addition to the above algorithms, we also require three obvious consistency
of the UDVS schemes.

1. SV Consistency: this property requires that the standard signature produced
by the SS algorithm is accepted as a valid signature by the SV algorithm,
i.e. Pr[SV(cp, pks, m, SS(cp, sks, m)) = Acc] = 1

2. DV Consistency of DS: this property requires that the DV signature produced
by the DS algorithm is accepted as a valid signature by the DV algorithm,
i.e.

Pr[DV(cp, pks, skv, pkv, m, DS(cp, pks, pkv, σSS, m)) = Acc] = 1.

3. DV Consistency of DS: this property requires that the DV signature produced
by the DS algorithm is accepted as a valid signature by the DV algorithm,
i.e.

Pr[DV(cp, pks, skv, pkv, m, DS(cp, pks, skv, m)) = Acc] = 1.

3 Delegatability of Universal Designated Verifier
Signature Schemes

Let (sks, pks), (skv, pkv) denote the secret/public key pairs of the signer and the
designated verifier, respectively. Delegatability of a UDVS [10] refers the case
where the signer delegates the UDVS signing rights to A by disclosing some side
information ysv = fs(sks, pkv) that will help A to generate valid signatures.
Analogously, the designated verifier might delegate this signing rights by sim-
ulating capability by disclosing some side information ysv′ = fv(skv, pks). The
implication of the delegatability of UDVS schemes will confuse the designated
verifier, when he/she sees a valid universal designated verifier signature that is
not generated by himself/herself, then he/she can only conclude that the sig-
nature is generated by someone who knows either ysv or ysv′ . To explain the
delegatability more clearly, we analyze the following two UDVS schemes which
are recently proposed by Vergnaud [19] in ICALP 2006. For the delegatability
of other UDVS schemes [11,16,17,20], please refer to [9,10].

3.1 Vergnaud’s UDVS-BB [19]

In [19], the author proposed two UDVS schemes which are designed for the de-
vices with constrained computation capabilities since the SS and DS algorithms
are pairing-free. The first UDVS scheme in [19] combines the BB short signature
scheme without random oracle [1] to obtain a UDVS scheme without random or-
acle. The UDVS-BB [19] consists of the following algorithms. (We rewrite their
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scheme with different notations in order to keep the consistence of the whole
paper)

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, k be the system
security number and g be the generator of G1. e denotes the bilinear pairing
G1 × G1 → GT . The message space DM = ZZ∗

p. The system parameter
cp = {G1, GT , p, k, e, g, DM} which is shared by all the users in the system.

KG: The Signer S picks two secret numbers ua, va ∈R ZZ∗
p and sets the secret key

sks = (ua, va). Then S computes the public key pks = (Ua, Va) = (gua , gva).
Similarly, the verifier V ’s secret/public key-pair is skv = (ub, vb), pkv =
(Ub, Vb) = (gub , gvb) where ub, vb are randomly chosen in ZZ∗

q .
SS: For a message m ∈ DM to be signed, S chooses r ∈ ZZ∗

p and computes the
standard signature σSS = (σSS1 , σSS2) = (r, g

1
ua+m+var ).

SV: Given a message m, the standard signature σSS = (σSS1 , σSS2) and S’s
public key pks, one can check whether e(σSS2 , Ua · gm · V

σSS1
a ) ?= e(g, g). If

the equality holds, outputs Acc, otherwise, Rej.
DS: Given the standard signature signature σSS = (σSS1 , σSS2) = (r, g

1
ua+m+var )

and the verifier’s public key pkv, the signature holder SH selects t ∈R ZZ∗
p and

computes Q1 = g
t

ua+m+var , Q2 = (Ub)t and Q3 = gt. The signature holder
sends the universal designated verifier signature σDV = (r, Q1, Q2, Q3) to
the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V chooses
t, r ∈R ZZ∗

p and computes R = (Ua·gm·Va
r)t. The universal designated verifier

signature generated by the verifier is σDV = (r, Q1, Q2, Q3) where Q1 = gt,
Q2 = Rub and Q3 = R.

DV: Given the designated verifier signature (r, Q1, Q2, Q3), the verifier checks
whether e(Q1, Ua · gm · Va

r) ?= e(Q3, g) and e(Q3, g
ub) ?= e(Q2, g). If both

equalities hold, output Acc, otherwise, Rej.

Delegatability:
We will show that the knowledge of ysv := (gubua , gubva) is sufficient to generate
a valid signature of Vergnaud’s UDVS-BB scheme. Given a message m and ysv,
anyone can choose t, r ∈R ZZ∗

q and compute R = (Ua ·gm ·V r
a )t. Then he computes

Q1 = gt, Q2 = (gubua · Um
b · (gubva)r)t and Q3 = R. Note that (r, Q1, Q2, Q3) is

a valid signature of Vergnaud’s UDVS-BB since

e(Q1, Ua · gm · Va
r) = e(gt, Ua · gm · Va

r)
= e(gt(ua+m+rva), g) = e((Ua · gm · V r

a )t, g)
= e(R, g) = e(Q3, g).

and

e(Q3, g
ub) = e(R, gub) = e(Rub , g)

= e((Ua · gm · V r
a )tub , g)

= e((guaub · Um
b · (gubva)r)t, g) = e(Q2, g).
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Note that both the signer and the verifier can compute ysv. The signer can
use his secret key ua, va to compute ysv = ((Ub)ua , Uva

b ) where Ub is a part of
the verifier’s public key pkv = (Ub, Vb). Similarly, the verifier also can use his
secret key (ub, vb) to compute ysv = (Uub

a , V ub
a ) where (Ua, Va) is the public key

of the signer. Therefore, a valid message signature pair (m, σDV) of UDVS-BB
can not convince the verifier that S has signed this message.

3.2 Vergnaud’s UDVS-BLS [19]

The seconde UDVS scheme UDVS-BLS in [19] combines the BLS short signature
[2] to obtain a UDVS with shorter signature length compared with UDVS-BB.
It consists of the following algorithms. (We rewrite their scheme with different
notations in order to keep the consistence of the whole paper)

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, k be the
system security number and g be the generator of G1. e denotes the bilinear
pairing G1 × G1 → GT . Let h : {0, 1}∗ → G∗

1 be a secure cryptographic
hash function. The message space DM = {0, 1}∗. The system parameter
cp = {G1, GT , p, k, e, h, DM} which is shared by all the users in the system.

KG: The Signer S picks a secret value xs ∈R ZZ∗
p and sets the secret key sks =

xs. Then, S computes the public key pks = gxs . Similarly, the verifier V ’s
secret/public key-pair is (skv, pkv) = (xv, gxv) where xv is randomly chosen
in ZZ∗

p.
SS: For a message m to be signed, S computes the standard signature σSS =

h(m)sks ∈ G1.
SV: Given a message m, the standard signature σSS and S’s public key pks,

one can check the equation e(σSS, g) ?= e(h(m), pks). If the equality holds,
outputs Acc, otherwise, Rej.

DS: Given the standard signature signature σSS and the verifier’s public key
pkv, the signature holder SH selects t ∈R ZZ∗

p and computes Q1 = σt
SS

and Q2 = pkt−1

v . Then SH sends the universal designated verifier signature
σDV = (Q1, Q2) to the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V chooses
t ∈R ZZ∗

p and computes Q1 = h(m)t−1
and Q2 = (pkskv

s )t The universal
designated verifier signature generated by the verifier is σDV = (Q1, Q2).

DV: Given the designated verifier signature (Q1, Q2), the verifier checks whether
e(Q1, Q2)

?= e(h(m), pkskv
s ). If the equality holds, outputs Acc, otherwise,

Rej.

Delegatability:
We will show that the knowledge of ysv := gsksskv is sufficient to generate a
valid signature of Vergnaud’s UDVS-BLS. Given a message m and ysv, anyone
can choose t ∈R ZZ∗

p and compute Q1 = h(m)t, Q2 = yt−1

sv . Note that (Q1, Q2) is
a valid signature of Vergnaud’s UDVS-BLS since e(Q1, Q2) = e(h(m)t, yt−1

sv ) =
e(h(m), gsksskv ) = e(h(m), pkskv

s ).
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Note that both the signer and the verifier can compute ysv. The signer can use
his secret key sks to compute ysv = pksks

v . Similarly, the verifier also can use his
secret key skv to compute ysv = pkskv

s . Therefore, a valid message signature pair
(m, σDV) of UDVS-BLS can not convince the verifier that the signature holder
holds the signer S’s signature on this message.

4 Security Models of Universal Designated Verifier
Signature

In this section, we will define the security models of our UDVS scheme. Compared
with the known security models of UDVS defined in [16,17,20], an important
refinement of our model is that we allow the adversaries to adaptively corrupt the
users in the system and adaptively choose the target signer and the designated
verifier. In the defined models, we allow adversaries to adaptively submit Key
Register (KR) queries to register the users in the system and obtain all the
public keys he has registered. He can also submit the SS queries to obtain the
standard signature of the message under the signer he chooses. In addition,
the adversary can choose the message m, the signer S and the verifier V and
submit (m, S, V ) as DS or DS query to obtain the designated verifier signature.
If necessary, the adversary can also submit DV queries to decide whether σDV is
a valid designated verifier signature under the signer S and the verifier V 1. We
also allow the adversary to submit SecretKey (SK) queries adaptively to obtain
the secret keys of some users, thus the adversaries can corrupt some users and
adaptively choose the target signer and designated verifier, which reflects more
essence of real world adversaries.

Unforgeability
Actually, there are two types of unforgeability properties that can be used [16].
The first property, standard signature unforgeability (SS-Unforgeability), is just
the usual existential unforgeability notion under chosen message attacker [7]
for the standard signature scheme SS, which states that no one should be able
to forge a standard signature of the signer S. The second property, designated
verifier signature unforgeability (DV-Unforgeability), requires that it is difficult
for an attacker to forge a DV signature σ∗

DV on a new message m∗, such that the
pair (M∗, σ∗

DV ) passes the DV algorithm with respect to a signer’s public key pk∗
s

and a designated verifier’s public key pk∗
v , which states that for any message,

an adversary without the standard signature should not be able to convince
a designated verifier of holding such a standard signature. DV-Unforgeability
always implies the SS-Unforgeability [16]. Thus, it is enough to consider only
DV-Unforgeability. The existential unforgeability of UDVS is defined via the
following game between the simulator S and the adaptively chosen message and
chosen public key adversary FCMA, CPKA

EUF, UDV S :

1 Such queries are only needed when the execution of DV algorithm needs the secret
key of the verifier. Otherwise, F can use the public keys of signer S and the verifier
V to verify whether a σDV is valid.
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– Setup: The simulator S runs the CPG to generate the common parameter
cp. He then returns cp to F .

– Key Register (KR) queries: F can register for the users in the system. In
response. S runs the KG algorithm to generate the secret/public key pair for
this user. S returns the public key to F .

– SS queries: F can ask the standard signature of the message m under the
public key pks he chooses. In response, S runs the SS algorithm to generate
the signature σSS and returns to F as the answer.

– DS queries: F can ask the universal designated verifier signature σDV which
is generated by the algorithm DS on the message m under the public keys
(pks, pkv), where pks denotes the signer and pkv denotes the verifier chosen
by F . In response, S firstly runs SS to generate the standard signature σSS on
this message. Then S runs DS algorithm to generate the universal designated
verifier signature σDV. S returns σDV to F as the answer.

– DS queries: F can ask the designated verifier signature σDV which is gen-
erated by the algorithm DS on the message m and under the public keys
(pks, pkv), where pks denotes the signer and pkv denotes the verifier chosen
by F . In response, S runs DS algorithm to obtain the designated verifier
signature σDV. S then returns σDV to F as the answer.

– DV queries: F can ask whether σDV is a valid universal designated verifier
signature on the message m under the public keys (pks, pkv), where pks

denotes the signer and pkv denotes the verifier chosen by F . In response, S
will run DV algorithm and return the decision d ∈ {Acc, Rej} to F .

– SK queries: F can request the secret key of the public key pk. In response,
S returns corresponding secret key sk to F .

We say F wins the game if F outputs a forged messgae/signature pair(m∗, σ∗
DV)

under the public keys (pk∗
s , pk∗

v) if:

1. Acc ← DV(cp, pk∗
s , sk∗

v , pk∗
v, m∗, σ∗

DV).
2. (m∗, pk∗

s) has never been submitted as one of the SS queries.
3. (m∗, pk∗

s , pk∗
v) has never been submitted as one of the DS or DS queries.

4. Neither pk∗
s nor pk∗

v has been submitted as one of the SK queries.

The success probability of an adaptively chosen message and chosen public key
attacker F wins the above game is defined as Succ FCMA, CPKA

EUF, UDV S .

Definition 3. We say FCMA, CPKA
EUF, UDV S can (t, qH , qKR, qSS, qDS, qDS, qDV, qSK, ε)-

break the UDVS scheme if FCMA, CPKA
EUF, DV S runs in time at most t, makes at

most qH queries to the random oracle, qKR key registration queries, qSS SS
queries, qDS DS queries, qDS DS queries, qDV DV queries, qSK SK queries and
Succ FCMA, CPKA

EUF, UDV S is at least ε.

Non-delegatability
A universal designated verifier signature can be regarded as a kind of non-
interactive system of proofs of knowledge of the signer S’s standard signature
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σSS or the verifier’s secret key skv. Thus, both the signature holder and the
designated verifier can generate this proof. However, as pointed out by Lipmaa,
Wang and Bao in [10], the definition of the unforgeability does not cover the case
when the signer (the verifier) is dishonest. Namely, without disclosing sks(skv),
the signer(verifier) can delegate the signing rights to some party A by disclosing
some “side information” which helps the latter to produce valid universal des-
ignated verifier signatures on any message, as we have shown in Section 3. One
can see a lot of concrete instances in [9,10].

Definition 4. Let (sks, pks), (skv, pkv) be the secret/public key-pair of signer
S and verifier V . Let A be an algorithm, who does not necessarily know the
signer’s SS signature σSS of the message m or the secret key skv, can produce
a valid UDVS on the message m with non-negligible probability ε, we say that
a UDVS scheme is (τ, κ) non-delegatable if in time τ , there exists a knowledge
extractor K who can use A to obtain σSS or skv with probability greater than κ.

Non-transferability
Roughly speaking, the Non-Transferability of UDVS requires that: (1) Only the
designated verifier can be convinced by the UDVS, even if he shares all the secret
information with entities that want get convinced. (2) Even an entity can see
many universal designated verifier signatures σDV’s on the same message m but
with different designated verifiers, which is generated by the signature holder us-
ing the same standard signature σSS, he can not be convinced that the signer has
signed on this message. In other words, universal designated verifier signatures
of the message m with different designated verifiers must be independent. We
define the existential Non-Transferability of the UDVS against adaptively chosen
message and chosen public key distinguisher DCMA, CPKA

TRANS, UDV S via the game with
the simulator S. The model is divided into two phases.

– Phase 1: D can submit KR, SS, DS, DS, DV and SK queries as defined in
the model of Unforgeability, the simulator S responses to these queries as
same as defined in the Unforgeability model.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits m∗, pk∗

s , pk∗
v to S as the challenge with the constraints that

1. pk∗
s can not be submitted as one of the SK queries during Phase 1.

2. (m∗, pk∗
s) can not be submitted as one of the SS queries during Phase 1.

3. (m∗, pk∗
s , pk∗

v) has never been submitted as one of the DS during Phase 1.
As response, the simulator S chooses a random bit b ∈ {0, 1}. If b = 0, S runs
DS algorithm and returns σDV to D. Otherwise b = 1, S runs DS algorithm
and returns σDV to D.

– Phase 2: On receiving the challenging signature, the distinguisher can submit
more queries except that:
1. pk∗

s can not be submitted as one of the SK queries during Phase 1.
2. (m∗, pk∗

s) can not be submitted as one of the SS queries during Phase 1.
3. (m∗, pk∗

s , pk∗
v) has never been submitted as one of the DS during Phase 1.
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– Guessing: Finally, the distinguisher D outputs a guess b′. The adversary wins
the game if b = b′.

The advantage of an adaptively chosen message and chosen public key distin-
guisher D has in the above game is defined as Adv DCMA, CPKA

TRANS, UDV S = | Pr[b′ =
b] − 1/2|.

Definition 5. We say a UDVS scheme is Non-Transferable against a (t, qH ,
qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and chosen public key dis-
tinguisher DCMA, CPKA

TRANS, UDV S if Adv DCMA, CPKA
TRANS, UDV S is negligible after making at

most qH queries to the random oracle, qKR key registration queries, qSS SS
queries, qDS DS queries, qDS DS queries, qDV DV queries and qSK SK queries in
time t.

4.1 Strong Universal Designated Verifier Signature: Privacy of
Signer

Given a UDVS scheme satisfies the security requirements defined above, one
can not decide who generates the universal designated verifier signature. Both
the signature holder SH and the designated verifier V can generate valid uni-
versal designated verifier signatures. However, in order to protect the privacy
of the signer S in some cases as described in [4], the algorithm DV cannot be
executed publicly. Therefore, an additional strong notion: Privacy of Signer
is introduced into the universal designated verifier signature.

Informally speaking, this property requires that given a message m and a V
designated UDVS σDV, without the secret keys of the designated verifier V and
the possible two original signers S0, S1, one can not decide which original signer
S0 or S1 generates the standard signature σSS. It is defined using the following
games between the distinguisher DCMA,CPKA

Privacy,SUDV S and the simulator S:

– Phase 1: D can submit KR, SS, DS, DS, DV and SK queries as defined in the
model of Unforgeability, the simulator S responds to these queries in the
same way as defined in the model of Unforgeability.

– Challenge: When the distinguisher D decides the first phase is over, he sub-
mits (m∗, pk∗

s0
, pk∗

s1
, pk∗

v) to S as the challenge with the constraints that
1. Neither pk∗

s0
, pk∗

s1
nor pk∗

v has been submitted as one of the SK queries
during Phase 1.

2. Neither (m∗, pk∗
s0

) nor (m∗, pk∗
s1

) has been submitted as one of the SS
queries during Phase 1.

3. Neither (m∗, pk∗
s0

, pk∗
v) nor (m∗, pk∗

s1
, pk∗

v) has been submitted as one of
DS and DS queries during Phase 1.

In response, the simulator S chooses a random bit b ∈ {0, 1}. If b = 0, S
firstly runs SS(m, sk∗

s0
) to obtain S0’s standard signature σSS0 on message

m∗, then he runs DS algorithm and sets σ∗
DV = σDV0 . Otherwise b = 1, S runs

SS(m, sk∗
s1

) to obtain S1’s standard signature σSS1 on message m∗, then he
runs DS algorithm and sets σ∗

DV = σDV1 .
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– Phase 2: On receiving the challenging signature σ∗
DV, the distinguisher can

submit more queries except that:
1. pk∗

s0
, pk∗

s1
and pk∗

v can not be submitted as one of the SK queries during
Phase 2.

2. (m∗, pk∗
s0

) and (m∗, pk∗
s1

) can not be submitted as one of the SS queries
during Phase 2.

3. (m∗, pk∗
s0

, pk∗
v) and (m∗, pk∗

s1
, pk∗

v) can not be submitted as one of the
DS or DS queries during Phase 2.

4. (m∗, σ∗
DV, pk∗

s0
, pk∗

v) and (m∗, σ∗
DV, pk∗

s1
, pk∗

v) can not be submitted as one
of the DV queries during Phase 2.

– Guessing: Finally, the distinguisher D outputs a guess b′. The adversary wins
the game if b = b′.

The advantage of an adaptively chosen message and chosen public key distin-
guisher D has in the above game is defined as Adv DCMA, CPKA

Privacy, UDV S = | Pr[b′ =
b] − 1/2|.

Definition 6. We say a UDVS scheme satisfies the property: privacy of signer
against a (t, qH , qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and cho-
sen public key distinguisher DCMA, CPKA

Privacy, UDV S if Adv DCMA, CPKA
Privacy, UDV S is negligible

after making at most qH queries to the random oracle, qKR key registration
queries, qSS SS queries, qDS DS queries, qDS DS queries, qDV DV queries and
qSK SK queries in time t.

As we call DVS with Privacy of Signer as Strong DVS (SDVS), we call that
UDVS with this property as Strong UDVS (SUDVS).

5 Proposed Scheme

In this section, we will firstly describe our universal designated verifier signature
scheme without delegatability. Then we provide the formal security analysis of
our scheme in the random oracle model. Our scheme consists of the following
algorithms:

CPG: Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, for some prime
number p ≥ 2k, k be the system security number and g be the generator of
G1. e denotes the bilinear pairing G1 ×G1 → GT . Let h0 : {0, 1}∗ → G∗

1, h1 :
{0, 1}∗ → ZZp be two secure cryptographic hash functions.

KG: The Signer S picks a secret value xs ∈R ZZ∗
p and sets the secret key sks :=

xs. Then S computes the public key pks = gxs . Similarly, the verifier V ’s
secret/public key-pair is (skv, pkv) = (xv, gxv) where xv is randomly chosen
in ZZ∗

p.
SS: For a message m to be signed, S computes the standard signature σSS =

h0(m)sks .
SV: Given a message m, the standard signature σSS and S’s public key pks,

one can check the equation e(σSS, g) ?= e(h0(m), pks). If the equality holds,
output Acc, otherwise, Rej.
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DS: Given the standard signature σSS and the verifier’s public key pkv, the
signature holder SH selects r, cv, dv ∈R ZZp and computes
1. zs = e(g, g)r, zv = gdvpkv

cv

2. c = h1(m, pks, pkv, zs, zv)
3. cs = c − cv (mod p), ds = gr

(σSS)cs

Then, SH sends the universal designated verifier signature σDV =
(cs, cv, ds, dv) to the verifier V .

DS: Given the signer’s public key pks and the message m, the verifier V selects
r, cs ∈R ZZp, ds ∈ G1 and computes
1. zs = e(ds, g)e(h0(m), pks)cs , zv = gr

2. c = h1(m, pks, pkv, zs, zv)
3. cv = c − cs (mod p), dv = r − cvskv (mod p)

The universal designated verifier generated by the verifier is σDV =
(cs, cv, ds, dv).

DV: Given the designated verifier signature (cs, cv, ds, dv), anyone can check
whether

cs + cv
?= h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv

cv ) (mod p)

If the equality holds, output Acc, otherwise, Rej.

Consistency:

– SV Consistency: If σSS is generated by the algorithm SS, then σSS =h0(m)sks .
Therefore e(σSS, g) = e(h0(m)sks , g) = e(h0(m), pks). That is: Pr[SV(cp, pks,
m, SS(cp, sks, m)) = Acc] = 1

– DV Consistency of DS: If σDS is generated by the algorithm DS, then σDV =
(cs, cv, ds, dv) where cv, dv ∈R ZZp and

cs =h1(m, pks, pkv, e(g, g)r, gdvpkv
cv)−cv (mod p), r∈ZZp and ds =

gr

(σSS)cs
.

Therefore,

h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv
cv)

= h1(m, pks, pkv, e(g, g)r, gdvpkv
cv) = cs + cv (mod p)

That is: Pr[DV(cp, pks, pkv, m, DS(cp, pks, pkv, σSS, m)) = Acc] = 1.
– DV Consistency of DS: If σDS is generated by the algorithm DS, then σDV =

(cs, cv, ds, dv) where cs ∈R ZZp, ds ∈R G1 and

cv = h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr) − cs (mod p), r ∈ ZZp

and dv = r − cvskv (mod p). Therefore,

h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gdvpkv
cv )

= h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr) = cs + cv (mod p)

That is: Pr[DV(cp, pks, pkv, m, DS(cp, pks, skv, m)) = Acc] = 1



492 X. Huang et al.

5.1 Security Analysis

Theorem 1. If there exists an algorithm FCMA, CPKA
EUF, DV S can (t, qh0 , qh1 , qKR, qSS,

qDS, qDS, qDV, qSK, ε)-break our UDVS scheme, then there exists a simulator S who
can solve a random instance of the Computational Diffie Hellman problem on
G1 with probability SuccCDH

S,G1
≥ 1

9
1

(qSS+qSK)2 , after running F by 12
ε + 56qh1

ε times
with assumption ε ≥ 56qh1

1
2k (qDS + qDS)(qh1 + qDS + qDS) + 1, where k is the

system security number.

Proof: See Appendix.

Theorem 2. Let (pks, sks) ← KG(k), (pkv, skv) ← KG(k). If A is an algo-
rithm, who can produce a valid UDVS on the message m with probability ε in
time t, then our scheme UDVS scheme is (τ, κ) non-delegatable in the random
oracle where κ ≥ 1

9 , τ ≤ 16tqh1
ε if h1 is regarded as the random oracle, A asks

at most qh1 queries to the random oracle and ε ≥ 7qh1
2k , where k is the system

security number.

Proof: See Appendix.

Theorem 3. The proposed UDVS scheme is non-transferable against a (t, qh0 ,
qh1 , qKR, qSS, qDS, qDS, qDV, qSK) adaptively chosen message and chosen public key
distinguisher DCMA, CPKA

TRANS, UDV S.

Proof: See Appendix.

6 Conclusion

Non-delegatability is a property recently introduced by Lipmaa, Wang and Bao
as an essential property of (universal) designated verifier signature. In this paper,
we propose the first universal designated verifier signature scheme without dele-
gatability. Additionally, we refine the security models of the universal designated
verifier signature and introduce the notion of the strong universal designated ver-
ifier signature. However, as there is no secure non-delegatable strong designated
verifier signature, the scheme proposed in this paper is not a strong universal des-
ignated verifier signature. How to construct a non-delegatable strong (universal)
designated verifier signature remains as an open research problem.
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Appendix

Proof of Theorem 1: Suppose there exists a forger F who can (t, qKR, qh0 , qh1 , qSS,
qDS, qDS, qDV, qSK, ε) break our UDVS scheme. We will show there exists a simu-
lator S who can use F to solve the Computational Diffie Hellman problem. In
the proof, we assume that when F requests the signature of the signer pk or asks
the secret key corresponding to the public key pk, F has obtained the public
key pk from KR queries. We will regard hash functions h0, h1 as the random
oracles.

Let (G1, GT ) be a bilinear groups where |G1| = |GT | = p, for some prime
number p ≥ 2k, k be the system security number, g be the generator of G1 and e
denote the bilinear pairing G1 × G1 → GT . Let (g, ga, gb) be a random instance
of the computational diffie hellman problem on G1.

– Setup: S returns cp = (G1, GT , g, p, e) to the forger F .
– KR queries: At any time, F can register for the ith user. In response, S will

maintain a pk-list which stores his responses to such queries. For a new
query, S chooses a number ei ∈ {0, 1} such that Pr[ei = 1] = 1

qSS+qSK
. If

ei = 0, S sets ski = fi ∈R ZZ∗
p, pki = gski . Otherwise, ei = 1 and S sets

pki = (ga)fi , where fi ∈R ZZ∗
p. For either case, S adds (pki, ei, fi) into the

pk-list and returns pki to F as the answer.
– h0 queries: F can issue h0 queries for the message mi. In response, S will

maintain an h0-list which stores his responses to such queries. For a new
query, S chooses a number xi ∈ {0, 1} such that Pr[xi = 1] = 1

qSS+qSK
.

Firstly, S chooses yi ∈R ZZ∗
p. If xi = 0, sets h0(mi) = wi = gyi . Otherwise,

 http://www.math.unicaen.fr/~vergnaud/publications.php
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S sets h0(mi) = wi = (gb)yi . S then adds (mi, xi, yi, wi) to the h0-list and
returns wi to F .

– h1 queries: F can issue h1 queries with the query Qi = (mi, pks, pkv, zs, zv).
In response, S will maintain an h1-list which stores his responses to such
queries. For a new query Qi, S chooses ui ∈ ZZp and adds (Qi, ui) to h1-list.
Then S returns ui to F as the answer.

– SS queries: On a standard sign query (mi, pkj), S firstly checks h0-list to
obtain wi = h0(mi). If mi has not been submitted by F as one of the h0
queries, S generates the value of h0(mi) as he responds to h0 queries and
adds (mi, xi, yi, wi) into the h0-list. By assumption, (pkj , ej, fj) has been
in the pk-list. (1) If ej = 1, xi = 1, S reports failure and aborts. (2) Else
ej = 1, xi = 0, S can compute the standard signature σSS = (pkj)yi . (3) Else
ej = 0, S can compute the standard signature σSS = (wi)fj .

– DS queries: F can request a designated verifier signature σDV of the message
mi under the public key (pks, pkv), where pks denotes the signer and pkv

denotes the designated verifier. S firstly tries to compute σSS of this message
m. If mi has not been submitted by F as one of the h0 queries, S generates
wi = h0(mi) as its response to h0 queries and adds (mi, xi, yi, wi) into the
h0-list. By assumption, (pks, es, fs), (pkv, ev, fv) have been in the pk-list.
If xi �= 1 or es �= 1, B can generate the signature σSS as its response to
the SS queries, then he runs DS algorithm as defined in Section 5. If xi =
1, es = 1, S chooses cs, cv, dv ∈R ZZp and ds ∈R G1 and computes zs =
e(ds, g)e(wi, pks)cs , zv = gdv(pkv)cv . Then S sets Qi = (mi, pks, pkv, zs, zv)
and adds (Qi, cs + cv) into the h1-list. If query Qi has been requested by F ,
S reports failure and aborts.

– DS queries: F can request designated verifier signature σDS of the message
mi under the public key (pks, pkv), where pks denotes the signer and pkv

denotes the designated verifier. In response, S firstly generates the value of
h0(mi) as its response to h0 queries and adds (mi, xi, yi, wi) into the h0-list.
By assumption, (pks, es, fs), (pkv, ev, fv) have been in the pk-list. If ev = 0,
then skv = fv. S can run the DS algorithm as defined in the Section 5.
Otherwise, ev = 1. In this case, pkv = (ga)fv and S does not know the secret
key skv. Similarly as its response to DS queries, S chooses cs, cv, dv ∈R ZZp

and ds ∈R G1 and computes zs = e(ds, g)e(wi, pks)cs , zv = gdv(pkv)cv . Then,
S sets Qi = (mi, pks, pkv, zs, zv) and adds (Qi, cs + cv) into the h1-list.
Similarly, if query Qi has been requested by F , S reports failure and aborts.

– DV queries: F can execute the DV algorithm by himself since DV algorithm
does not need the secret keys of the signer and the designated verifier.

– SK queries: F can request the secret key corresponding to the public key pki.
By assumption, (pki, ei, fi) has been in the the pk-list. If ei = 0, S returns
fi to F . Otherwise, if ei = 1, B reports failure and aborts.

Finally, F outputs a forged messgae/signature pair (m∗, σ∗
DV) (σ∗

DV =
(c∗s, c

∗
v, d∗s, d

∗
v)) under the public keys (pk∗

s , pk∗
v) such that:

1. Acc ← DV(cp, pk∗
s , pk∗

v , m∗, σ∗
DV).

2. (m∗, pk∗
S) has never been submitted as one of the SS queries.
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3. (m∗, pk∗
s , pk∗

v) has never been submitted as one of the DS or DS queries.
4. Neither pk∗

s nor pk∗
v has been submitted as one of the SK queries.

Therefore, if S does not abort during the simulation, F can output a valid forgery
with probability greater than ε. Now it remains to compute the probability that
S does not abort:

1. The probability S does not abort during the SS queries is greater than
(1 − ( 1

qSS+qSK
)2)qSS .

2. The probability S does not abort during the SK queries is greater than
(1 − 1

qSS+qSK
)qSK .

3. The probability that there is no collision happens during the DS or DS queries
is greater than (1 − qh1+qDS+qDS

2k )qDS+qDS .

Therefore, the probability S does not abort during the simulation is

(1 − (
1

qSS + qSK
)2)qSS(1 − 1

qSS + qSK
)qSK(1 − qh1 + qDS + qDS

2k
)qDS+qDS

≥ (1 − 1
qSS + qSK

)qSS+qSK(1 − (qDS + qDS)(qh1 + qDS + qDS)
2k

)

Since h1 is regarded as a random oracle, the probability that F succeeds and
has not submitted Q∗ = (m∗, pk∗

s , pk∗
v , z∗s , z∗v) (z∗s = e(d∗s, g)e(w∗, pk∗

s)c∗
s , z∗v =

gd∗
v(pk∗

v)c∗
v ) to the random oracle h1 is less than 1

2k . Therefore, F can output
a valid forgery (m∗, pk∗

s , pk∗
v , σ∗

DV) such that Q∗ has been submitted to the ran-
dom oracle with probability ε′ ≥ ε(1− 1

qSS+qSK
)qSS+qSK(1− (qDS+qDS)(qh1+qDS+qDS)

2k )−
1
2k ≥ ε(1 − 1

qSS+qSK
)qSS+qSK − (qDS+qDS)(qh1+qDS+qDS)+1

2k ≥ ε
7 . (with assumption

ε ≥ 56qh1

(qDS+qDS)(qh1+qDS+qDS)+1
2k ). Therefore, the probability F succeeds with

no collision happens is more than ε
7 . Now, we apply the forking lemma [13].

Let F begins with the the random tape Ω and h1 is regarded as the random
oracle Θ. If S runs F 12/ε times with the random oracle Ω and Θ, S gets a
least one pair (Ω, Θ) with success probability 1 − e−12/7 ≥ 4

5 such that Q∗ has
been requested as one of the h1 queries. Let the βth queries Qβ = Q∗ and the
response is u∗

β1. If S replays forger F with different response u∗
β2 to Qβ and

the same responses to Qi, i ≤ β, S can obtain another forged signature on the
same message with probability more than ε′

4qh1
−1/2k ≥ ε

56qh1
(with assumption

ε ≥ 56qh1

(qDS+qDS)(qh1+qDS+qDS)+1
2k ).

Due to the forking lemma, after running F 12
ε + 56qh1

ε times, S can ob-
tain two valid universal designated verifier signatures (m∗, c∗s1, c

∗
v1, d

∗
s1, dv1∗) and

(m∗, c∗s2, c∗v2, d
∗
s2, d

∗
v2) with probability greater than 1/9 and

e(d∗s1, g)e(w∗, pk∗
s)c∗

s1 = e(d∗s2, g)e(w∗, pk∗
s)c∗

s2 (1)
gd∗

v1(pk∗
v)c∗

v1 = gd∗
v2(pk∗

v)c∗
v2 (2)

but c∗s1 + c∗v1 �= c∗s2 + c∗v2 (mod p).
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1. If c∗s1 �= c∗s2
(mod p), with probability 1

qSS+qSK
, w∗ = (gb)y∗

. Additionally,
with probability 1

qSS+qSK
, pk∗

s = (ga)f∗
s . Therefore, with probability ( 1

qSS+qSK
)2,

the following equation holds from equation (1): d∗s1(g
ab)f∗

s y∗c∗
s1 =

d∗s2(gab)f∗
s y∗c∗

s2 . Therefore gab = (d∗s1/d∗s2)(f
∗
s y∗)−1(c∗

s2−c∗
s1)

−1

2. Otherwise, c∗v1 �= c∗v2
(mod p), then sk∗

v = (c∗v2 − c∗v1)
−1(d∗v1 − d∗v2) (due to

the equation (2)). With probability 1
qSS+qSK

, pk∗
v = (ga)f∗

v , therefore, a =

(f∗
v )−1(c∗v2 − c∗v1)

−1(d∗v1 − d∗v2) and gab = (gb)(f
∗
v )−1(c∗

v2−c∗
v1)

−1(d∗
v1−d∗

v2).

In either way, S can compute gab with probability 1
9 ( 1

qSS+qSK
)2 after running F

by 12
ε + 56qh1

ε times. 	


Proof of Theorem 2: In the extraction, K will act as the random oracle to re-
ply A’s qh1 h1 queries. Let pks = gsks , pkv = gskv be the public keys of the
signer and the verifier. For each h1 query Qi = (mi, pks, pkv, zs, zv), K chooses
a random number ui ∈ ZZ∗

p and sets h1(Qi) = ui. If A can produce a valid uni-
versal designated verifier signature with probability ε ≥ 7qh1

2k , due to the forking
lemma, K can use A to obtain two valid signatures on the same message m with
probability κ ≥ 1

9 after running A by 2
ε + 14qh1

ε times. Let (m, cs, cv, ds, dv) and
(m, c′s, c′v, d′s, d′v) be these two valid signatures, then e(ds, g)e(h0(m), pks)cs =
e(d′s, g)e(h0(m), pks)c′

s , gdvpkcv
v = gd′

vpk
c′

v
v but cs + cv �= c′s + c′v (mod q). Then

the following two equations hold:

e(h0(m), pks)cs−c′
s = e(

ds

d′s
, g), skv(cv − c′v) = d′v − dv.

If cs �= c′s, then e(h0(m), pks) = e(ds

d′
s
, g)(cs−c′

s)−1
. Therefore K can compute

σSS = (ds

d′
s
)(cs−c′

s)
−1

. Otherwise, cs = c′s, cv �= c′v. K can compute skv = (d′v −
dv)(cv − c′v)−1. Therefore, K can extract σSS or skv with probability κ ≥ 1

9 in
time τ ≤ 16tqh1

ε . 	


Proof of Theorem 3: In the proof, the simulator S runs KG algorithm to generate
all the secret/public keys. He then sends the public keys to the distinguisher D
and keep the secret keys only known to himself. Because S has the knowledge of
all secret keys, he can run SS, DS and DS to response D’s queries. Neither will he
abort during D’s SK queries. For each h0 queries, S chooses a random element in
G∗

1 as the response. Similarly, S chooses a random number in ZZp as the response
to each h1 queries. Therefore, S will not abort during the simulations.

Firstly we show that the distribution of signature σDV generated by the al-
gorithm DS is uniform in ZZp × ZZp × G1 × ZZp. Let σDV = (cs, cv, ds, dv) is the
universal designated verifier signature generated by the DS algorithm,

σDV = (cs, cv, ds, dv) :

⎧
⎨

⎩

cs = h1(m, pks, pkv, e(g, g)r, gdvpkv
cv ) − cv (mod p),

where r, cv, dv ∈R ZZp and
ds = gr

(σSS)cs , r ∈R ZZp
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Therefore, for a randomly chosen signature σ∗ = (c∗s, c
∗
v, d

∗
s , d

∗
v), the probability

Pr[σDV = σ∗] = 1
p4 .

Then we show that the distribution of signature simulated by the algorithm
DS is also uniform ZZp × ZZp × G1 × ZZp.

σDV = (cs, cv, ds, dv) :

⎧
⎨

⎩

cv = h1(m, pks, pkv, e(ds, g)e(h0(m), pks)cs , gr) − cs

(mod p), where r, cs ∈R ZZp, ds ∈R G1 and
dv = r − cvskv (mod p), r ∈R ZZp

Therefore, for a randomly chosen signature σ∗ = (c∗s, c∗v, d∗s , d∗v), the probability
Pr[σDV = σ∗] = 1

p4 .
Therefore, given a valid universal designated verifier signature, one can not

distinguish whether it is generated by DS algorithm or DS algorithm. Hence, our
proposed scheme satisfies the untransferability property.
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