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Abstract. Password authentication is an important mechanism for re-
mote login systems, where only authorized users can be authenticated
via using their passwords and/or some similar secrets. In 1999, Yang and
Shieh [14] proposed two password authentication schemes using smart
cards. Their schemes are not only very efficient, but also allow users to
change their passwords freely and the server has no need to maintain
a verification table for authenticating users. However, their schemes are
later identified to be flawed. To overcome those security flaws, Shen et
al. [9] and Yoon et al. [17] proposed further improvements and claimed
their new schemes are secure. In this paper, we first point out that Yang
et al.’s attack [15] against Shen et al.’s scheme is actually invalid, since
we can show that in a real implementation it is extremely difficult to
find two hash values such that one is divisible by the other. After that,
we show that both of Shen et al.’ scheme and Yoon et al.’s scheme are
insecure by identifying several effective impersonation attacks. Those at-
tacks enable an outsider to be successfully authenticated and then enjoy
the resources and/or services provided by the server.

Keywords: password authentication, smart card, attack, hash function.

1 Introduction

Password authentication is an important mechanism for remote login systems to
implement remote authentication through a public and insecure network, such as
Internet. In such a system, it is required that only authorized users can be authen-
ticated by the server, and then are granted to access the resources and/or services
provided by the server. Since in this environment users usually hold portable but
capability-limited devices such as smart cards with passwords, it is highly desir-
able that only simple and efficient operations, rather than complicated crypto-
graphic techniques, are exploited to implement the authentication procedure.

The first remote authentication scheme is proposed by Lamport in 1981 [6].
After that, a number of password authentication schemes [14, 5, 3, 4, 9] have
been proposed and analyzed due to the facts that those schemes are both po-
tentially important in practical applications and amazingly attractive in their
simple structures. In 1999, Yang and Shieh [14] proposed two password authen-
tication schemes using smart cards, one is timestamp-based and the other is
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nonce-based. Compared with previous schemes, their schemes are very interest-
ing since the following two features are achieved: (a) All legal users are allowed
to set and change their passwords freely; and (b) The server has no need to
maintain a verification table for authenticating users. Later, Chan and Cheng
[3], and Fan et al. [4] pointed out that the Yang-Shieh scheme is vulnerable to
impersonation attacks if the users’ identities IDs are not carefully formatted or
encoded. To thwart those attacks, Shen, Lin, and Hwang [9] improved the Yang-
Shieh scheme. However, Yang, Yang and Wang [15] recently presented a simple
attack against Shen at al.’s scheme by finding two hash values so that one is
a multiple of the other. In another direction, Yang, Wang, and Chang [16] also
enhanced the Yang-Shieh scheme. However Yoon et al. [17] showed that Yang et
al.’s schemes in [16] are also insecure and further proposed improvements.

In this paper, we present a cryptanalysis of two above mentioned timestamp-
based password authentication schemes, i.e., the SLH scheme [9] and the YKY
scheme [17]. We show that both of those two authentication schemes are vulner-
able to impersonation attacks, and that the YYW attack [15] against the SLH
scheme is invalid. In more detail, this paper has the following contributions. We
first point out that the YYW attack against the SLH scheme is actually invalid,
since we can show that in a real implementation it is extremely difficult to find
two hash values such that one is divisible by the other. Precisely speaking, we
prove that if a hash function is modelled as a random function [1], then the
probability that one hash value is divisible by another is less than (1 + k)/2k,
where k is the fixed output length of the hash function. In real applications,
however, k should be set as 128 at least. Then, on the other hand, we show that
Shen et al.’s password authentication scheme is indeed insecure by successfully
identifying two effective impersonation attacks. By exploiting our attacks, the
attacker as an outsider can impersonate a legitimate user to access the resources
and/or services provided by the server. Finally, we demonstrate that the YKY
scheme is also insecure, contrary to the authors’ claim in [17], since it suffers a
similar impersonation attack.

The rest of the paper is organized as follows. We first review the SLH scheme
in Section 2, discuss the invalidity of the YYW attack in Section 3, and present
our impersonation attacks against the SLH scheme in Section 4. Then, we turn
to review and analyze the YKY scheme in Section 5. Finally, the conclusion is
given in Section 6.

2 Review of the SLH Scheme

The SLH timestamp-based password authentication scheme [9] consists of three
phases: registration, login, and authentication. We now review each phase as
follows.

2.1 Registration Phase

It is assumed that the server has an RSA cryptosystem [8] with key material
(n, e, d), where n = pq is the product of two large primes p and q, e is a prime
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number, and d = e−1 mod (p − 1)(q − 1). Furthermore, g is a primitive element
in both GF (p) and GF (q), and f(·) is a secure hash function. Except (d, p, q)
are kept as secrets, (n, e, g, f(·)) are publicly published.

When a user Ui wants to register with the server, he/she first submits his/her
identity IDi and a chosen password PWi to the server through a secure channel.
Then, the server computes three values of (Si, hi, CIDi) as follows:

Si = IDd
i mod n, hi = gPWi·d mod n, and CIDi = f(IDi ⊕ d), (1)

where ⊕ denotes the exclusive operation, and CIDi is treated as the card iden-
tity.

Finally, the server writes (n, e, g, f, IDi, CIDi, Si, hi) into a smart card, and
then delivers this smart card to the user Ui.

2.2 Login Phase

When the user Ui wants to login into the server, he/she inserts his/her smart
card into a card reader and enters his/her identity IDi and password PWi. If
both IDi and PWi are valid, the smart card selects a random number ri, and
then computes values Xi and Yi by1

Xi = gri·PWi mod n and Yi = Si · h
ri·f(CIDi,T1)
i mod n, (2)

where the timestamp T1 denotes the current date and time when this login
occurs. Finally, the login request message M = {IDi, CIDi, Xi, Yi, n, e, g, T1} is
sent to the server.

2.3 Authentication Phase

Upon receiving M = {IDi, CIDi, Xi, Yi, n, e, g, T1}, the server checks the valid-
ity of this login request message according to the following procedures:

– CIDi ≡ f(IDi ⊕ d).
– Y e

i ≡ IDi · Xf(CIDi,T1)
i mod n.

– T2 −T1 ≤ ΔT , where T2 denotes the date and time when the server received
the request M , and ΔT is a predefined time interval to balance the reasonable
transmission delay and potential replay attack.

If any of the above verifications fails, the login request is rejected. Otherwise, the
server first calculates R = f(CIDi, T2)d mod n, and then sends back message
N = {R, T2} to the user Ui. After receiving message N , the user Ui accepts the
server’s service if and only if both of the following checks hold:

– Re ≡ f(CIDi, T2) mod n.
– T3−T2 ≤ ΔT , where T3 denotes the date and time when Ui received message

N .
1 Note that in [15], the value Xi is calculated by Xi = gri·f(CIDi,T1) mod n. However,

this formula is incorrect since it is inconsistent with the original specification of the
SLH scheme [9]. Therefore, this typo is corrected here.
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3 The YYW Attack and Its Invalidity

Under the assumption that an attacker can find two hash values such that one
is a multiple of the other, Yang et al. [15] identified the following attack on the
SLH scheme.

1. The attacker first intercepts a login request message M ={IDi, CIDi, Xi, Yi,
n, e, g, T1} over the communication channel.

2. Then, the attacker finds a value a such that a · f(CIDi, T
′
1) = f(CIDi, T1),

where T ′
1 is the attacker’s login time.

3. Finally, the attacker sends a forged login request message M ′ = {IDi, CIDi,
X ′

i, Yi, n, e, g, T ′
1} to the server, where X ′

i is computed by

X ′
i = Xa

i mod n (= gri·PWi·a mod n).

It is easy to know that this attack is correct, since both (IDi, CIDi) and
(X ′

i, Yi) are valid pairs, i.e.,

CIDi = f(CDi ⊕ d) and Y e
i = IDi · X

′f(CIDi,T
′
1)

i mod n.

However, we notice that the YYW attack is actually invalid in practice, be-
cause it is extremely difficult to find a login time T ′

1 such that f(CIDi, T
′
1) is a

factor of f(CIDi, T1). Formally, we have the following theorem.

Theorem 1. Let X and Y be two random inputs of a hash function f(·) with
k-bit output. Then, under the assumption that the outputs of hash function f(·)
can be considered as random numbers, the probability that f(Y ) is divisible by
f(X) is at most (k + 1)/2k. That is, we have

P
�
= Pr[f(X)|f(Y )] ≤ (1 + k)/2k. (3)

Proof: Let x = f(X) and y = f(Y ). Since the outputs of hash function f(·)
are assumed to be random numbers with k bits, x and y can be treated as two
random integers independently chosen from interval [0, 2k −1]. More specifically,
pair (x, y) could be any element of set S = {(a, b)|∀a, b ∈ [0, 2k − 1]} with equal
probability 2−2k.

To compute probability P , we need to count how many pairs (a, b) in set S
satisfying a|b, i.e., there exists an integer t such that b = a · t. That is, we have
to compute or estimate the cardinality of subset T = {(a, b)|(a, b) ∈ S ∧ a|b}.
Actually, we can estimate |T |, i.e., the numbers of pairs in subset T , according
to the value of a as follows:

– a = 0: there is only one pair in T , i.e., (0, 0);
– a = 1: there are 2k pairs in T , i.e., all (1, b) for any b ∈ [0, 2k − 1];
– a = 2: there are at most (1 + 2k

2 ) pairs in T ;
– a = 3: there are at most (1 + 2k

3 ) pairs in T ;
– ......;
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– a = i: there are at most (1 + 2k

i ) pairs in T ;
– ......;
– a = 2k − 1: there are at most (1 + 2k

2k−1 ) pairs in T .

Therefore, we have the following estimate for the upper bound of |T |:

|T | ≤ 1 + 2k + (1 + 2k

2 ) + (1 + 2k

3 ) + · · · + (1 + 2k

i )
+ · · · + (1 + 2k

2k−1 )
≤ 2k + 2k + 2k

2 + 2k

3 + · · · + 2k

i + · · · + 2k

2k−1
≤ 2k · [2 + (1

2 + 1
3 ) + (1

4 + · · · + 1
7 ) + · · · + ( 1

2j +
· · · + 1

2j+1−1 ) + · · · + ( 1
2k−1 + · · · + 1

2k−1 )]
≤ 2k[2 +

∑k−1
j=1 2j · 1

2j ]
≤ 2k[1 + k].

As |S| = 22k, we consequently get the following upper bound for probability
P :

P = Pr[f(X)|f(Y )] = |T |/|S| ≤ (1 + k)/2k. (4)

This is what we want to prove. �
In a real system, the output length of hash function f(·) is at least 128-bit. In this
case (|f(·)| = 128), according to Proposition 1 we know that that for any ran-
domly chosen T ′

1, the probability that f(CIDi, T1) is a multiple of f(CIDi, T
′
1)

is at most (1 + 128)/2128 < 2−120, a negligible quantity. As specified in Propo-
sition 1, this statement holds under the assumption that the outputs of hash
function f(·) can be treated as random integers with fixed length [1]. Naturally,
a real-world hash function cannot be completely treated as a random function.
However, as one of cryptographic requirements on hash functions they should
be very close to a random function. In fact, this treatment is a popular method
exploited in modern cryptography research, called random oracle model, first
introduced by Bellare and Rogaway in [1].

Note that just due to the fact that probability P = (1 + k)/2k is negligible
in security parameter k, i.e., the fixed output length of hash function f(·), an
attacker can neither run the YYW attack by polynomial times (in k) to get
an successful login with a non-negligible probability. For example, in the case
k = 128, to get a successful login by using the YYW attack the attacker have
to try about 2120 times. If one try needs one second to finish, this means the
attacker have to cost over than 295 years to succeed one impersonating login.
This is the exact reason why we say the YYW attack is invalid or infeasible in
practice. However, as shown in next section, the SLH authentication scheme is
truly weak and can be attacked by an outsider without much cost.

4 New Attacks Against the SLH Scheme

In this section, we show that the SLH authentication scheme [9] is indeed insecure
by presenting two effective attacks, though the YYW attack is invalid as we just
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discussed. The first attack can be mounted if the RSA public exponent e is a
small prime number, while the second attack works without any assumption on
the size of public RSA exponent e.

4.1 Impersonation Attack A

The SLH authentication scheme [9] just requires the RSA public exponent e
should be a prime number but did not specify the size of e. In other words,
one may implement the SLH authentication scheme by selecting a small prime
number as the value of e, for example, 3, 7, 13, 17 etc. Actually, this is likely to
happen due to two reasons: (1) Some standards, e. g. PKCS #1 [7], recommend
to use small exponent e such as 3 to speed up the RSA signature verification;
and (2) Small exponent e can reduce the computational cost of smart cards,
which are employed in the SLH scheme as the authentication devices for users.

However, if the exponent e is truly set as a small prime number, the SLH
authentication scheme is vulnerable to the following impersonation attack A.

1. The attacker first intercepts a login request message M ={IDi, CIDi, Xi, Yi,
n, e, g, T1} over the communication channel.

2. Then, the attacker checks whether f(CIDi, T1) is divisible by e or not, i.e.,
e|f(CIDi, T1). If not, intercept more login request messages. Otherwise, con-
tinue.

3. Let f(CIDi, T1) = eb for some integer b ∈ Z. Then, compute Si by

Si = Yi · X−b
i mod n. (5)

4. For any timestamp T ′
1, the attacker selects a random number r ∈ Zn, and

then compute X ′
i and Y ′

i as follows:

X ′
i = re mod n and Y ′

i = Si · rf(CIDi,T
′
1) mod n. (6)

5. Finally, the attacker can impersonate user Ui to access the server by sending
out a forged login request message M ′ = {IDi, CIDi, X

′
i, Y

′
i , n, e, g, T ′

1}.

Note that in the above attack, we have CIDi ≡ f(IDi ⊕ d) and Y ′
i

e ≡ IDi ·
X ′

i
f(CIDi,T

′
1) mod n. The latter formula is justified by the following equalities:

Y ′
i

e = [Si · rf(CIDi,T
′
1)]e mod n

= Se
i · (re)f(CIDi,T

′
1) mod n

= (Yi · X−b
i )e · X ′

i
f(CIDi,T

′
1) mod n

= (Y e
i · X−be

i ) · X ′
i
f(CIDi,T

′
1) mod n

= (Y e
i · X−f(CIDi,T1)

i ) · X ′
i
f(CIDi,T

′
1) mod n

= IDi · X ′
i
f(CIDi,T

′
1) mod n.

(7)

Therefore, our attack A is successful if the forged login request message M ′ =
{IDi, CIDi, X

′
i, Y

′
i , n, e, g, T ′

1} can be delivered to the server before T ′
1+ΔT . This
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is not a problem for the attacker, since this condition applies to all legal users
too. The only concern is the probability of e|f(CIDi, T1). Under the assumption
that the outputs of hash function f(·) are random numbers, it is easy to know
e|f(CIDi, T1) for a random timestamp T1 with probability of 1/e. This implies
that to successfully amount attack A, the attacker only needs to intercept a
dozen of valid login messages on average if e is an odd prime less than 20.
Actually, even if e = 65537 = 216 + 1 attack A remains feasible in practice if an
attacker eavesdrops thousands of valid login messages (not limited to one single
legitimate user).

However, note that if |e| ≥ 80 it seems infeasible to amount attack A since
each single run of the attacking algorithm with success probability only about
2−80, a negligible quantity. This is the reason why we have to assume that e
should be a small number in attack A. However, attack B described in the next
section does not rely on this assumption any more.

4.2 Impersonation Attack B

In this attack, to access the server by impersonating the user Ui an attacker
as outsider just needs to know user Ui’s identity IDi and smart card iden-
tity CIDi. That is, to mount our attack it is sufficient to intercept one valid
login request message M = {IDi, CIDi, Xi, Yi, n, e, g, T1}, made by user Ui.
After that, to login the server at timestamp T ′

1 the attacker checks whether
gcd(e, f(CIDi, T

′
1)) = 1, i.e., whether the integers e and f(CIDi, T1) are rela-

tively prime to each other. Note that for two randomly selected integers u and
v, gcd(u, v) = 1 happens with probability 6/π2 ≈ 0.6 [10, 11]. Since the hash
function f(·) is usually considered as a random function with k-bit outputs,
gcd(e, f(CIDi, T

′
1)) = 1 should occur with a similar probability. However, due

to the fact that the RSA public exponent e is required to be a prime number
in the SLH scheme, it is not difficult to see that for arbitrary timestamp T ′

1
gcd(e, f(CIDi, T

′
1)) = 1 holds with probability 1 − 1/e, if the outputs of hash

function f(·) are assumed to be random numbers with k bits. Therefore, to get a
value f(CIDi, T

′
1) such that gcd(e, f(CIDi, T

′
1)) = 1, the attacker only needs to

try one or two timestamps. Once such a timestamp T ′
1 is obtained, the attacker

can complete the following impersonation attack B:

1. Since gcd(e, f(CIDi, T
′
1)) = 1, the attacker can use the Extended Euclidean

algorithm to compute two integers a and b such that

a · e + b · f(CIDi, T
′
1) = 1 (in Z). (8)

2. Then, the attacker computes X ′
i and Y ′

i by

X ′
i = (IDi)−b mod n, Y ′

i = (IDi)a mod n. (9)

3. Finally, the attacker sends the forged login request message M ′={IDi, CIDi,
X ′

i, Y
′
i , n, e, g, T ′

1} to the server.
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Again, the above attack is successful since we have CIDi ≡ f(IDi ⊕ d) and
Y ′

i
e ≡ IDi · X ′

i
f(CIDi,T

′
1) mod n. The latter expression is justified as follows:

Y ′
i

e = [(IDi)a]e mod n
= IDae

i mod n

= ID1−b·f(CIDi,T
′
1) mod n

= IDi · (IDi
−b)f(CIDi,T

′
1) mod n

= IDi · X ′
i
f(CIDi,T

′
1) mod n.

(10)

Remark 1: Note that neither of the attacks from Chan and Cheng [3] and Fan
et al. [4] can apply to the SLH scheme, since in the SLH scheme user’s identity
IDi is validated by checking CIDi ≡ f(IDi ⊕ d). Therefore, without the secret
d anybody cannot forge a valid smart card identity CIDi for an identity IDi. In
addition, it is also infeasible to derive the secret d from CIDi = f(IDi ⊕ d) via
off-line attacks, since d should be a large number [2]. In the case of |n| = 1024,
this means we are supposed to select d such that |d| ≥ 300.

5 The YKY Scheme and Its Security

Since the YKY authentication scheme [17] is also an enhancement of the Yang-
Shieh scheme [14], it has a similar structure as the SLH scheme [9]. In this
section, we briefly overview the YKY scheme and analyze its security.

5.1 Review of the YKY Scheme

The three phases of the YKY scheme are recalled as follows.
1. Registration Phase: As in the SLH scheme, the server sets an RSA cryp-
tosystem with key material (n, e, d), where n = pq and ed = 1 mod (p−1)(q−1)),
and makes (n, e, g, f(·)) public, while keeping d secret. To be registered, a user Ui

securely delivers his/her identity IDi and a chosen password PWi to the server.
After that, the server issues user Ui a smart card which contains information
(n, e, g, f(·), IDi, CIDi, S

∗
i , hi), where

S∗
i = IDCIDi·d

i mod n, hi = gPWi·d mod n, and CIDi = f(IDi ⊕ d). (11)

2. Login Phase: To access the server, user Ui inserts his/her smart card into
a card reader and types the password PWi. If the password PWi is correct, the
smart card sends a login request message M = {IDi, CID∗

i , Xi, Y
∗
i , n, e, g, T1}

to the server by computing

CID∗
i = CIDe

i mod n, Xi = gri·PWi mod n, and Y ∗
i = S∗

i ·hri·T1
i mod n. (12)

Here, ri is a randomly chosen number and T1 is the current date and time.
3. Authentication Phase: Once M is received, the server accepts user Ui’s
login request if and only if all of the following verifications hold:
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– Check the validity of IDi.
– Check T2 − T1 ≤ ΔT , where T2 denotes the date and time when the server

received M , and ΔT is a appropriately predefined time interval.
– Compute CIDi = (CID∗

i )d mod n, and check that CIDi ≡ f(IDi ⊕ d).
– Check (Y ∗

i )e ≡ IDCIDi

i · XT1
i mod n.

In contrast, the values of (S∗
i , CID∗

i , Y ∗
i ) in the YKY scheme are used to

replace (Si, CIDi, Yi) in the SLH scheme. Especially, the smart card identifier
CIDi contained in M is transferred as a ciphertext CID∗

i rather than plaintext.
This reason is that by using a valid smart card identifier CIDi, Yoon et al.
[17] launched an impersonation attack against the YWC scheme [16]. So, in
their improvemed YKY scheme CIDi is not transferred in plaintext anymore.
In addition, note that the YKY scheme only enables the server to authenticate
a user, while the SLH scheme provides both directions of authentication service.

5.2 Security of the YKY Scheme

In [17], Yoon et al. claimed that the YKY scheme can resist impersonation attack,
password guessing attack, smart card loss attack, and replay attack. They argued
that their scheme is immune to impersonation attack, since an attacker without
the server’s secret d cannot derive CIDi from its RSA ciphertext CID∗

i . Without
the card identifier CIDi, however, the attacker cannot forge a pair (X ′

i, Y
′
i ) such

that (Y ′
i )e ≡ IDCIDi

i · X ′
i
T1 mod n.

We notice that to amount a personation attack in the YKY scheme, an at-
tacker does not need to get the value of CIDi at all. The attacking strategy is
analogous to Attack B against the SLH scheme. To this end, an attacker first
intercepts a valid login request message M = {IDi, CID∗

i , Xi, Y
∗
i , n, e, g, T1},

which is sent to the server by some legitimate user Ui. Due to the validity of M ,
we have (Y ∗

i )e ≡ IDCIDi

i ·XT1
i mod n. Therefore, the attacker gets the following

value A by computing

A = (Y ∗
i )e · X−T1

i mod n (= IDCIDi

i mod n). (13)

After that, the attacker computes a timestamp T ′
1 such that gcd(e, T ′

1) = 1
(This even happens with probability about 1 − 1/e, as e is a prime). So, the
attacker can use the Extended Euclidean algorithm to compute two integers a
and b such that

a · e + b · T ′
1 = 1 (in Z). (14)

Finally, the attacker sends the forged login request message M ′={IDi, CID∗
i ,

X ′
i, Y

′
i , n, e, g, T ′

1} to the server, where

X ′
i = A−b mod n and Y ′

i = Aa mod n. (15)

It is easy to know that the above attack is successful, since we have CIDi ≡
f(IDi ⊕ d) ≡ (CID∗

i )e mod n and Y ′
i

e ≡ IDCIDi

i · X ′
i
T ′
1 mod n. The latter

expression is justified by

Y ′
i

e =Aae mod n = A1−b·T ′
1 mod n = A·(A−b)T ′

1 mod n = IDCIDi

i ·X ′
i
T ′
1 mod n.
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Remark 2: Interestingly, we note that similar impersonation attack cannot
apply to Yoon et al.’s nonce-based password authentication scheme (See Section
4.2 of [17]). In this scheme, to access the server a user Ui needs to send a
request message M = (Xi, Yi, n, e, g) such that Y e

i ≡ IDCIDi

i · XN
i mod n,

where N = f(CIDi, rj) and rj is a random number selected by the server. Since
both values of CIDi and N are unavailable to an attacker, it seems really hard
to amount an impersonation attack.

6 Conclusion

Password authentication is an important mechanism for remote login systems
that enables the server to authenticate its users. In this paper, we first pointed
out that Yang et al.’s attack [15] against Shen at al.’s timestamp-based password
authentication scheme [9] is actually invalid, since we showed that in a real
implementation it is extremely difficult to find two hash values such that one is
divisible by the other. Then, we showed that Shen et al.’s authentication scheme
is really insecure by demonstrating two effective impersonation attacks. Finally,
we illustrated that Yoon et al.’s timestamp-based authentication scheme [17] is
also suffers to a similar personation attack. In our security analysis, we employed
the following two facts on hash functions: (1) If the outputs of a hash function
can be modelled as random numbers with fixed length k, the probability that one
hash value is a multiple of another is less than (1+k)/2k, a negligible quantity in
k; and (2) The probability that one hash value is relatively prime with another
hash value (or a fixed integer), however, is certainly high, about 0.6. Actually,
we notice that those two facts on hash functions are potentially useful in other
scenarios, such as analyzing the security of digital signatures [13].

In addition, we notice that our analysis presented in this paper also applies
to Wang et al.’s attack [12] against Fan et al.’s password authentication scheme
[4]. In other words, Wang et al.’s attack is also invalid since they exploited the
same attacking strategy as Yang et al. did in [15]; but Fan et al.’s scheme is
also insecure because it is vulnerable to similar attacks as we identified in this
paper. As the future work, we are considering to design password authentication
schemes using smart cards with formal security.
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