
Defining and Measuring Policy Coverage in Testing
Access Control Policies

Evan Martin, Tao Xie, and Ting Yu

Department of Computer Science
North Carolina State University

Raleigh, NC 27695
eemartin@ncsu.edu,

{xie,yu}@csc.ncsu.edu
http://ase.csc.ncsu.edu

Abstract. To facilitate managing access control in a system, security officers
increasingly write access control policies in specification languages such as
XACML, and use a dedicated software component called a Policy Decision Point
(PDP). To increase confidence on written policies, certain types of policy testing
(often in an ad hoc way) are usually conducted, which probe the PDP with some
typical requests and check PDP’s responses against expected ones. This paper de-
velops a first step toward systematic policy testing by defining and measuring pol-
icy coverage when testing policies. We have developed a coverage-measurement
tool to measure policy coverage given a set of XACML policies and a set of
requests. We have developed a tool for request generation, which randomly gen-
erates requests for a given set of policies, and a tool for request reduction, which
greedily selects a nearly minimal set of requests for achieving the same coverage
as the originally generated requests. To evaluate coverage-based request reduction
and its effect on fault detection, we have conducted an experiment with mutation
testing on a set of real policies. Our experimental results show that the coverage-
based test reduction can substantially reduce the size of generated requests and
incur only relatively low loss on fault detection. We also conduct a study on the
policy coverage achieved by manually generated requests.

1 Introduction

Access control is one of the most fundamental and widely used security mechanisms.
It controls which principals (users, processes, etc.) have access to which resources in a
system. To better manage access control, systems often explicitly specify access con-
trol policies using policy languages such as XACML [1] and Ponder [14]. Whenever a
principal requests access to a resource, that request is passed to a software component
called a Policy Decision Point (PDP). PDP evaluates the request against access control
policies, and grants or denies the request accordingly.

The specification of access control policies is often a challenging problem. It is com-
mon that a system’s security is compromised due to the misconfiguration of access con-
trol policies instead of the failure of cryptographic primitives or protocols. This problem
becomes increasingly severe as software systems become more and more complex, and
are deployed to manage a large amount of sensitive information and resources that are
organized into sophisticated structures.

P. Ning, S. Qing, and N. Li (Eds.): ICICS 2006, LNCS 4307, pp. 139–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://ase.csc.ncsu.edu

140 E. Martin, T. Xie, and T. Yu

Formal verification is an important means to ensuring the correct specification of
access control policies. Recently, several tools have been developed to verify XACML
access control policies against user-specified properties [16, 22, 42]. However, it is of-
ten beyond the capabilities of these tools to verify complex access control policies in
large-scale information systems. Furthermore, user-specified properties are often not
available [16].

Like in software development, errors in access control policies may also be discov-
ered through testing. In fact, once access control policies are specified, they are often
tested with some access requests so that security officers may manually check the PDP’s
responses against expected ones [6]. However, current policy testing practice tends to
be ad hoc. Although there exist various coverage criteria [43] for software programs,
there are no criteria or good heuristics to guide systematic generation of high-quality
policy test suites. With an ad hoc policy testing, it is questionable that high confidence
could be gained on the correctness of access control policies.

This paper presents a first step toward systematic policy testing. We propose the
concept of policy coverage to measure the quality of policy test suites, which are sets of
request-response pairs. Intuitively, the more policy rules (as well as their components
such as subjects, resources, and conditions) are involved when evaluating a test suite,
the more likely it is to discover errors in access control policies. We have developed a
coverage-measurement tool to measure the coverage of XACML policies achieved by a
set of access requests. We have also developed a request-generation tool that randomly
generates policy test suites for a given set of policies.

Although the randomly generated test suites can achieve high policy coverage, and
are effective in detecting a variety of policy specification errors, it may potentially in-
clude a huge number of requests, which makes it difficult to efficiently inspect and
verify the correctness of responses from the PDP. To mitigate this problem, we further
propose a request reduction technique to significantly reduce the size of a test suite
while maintaining its policy coverage.

Previous experiments [35] showed that test reduction based on program code cover-
age can severely compromise the fault-detection capabilities of the original test suite. To
evaluate the impact of the proposed request reduction technique on the quality of policy
testing, we conduct an experiment on a set of real policies with mutation testing [15],
which is a specific form of fault injection that consists of creating faulty versions of
a policy by making small syntactic changes. In the experiment, we compare the fault-
detection capabilities of the reduced set and original set of requests. Our experimental
results show that our coverage-based request reduction technique can substantially re-
duce the size of generated requests but incur only relatively low loss in fault detection
capabilities. We also conduct a study that measures the policy coverage of an XACML
conformance test suite as well as a conference reviewing system’s policy. Our results
show that the measurement of policy coverage can effectively identify uncovered parts
of policies. Such results can be used to guide the development of further test cases,
significantly improving the quality of policy testing.

The rest of the paper is organized as follows. Section 2 presents background informa-
tion on XACML, a widely used and standardized meta policy language for expressing
domain-specific access control requirements. Section 3 proposes the concept of policy

Defining and Measuring Policy Coverage in Testing Access Control Policies 141

testing and policy coverage based on a general access control model. In Section 4, we
instantiate the concept of policy coverage in the context of XACML. We also present
the design of a coverage measurement tool. Sections 5 and 6 describe the request-
generation tool and our request reduction technique, respectively. Section 7 presents
a set of initial mutation operators developed for policies. Section 8 presents the experi-
ment conducted to assess request reduction and its effect on fault detection capabilities.
Section 9 illustrates the study of measuring the policy coverage achieved by manually
generated requests. Section 10 discusses related work and Section 11 concludes the
paper with future directions.

2 XACML

XACML (eXtensible Access Control Markup Language) is a language specification
standard designed by OASIS. It can be used to express domain-specific access con-
trol policy languages as well as access request languages. Besides offering a large set
of built-in functions, data types, and combining logic, XACML also provides standard
extension interfaces for defining application-specific features. Since it was proposed,
XACML has received much attention from both the academia and the industry. Many
domain-specific access control languages have been developed using XACML [32,30].
Open source XACML implementations are also available for different platforms
(e.g., Sun’s XACML implementation [2] and XACML.NET [3]). Therefore, XACML
provides an ideal platform for the development of policy testing techniques that can be
easily applied to multiple domains and applications.

The basic concepts of access control in XACML include policies, rules, targets, and
conditions. A single access control policy is represented by a policy element, which
includes a target element and one or more rule elements. A target element contains a
set of constraints on the subject (e.g., the subject’s role is equal to faculty), resources
(e.g., the resource name is grade), and actions (e.g., the action name is assign)1. A target
specifies to what kinds of requests a policy can be applied. If a request cannot satisfy the
constraints in the target, then the whole policy element can be skipped without further
examining its rules.

We next describe how a policy is applied to a request in details. A policy element
contains a sequence of rule elements. Each rule also has its own target, which is used to
determine whether the rule is applicable to a request. If a rule is applicable, a condition
(a boolean function) associated with the rule is evaluated. If the condition is evalu-
ated to be true, the rule’s effect (Permit or Deny) is returned as a decision; otherwise,
NotApplicable is returned as a decision. If an error occurs when a request is applied
against policies or their rules, Indeterminate is returned as a decision.

More than one rule in a policy may be applicable to a given request. To resolve
conflicting decisions from different rules, a rule combining algorithm can be specified
to combine multiple rule decisions into a single decision. For example, a deny overrides
algorithm determines to return Deny if any rule evaluation returns Deny or no rule
is applicable. A first applicable algorithm determines to return what the evaluation of

1 Conditions of “AnySubject”, “AnyResource”, and “AnyAction” can be satisfied by any subject,
resource, or action, respectively.

142 E. Martin, T. Xie, and T. Yu

1<Policy PolicyId="demo" RuleCombinationAlgId="first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources>
5 <Resource>
6 <ResourceMatch MatchId="equal">
7 <AttributeValue>demo:5</AttributeValue>
8 <ResourceAttributeDesignator AttributeId="objectid"/>
9 </ResourceMatch>

10 </Resource>
11 </Resources>
12 <Actions> <AnyAction/></Actions>
13 </Target>
14 <Rule RuleId="1" Effect="Deny">
15 <Target> <Subjects><AnySubject/></Subjects>
16 <Resources> <AnyResource/> </Resources>
17 <Actions>
18 <Action>
19 <ActionMatch MatchId="equal">
20 <AttributeValue>Dissemination</AttributeValue>
21 <ActionAttributeDesignator AttributeId="actionid"/>
22 </ActionMatch>
23 </Action>
24 </Actions>
25 </Target>
26 <Condition FunctionId="not">
27 <Apply FunctionId="at-least-one-member-of">
28 <SubjectAttributeDesignator AttributeId="loginid"/>
29 <Apply FunctionId="string-bag">
30 <AttributeValue>testuser1</AttributeValue>
31 <AttributeValue>testuser2</AttributeValue>
32 <AttributeValue>fedoraAdmin</AttributeValue>
33 </Apply>
34 </Apply>
35 </Condition>
36 </Rule>
37 <Rule RuleId="2" Effect="Permit"/>
38</policy>

Fig. 1. An example XACML policy

the first applicable rule returns. In general, an XACML policy specification may also
include multiple policies, which are included with a container element called PolicySet.
When a request can also be applied to multiple policies, a policy combining algorithm
can also be specified in a similar way.

Figure 1 shows an example XACML policy, which is revised and simplified from
a sample Fedora2 policy (to be used in our experiment described in Section 8). This
policy has one policy element which in turn contains two rules. The rule composition
function is “first-applicable”, whose meaning has been explained earlier. Lines 2-13 de-
fine the target of the policy, which indicates that this policy applies only to those access
requests of an object “demo:5”. The target of Rule 1 (Lines 15-25) further narrows the
scope of applicable requests to those asking to perform a “Dissemination” action on
object “demo:5”. Its condition (Lines 26-35) indicates that if the subject’s “loginId” is
“testuser1”, “testuser2”, or “fedoraAdmin”, then the request should be denied. Other-
wise, according to Rule 2 (Line 37) and the rule composition function of the policy
(Line 1), a request applicable to the policy should be permitted.

2 http://www.fedora.info

Defining and Measuring Policy Coverage in Testing Access Control Policies 143

3 Access Control Policies and Policy Coverage

Besides XACML, a generic policy language, many access control policy languages have
been proposed for different application domains. Policies in these languages are usually
composed of a set of rules, which specify under what conditions a subject is allowed
or denied access to certain objects in a system. To discuss policy coverage criteria in
general, we model access requests and policies in this paper as follows.

Let S, O and A denote respectively the set of all the subjects, objects and actions
in an access control system. Each subject, object, or action is associated with a set
of attributes that may be used for access control decisions. For example, a subject’s
attributes may include a user’s role, rank, and security clearance. An object’s attributes
may include a file’s type, a document’s security class, and a printer’s location.

An access request q is a tuple (s, o, a), where s ∈ S, o ∈ O and a ∈ A. A request
(s, o, a) means that subject s requests to take action a on object o.

An access control policy P is a sequence of rules, each of which is of the
form (Conds, Condo, Conda, decision, Condg). Conds, Condo and Conda are con-
straints over the attributes of a subject, object, and action, respectively. Condg is a
general constraint that may potentially be over all the attributes of subjects, objects, ac-
tions, and other properties of a system (e.g., the current time and the load of a system).
A decision is either deny or permit. Given a request (s, o, a), if Conds(s), Condo(o),
Conda(a), and Condg are all evaluated to be true, then the request is either permitted
or denied, according to decision in the rule.

One may wonder that since Condg can be a general constraint over the attributes of
subjects, objects, and actions as well as other properties of a system, why do we still
need Conds, Condo, and Conda in a rule? The reason is that, although conceptually
those conditions can be merged with the general condition Condg , by separating them,
it makes it easy to quickly locate relevant rules to a request. For example, given a request
(s, o, a), if one of Conds, Condo and Conda is evaluated to be false, then we do not
need to further evaluate Condg that sometimes may be much more complex than the
former three. Such a form of access control rules is commonly supported in access
control policy languages. If a request satisfies Conds, Condo and Conda of a rule,
then we say the rule is applicable to the request.

A policy may have multiple rules that are applicable to a request. These rules may
in fact offer conflicting decisions. The final decision regarding the request depends on
application-specific conflict resolution functions. Commonly used conflict resolution
functions include denial overriding permission (where a request is denied if it is denied
by at least one rule), permission overriding denial (where a request is permitted if it
is permitted by at least one rule) and first applicable (where the final decision is the
same as that of the first applicable rule in a sequence of rules whose condition Condg

is evaluated true). We use PDP (Policy Decision Point) to denote the component of
a system where final decisions are made according to the decision of each rule and a
specific confliction resolution function. Conceptually, given a policy P and a request q,
a PDP returns the access control decision of q.

Since we are interested in capturing potential errors in policy specifications, we as-
sume that PDP is correctly implemented in the rest of the paper. In practice, generic
PDP implementations are often available, which have been scrutinized by the public.

144 E. Martin, T. Xie, and T. Yu

We next start our discussion on policy testing based on the preceding model. The
basic idea of policy testing is simple. Like software testing, given a policy, we would
like to generate a set of requests, and check whether the access control decisions on
these requests are expected. Any unexpected decision indicates potential errors in the
specification of the policy.

If no requests are evaluated against a rule during testing, then potential errors in
that rule cannot be discovered. Thus, it is important to generate requests so that a large
portion of rules are involved in the evaluation of at least one of the requests. In other
words, we are interested in requests that cause a rule’s conditions to be evaluated to be
true. Recall that if a request satisfies Conds, Condo, and Conda of a rule, then we say
the rule is applicable to the request.

Definition 1. Given a request q and a rule m in a policy P , we say q covers m if m
is applicable to q. Given a set of requests Q, the rule coverage of P by Q is the ratio
between the number of rules covered by at least one request in Q and the total number
of rules in P .

Intuitively, the higher the rule coverage of a set of requests, the better chance speci-
fication errors may be discovered. Like software testing, it is often infeasible to have
exhausted policy testing when the space of possible requests is large. Therefore, pol-
icy specification errors may still exist even after testing with requests that cover all the
rules.

To improve the quality of policy testing, it helps to further examine potential errors
in the specification of conditions in each rule, which can also be tested by requests.

Definition 2. Given a request q and a rule m(Conds, Condo, Conda, decision,
Condg), we say Condg is positively (negatively) covered by q if m is covered by q
and Condg is evaluated to be true (false). Given a set of requests Q, the condition cov-
erage of P by Q is the ratio between the numbers of general conditions positively or
negatively covered by at least one request in Q and two times of the total number of
rules in P .

The intuition behinds the above definition is as follows. An error in the condition of a
rule may have two types of impacts on a request. Suppose Cond′g is the condition when
an error is introduced to the original condition Condg . Given a request q, Cond′g(q)
may be evaluated to be true while Condg(q) is false, or vice versa. That is why we con-
cern with both positive and negative coverage of a condition in the preceding definition.

Our definition of condition coverage corresponds to clause coverage or condition
coverage [33] in program testing. Note that there exist more complicated coverage
criteria for logical expressions. For example, in program testing, predicate coverage
(also called decision coverage or branch coverage) [33]requires to cover both true and
false of compound conditions in a logical expression. In policy testing, predicate cov-
erage requires that the whole compound condition for a rule needs to be evaluated to
be true and false, respectively. In program testing, combinatorial coverage (also called
multiple condition coverage) [33] requires to cover each possible combination of out-
comes of each condition in a logical expression. In policy testing, combinatorial cov-
erage requires to cover each possible combination of outcomes of each condition for

Defining and Measuring Policy Coverage in Testing Access Control Policies 145

a rule. In our existing approach, we use basic, simple criteria for conditions in rules; in
future work, we plan to investigate these more complicated alternatives in terms of their
effects on fault-detection capability.

4 Policy Coverage in XACML

In XACML languages, we can see there are three major entities: policies, rules for each
policy, and a condition for each rule. We define policy coverage as follows:

– Policy hit percentage. A policy is hit by a request if the policy is applicable to the
request; in other words, all the conditions in the policy’s target are satisfied by the
request. Policy hit percentage is the number of hit policies divided by the number
of total policies.

– Rule hit percentage. A rule for a policy is hit by a request if the rule is also applica-
ble to the request; in other words, the policy is applicable to the request and all the
conditions in the rule’s target are satisfied by the request. Rule hit percentage is the
number of hit rules divided by the number of total rules.

– Condition hit percentage. The evaluation of the condition for a rule has two out-
comes: true and false, which are called as the true condition and false condition,
respectively. A true condition for a rule is hit by a request if the rule is applicable to
the request and the condition is evaluated to be true. A false condition for a rule is
hit by a request if the rule is applicable to the request and the condition is evaluated
to be false. Condition hit percentage is the number of hit true conditions and hit
false conditions divided by twice of the number of total conditions.

Note that a policy has at least one rule but a rule can have no condition, indicat-
ing an implicit condition true, which is always satisfied when the rule is applicable.
Therefore, when there are no conditions defined within the policies under consideration,
the condition hit percentage is always the same as the rule hit percentage. Normally a
policy tester shall be able to generate requests to achieve 100% for all three types of
policy coverage. In other words, all the to-be-covered entities defined in the policy cov-
erage are feasible to be covered in principle; otherwise, those infeasible parts of policy
specifications could be removed like dead code in programs.

To automate the measurement of policy coverage, we have developed a measurement
tool by instrumenting Sun’s open source XACML implementation [2]. Sun’s implemen-
tation facilitates the construction of a PDP. We instrument several methods throughout
their implementation that collect policy, rule, and condition information when a policy
is loaded into the PDP. Then coverage information is collected and stored in a singleton
as requests are evaluated by a PDP against the policy under test.

After the PDP returns the decision, we output the coverage information into a text
file, whose name is determined by the names of given policies; if a text file with the
same name exists, the coverage information in the text file is updated by incorporating
the new coverage information. Therefore, when PDP receives several requests sepa-
rately against the same set of policies, the aggregated coverage information achieved
by these requests is collected. Besides the basic coverage information, we also output

146 E. Martin, T. Xie, and T. Yu

the details of covered entities and their covering requests as well as the details of uncov-
ered entities. The extra information can help developers or external tools in generating
or selecting requests for achieving higher policy coverage.

5 Request Generation

Because manually generating requests for testing policies is tedious, we have devel-
oped a technique for randomly generating requests given only the policy under test.
The random request generator analyzes the policy under test and generates requests on
demand by randomly selecting requests from the set of all combinations of attribute
id-value pairs found in the policy. A particular request is represented as a vector of bits.
The length of this vector is equal to the number of different attribute values found in
the policy set targets,policy targets, rule targets, and rule conditions of the policy under
test. Each attribute value appears in the request if its corresponding bit in the vector is 1;
otherwise, the value is not present.

More specifically, all possible combinations can be represented by integers from 0
to 2n where n is the number of attribute values found in the policy. Each request is
generated by setting each bit in the vector to 0 or 1 with probability 0.5. The number of
randomly generated requests can be configured by the user and the configured number
can be considerably smaller than the total number of combinations. To help achieve
adequate coverage with a small set of random requests, we modified the random test
generation algorithm to ensure that each bit was set to 1 and 0 at least once. In particular,
we explicitly set the ith bit to 1 for the first n generated requests where i = 1, 2, ...n.
Similarly, for the next n requests, we explicitly set the (i − n)th bit to 0 where i =
n + 1, n + 2, ...2n. This improved algorithm guarantees that each attribute value is
present and absent at least once as long as the number of randomly generated requests
is greater than 2n.

6 Request Reduction

The request reduction problem can be stated similar to the test minimization problem
for program testing [20]:

Given: request set QS, a set of requirements r1, r2, ..., rn that must be satisfied to
provide the desired test coverage of the policies, and subsets of QS, Q1, Q2,..., Qn, one
associated with each of the ris such that any one of the request qj belonging to Qi can
be used to test ri.
Problem: Find a representative set of requests from QS that satisfies all of ris.

In the problem statement, the ris can represent policy coverage requirements, such
as covering a certain policy, a certain rule, and a certain condition. In a representative
set of requests that satisfies all of the ris, at least one request satisfies each ri. We call a
representative set is minimal if removing any request from the set causes the set not to
be a representative set. Given a request set QS, there can be several minimal represen-
tative sets QS′ ⊆ QS. Among the minimal representative request sets, we could find
a request set that has the smallest possible number of requests. Finding such request

Defining and Measuring Policy Coverage in Testing Access Control Policies 147

tests reduces to optimization problems called “minimum set cover” and “minimum
exact cover”, respectively; these problems are known to be NP complete, and in practice
approximation algorithms are used [27].

In our implementation of coverage-based request reduction, we use a greedy algo-
rithm for selecting requests as they are generated by the random request factory if and
only if the generated request increases any of the coverage metrics described in Sec-
tion 4. More specifically, we iteratively generate a random request and add it to the
large set. We then evaluate that request against the policy in order to both compute the
response and measure the coverage. If the coverage increases due to the evaluation of
the request, then that request is added to the reduced request set.

We note that this greedy algorithm may not produce a minimal representative set.
In practice, it does, however, often produce a representative set whose size is near
the size of a minimal representative set. We call our reduced set as a nearly minimal
representative set.

7 Measuring Fault-Detection Capability

In order to investigate the effect of request reduction on fault-detection capabilities,
we can inject faults into the original policy thereby creating faulty policies. Since fault
detection is the central focus of any testing process, it provides an external measure of
the effectiveness of that process. We aim to demonstrate that reduced request sets based
on coverage can detect a large percentage of the faults detected by the original request
set. We use mutation testing [15] as a mechanism to compare request sets in terms of
fault detection.

Mutation testing [15] has historically been applied to general-purpose programming
languages. The program under test is iteratively mutated to produce numerous mutants,
each containing one fault. A test input is independently executed on the original pro-
gram and each mutant program. If the output of a test executed on a mutant differs from
the output of the same test executed on the original program, then the fault is detected
and the mutant is said to be killed. The fundamental premise of mutation testing as
stated by Geist et al. [17] is that, in practice, if the software contains a fault, there will
usually be a set of mutants that can only be killed by a test that also detects that fault. In
other words, the ability to detect small, minor faults such as mutants implies the ability
to detect complex faults. Because fault detection is the central focus of any testing pro-
cess, mutation testing provides an external measure of the effectiveness of that process.
The higher the percentage of killed mutants, the more effective the test set is at fault
detection.

In policy mutation testing, the program under test, test inputs, and test outputs cor-
respond to the policy, requests, and responses, respectively. We first define a set of
mutation operators shown in Table 1. Given a policy and a set of mutation operators, a
mutator generates a number of mutant policies. Given a request set, we evaluate each
request in the request set on both the original policy and a mutant policy. The request
evaluation produces two responses for the request based on the original policy and the
mutant policy, respectively. If these two responses are different, then we determine that
the mutant policy is killed by the request; otherwise, the mutant policy is not killed.

148 E. Martin, T. Xie, and T. Yu

Table 1. Index of mutation operators

ID Description

PSTT Policy Set Target True. The policy set is applied to all requests.
PSTF Policy Set Target False. The policy set is not applied to any requests.
PTT Policy Target True. The policy is applied to all requests.
PTF Policy Target False. The policy is not applied to any requests.
RTT Rule Target True. The rule is applied to all requests.
RTF Rule Target False. The rule is not applied to any requests.
RCT Rule Condition True. The condition always evaluates to true.
RCF Rule Condition False. The condition always evaluated to false.
CPC Change Policy Combining Algorithm. Each policy combining algorithm is tried in turn.
CRC Change Rule Combining Algorithm. Each rule combining algorithm is tried in turn.
CRE Change Rule Effect. The rule effect is inverted (e.g. permit for deny).

Unfortunately, there are various expenses and barriers associated with mutation test-
ing. The first and foremost is the generation and execution of a large number of mutants.
For general-purpose programming languages, the number of mutants is proportional to
the product of the number of data references and the number of data objects in the
program [34]. For XACML policies, the number of mutants is proportional to the num-
ber of policy elements, namely policy sets, policies, targets, rules, conditions, and their
associated attributes.

8 Experiment on Request Reduction and Its Effect on Fault
Detection

The objective of the experiment is to examine whether the reduced request set is as
effective at fault detection as the original request set. Similar to the goals of Hennessy
et al. [21] for grammar-based software, we wish to investigate the following hypotheses:

Hypothesis 1. We can achieve a significant reduction in request-set size for large ran-
domly generated request sets while maintaining equivalent policy, rule, and condition
coverage.

Hypothesis 2. Reducing a request set based on coverage will not proportionately de-
crease its fault detection capability.

8.1 Metrics

In order to investigate our hypotheses, we need to measure the reduction in request-set
size, the coverage metrics, and the reduction in fault detection capability. The following
metrics are measured for each policy under test, each request set, and each mutation
operator.

– Policy hit percentage. The policy hit percentage or policy coverage is the number
of applicable policies when evaluating the request set divided by the total number
of policies.

Defining and Measuring Policy Coverage in Testing Access Control Policies 149

– Rule hit percentage. The rule hit percentage or rule coverage is the number of
applicable rules when evaluating the request set divided by the total number of rules.

– Condition hit percentage. The condition hit percentage is the number of hit true
and hit false conditions when evaluating the request set divided by two times of the
total number of conditions.

– Test count. The test count is the size of the request set or the number of generated
tests. For testing access control policies, a test is synonymous with request.

– Reduced-test count. Given a policy and the generated set of requests, the reduced
test count is the size of the reduced request set based on policy coverage.

– Mutant-killing ratio. Given a request set, the policy under test, and the set of gener-
ated mutants, the mutant-killing ratio is the number of mutants killed by the request
set divided by the total number of mutants.

Intuitively a set of requests that achieve higher policy coverage are more likely to
reveal faults. This notion is easy to understand because a fault in a policy element that
is never covered by a request would never contribute to a response and thus a fault in
that element cannot possibly be revealed. There is a direct correlation between the test
count and the test evaluation time. Furthermore, a low test count is highly desirable
because the request-response pairs may need to be inspected manually to verify that the
policy specification exhibits the intended policy behavior. An ideal request set should
have a low test count, high structural coverage, and high fault-detection capability.

8.2 Results

We used 10 XACML policies collected from three different sources as subjects in our ex-
periment. Table 2 summarizes the basic statistics of each policy. The first column shows
the subject names. Columns 2-5 show the numbers of policy sets, policies, rules, and
conditions, respectively. Five of the policies, namely simple-policy, codeA, codeB,
codeC, and codeD are examples used by Fisler et al. [16,18]. The remaining policies are
examples of real XACML policies used by Fedora3. Fedora is an open source software
that gives organizations a flexible service-oriented architecture for managing and deliv-
ering digital content. Fedora uses XACML to provide fine-grained access control to the
digital content that it manages. The Fedora repository of default and example XACML
policies provides a useful resource of realistic subjects.

We preprocessed each policy to ensure unique policy element identifiers in order
to correctly measure structural coverage. Once each policy has been preprocessed, we
randomly generate requests for each policy as outlined in Section 5 (we configure that
50 requests are randomly generated for each policy). As these requests are generated
and evaluated, we greedily select a smaller set of requests with equivalent coverage as
outlined in Section 6. If we define the size of the entire request set as r and the size
of the reduced request set as r′ then we can define the reduction in request-set size,
SizeReduction, as follows:

SizeReduction = 1 − r′

r

3 http://www.fedora.info

http://www.fedora.info

150 E. Martin, T. Xie, and T. Yu

Table 2. Policies used in the experiment

Subject # PolSet # Pol # Rule # Cond

codeA 5 2 2 0
codeB 7 3 3 0
codeC 8 4 4 0
codeD 11 5 5 0
default-2 1 13 13 12
demo-11 0 1 3 4
demo-26 0 1 2 2
demo-5 0 1 3 4
mod-fedora 1 13 13 12
simple-policy 1 2 2 0

Table 3. Structural coverage, number of requests, and size reduction for each policy

Subject Policy Hit Rule Hit Cond Hit #Req #Reduced Req Size Reduction

codeA 100.00% 100.00% - 50 2 0.96
codeB 100.00% 100.00% - 50 3 0.94
codeC 100.00% 100.00% - 50 6 0.88
codeD 100.00% 100.00% - 50 6 0.88

default-2 100.00% 92.31% 75.00% 50 6 0.88
demo-11 100.00% 100.00% 75.00% 50 2 0.96
demo-26 100.00% 100.00% 50.00% 50 1 0.98
demo-5 100.00% 100.00% 75.00% 50 3 0.94

mod-fedora 100.00% 84.62% 58.33% 50 7 0.86
simple-policy 100.00% 100.00% - 50 4 0.92

Columns 2-7 of Table 3 show the three structural coverage metrics, size of the gener-
ated request set, the size of the reduced request set, and the computed size reduction for
each policy, respectively. A dash indicates that there are no policy elements of that type
and thus coverage cannot be computed. The random request set achieves 100% policy
coverage for all subjects because it is the most coarse measure of structural coverage.
Rule coverage and condition coverage are a finer measure of structural coverage and
thus more difficult to achieve with randomly generated requests. The results show that
we can achieve an average 92% size reduction for the ten policies. The results suggest
that we can indeed greatly reduce the request set size of relatively large randomly gen-
erated request sets while maintaining equivalent policy, rule, and condition coverage.

The second objective of the experiment is to investigate if the reduced request set
can still effectively detect faults in policies compared to the full set. We perform the
experiment illustrated in Figure 2. The basic approach is to exploit mutation testing
as a mechanism to compare the fault-detection capability of various request sets. As
discussed in Section 7, we create several mutant policies using the mutation opera-
tors listed in Table 1 for each of the experimental subjects. Each request set is exe-
cuted against each mutant policy and their corresponding responses are recorded. If the

Defining and Measuring Policy Coverage in Testing Access Control Policies 151

Fig. 2. Overview of fault detection experiment

response for any request evaluated against the original policy differs from the response
for the request evaluated against the mutant policy, then the mutant is said to be killed.
We define the CapabilityReduction as a metric that quantifies the relative fault de-
tection capability of the reduced set compared to its original set. If we define the total
number of mutants detected by the original set as m and the total number of mutants
detected by the reduced set as m′, then we compute the reduction in fault detection as:

CapabilityReduction = 1 − m′

m

Figure 3 illustrates the average mutant-killing ratios for each request set grouped by
subjects. We observe that the mutant-killing ratios across all subjects for the random
and reduced random request sets are quite similar. Unfortunately the mutant-killing ra-
tio is still low when considering the high structural coverage. The observation indicates
that a stronger criteria is needed. Specifically the average mutant-killing ratios for the
Random, and Reduced Random request sets are 51.8% and 42.1%, respectively. Table 4
lists the mutant-kill ratios in tabular format along with the computed capability reduc-
tion. In summary, we observe a 92% reduction in size of the requests while only a 23%
reduction in fault detection capability.

In summary, the results indicate that structural coverage is indeed correlated to fault-
detection capability. But structural coverage is still not strong enough to achieve an
acceptable level of fault detection. Note that the structural coverage investigated in this
experiment is essentially equivalent to statement coverage in general-purpose program-
ming languages. In future work, we plan to investigate stronger criteria that correspond
to path coverage. We expect these stronger criteria to be much more effective at achiev-
ing higher killing ratios.

8.3 Threats to Validity

The threats to external validity primarily include the degree to which the subject poli-
cies, mutation operators, coverage metrics, and test sets are representative of true

152 E. Martin, T. Xie, and T. Yu

0

10

20

30

40

50

60

70

80

codeA codeB codeC codeD default-2 demo-11 demo-26 demo-5 mod-
fedora

simple-
policy

M
ut

an
t-

K
ill

in
g

R
at

io

Random Reduced Random

Fig. 3. Mutant-killing ratios for all operators by subjects

Table 4. Mutant-killing ratios and capability reduction for each request set and each policy

Subject Random Reduced Random Capability Reduction

codeA 50.00% 31.25% 37.50%
codeB 50.00% 35.87% 28.26%
codeC 51.79% 44.64% 13.79%
codeD 43.92% 37.16% 15.38%
default-2 19.75% 6.37% 67.74%
demo-11 77.27% 72.73% 5.88%
demo-26 58.82% 52.94% 10.00%
demo-5 78.26% 73.91% 5.56%
mod-fedora 25.48% 22.29% 12.50%
simple-policy 62.50% 43.75% 30.00%

practice. These threats could be reduced by further experimentation on a wider type
and larger number of policies and an larger number of mutation operators. In particu-
lar, lower level mutation operators are needed to operate on the subject, resource, and
action attributes found in various policy elements. Currently the proposed mutation op-
erators operate only on higher level policy elements. The threats to internal validity are
instrumentation effects that can bias our results such as faults in Sun’s XACML imple-
mentation as well as faults in our own policy mutator, policy coverage measurement
tool, and request generator.

9 Empirical Study of Manually Generated Requests’ Policy
Coverage

We have applied the coverage-measurement tool on the whole set of the XACML com-
mittee specification conformance test suite [6] and a conference paper review system’s
policy and its requests developed by Zhang et al. [41].

Defining and Measuring Policy Coverage in Testing Access Control Policies 153

Table 5. Policy coverage of the XACML conformance test suite

type 100% 50% non-0% 0% total
all cond rule/cond rule/cond

policies 24 172 24 14 234

Permit 31 144 6 181
Deny 6 6
NotApp 13 28 6 10 57
Indet 1 2 6 4 13

The XACML conformance test suite includes 337 distinct policies4, 374 requests,
their expected responses from the application of the policies. Among these 337 distinct
policies, we show the results of 234 policies in this section because for the requests
of the remaining 103 policies, Sun’s XACML implementation [2] responded different
decisions than the ones specified in their expected responses. Applying the requests on
these 103 policies failed to conform with expected responses because Sun’s XACML
implementation does not support some optional features of XACML specifications.

The conference paper review system’s policy specified by Zhang et al. [41] has 11
requests and 15 rules, which have 10 conditions. These 10 conditions involve the exe-
cution of SQL statements that access an external database. Because it is not trivial to
adapt Sun’s XACML implementation to support these conditions, we simply remove
these 10 conditions as well as some attributes that are not parsed by Sun’s XACML im-
plementation, in order to allow us to focus on the measurement of rule hit percentage.

We fed 374 requests in the XACML conformance test suite to the coverage-
measurement tool. Table 5 shows the reported statistics of policy coverage. Note that
all policies in the conformance test suite are hit by the requests, achieving 100% policy
hit percentage. Column 1 shows the type of data and Columns 2-5 show the data for
different types of coverage. Row 2 shows the number of policies. Rows 3-6 show the
number of requests whose returned decisions are Permit, Deny, NotApplicable, and
Indeterminate, respectively. When a data entry has a zero value, we do not show the
zero value but leave the entry empty.

Column 2 shows the data for policies whose policy, rule, and condition hit percent-
ages reach 100%. These policies have achieved the optimal policy coverage. Column
3 shows the data for policies whose policy and rule hit percentages reach 100% but
condition hit percentage reaches 50%. Column 4 shows the data for policies whose rule
or condition hit percentage is less than 100% but not equal to 0% (but we do not in-
clude the cases shown in Column 3 here). The coverage of these policies needs to be
improved. Column 5 shows the data for policies whose rule or condition hit percentage
is equal to 0%. These policies are especially in need for improvement. The last column
shows the sum of all the data in Columns 2-5.

From the results shown in Table 5, we observed that a majority of policies fell
into the category of Column 3, where policy and rule hit percentages reach 100% but

4 In the XACML conformance test suite, there are 374 policies, each of which receives a single
request. We have reduced those policies with the same policy content into a single policy,
which can then receive multiple requests.

154 E. Martin, T. Xie, and T. Yu

condition hit percentage reaches 50%. Many polices in the XACML conformance test
suite contain single rules each of which has a condition. Often each of these policies
receives only one request, which basically cover the policy’s rule and the rule’s true
condition.

We took a close look at the details of 14 policies in Column 5. Two of them had
100% for rule hit coverage but 0% for condition hit percentage. Their coverage results
were against our expectation because if their conditions were applicable, we expected
that either a true or false condition would be hit. We inspected their requests and found
that a subject’s age was specified twice and their conditions access the subject’s age.
When evaluating the conditions, PDP encountered an error and returned a decision of
Indeterminate; therefore, neither true or false condition was hit.

Note that the XACML conformance test suite was not specifically constructed to
achieve high coverage of policies but the measurement results still give us some insights
of the common coverage distribution, reflecting policy portions that are commonly hit
by manually created requests.

After we fed to the coverage-measurement tool 11 requests for the conference paper
review system’s policy [41], 73% rule hit percentage was achieved: 4 out of 15 rules
were not hit. These four uncovered rules included the case of permitting a PC chair to
read papers and no request matched this case. Interestingly one of these uncovered four
rules was the last rule, which has the effect of Deny and this rule’s target can be matched
by any request. This rule is often used for the permit-overrides rule combination
algorithm [1]. Given the measurement results of the coverage-measurement tool, we
could construct new requests without much difficulty to cover these uncovered rules in
the policy of the conference paper review system as well as those uncovered rules or
conditions in many policies of the XACML conformance test suite.

10 Related Work

Much work has been done in the modeling and verification of access control poli-
cies. A variety of policy languages and models have been proposed. Some of them are
generic [1,25,26,14,37] while others are designed for specific applications [11,36,38,7]
or data models [8, 29, 9, 19].

One important aspect of policy verification is to formally check general properties of
access control policies, such as inconsistency and incompleteness [31,29,25,10]. In the
former case, an access request can be both accepted and denied according to the policy,
while in the latter case the request is neither accepted nor denied. Although efficient
algorithms have been proposed to perform such verification for specific systems [26,
24], this problem can be intractable or even undecidable when dealing with policies
that involve complex constraints.

Besides the verification of general properties, several tools have been developed
to verify properties for XACML policies [1]. Hughes and Bultan translated XACML
policies to the Alloy language [23] and checked their properties using the Alloy Ana-
lyzer. Fisler et al. [16] developed a tool called Margrave that uses multi-terminal binary
decision diagrams [13] to verify user-specified properties and perform change-impact
analysis. Zhang et al [42] developed a model-checking algorithm and tool support to

Defining and Measuring Policy Coverage in Testing Access Control Policies 155

evaluate access control policies written in RW languages, which can be converted to
XACML [41]. These existing approaches assume that policies are specified using a sim-
plified version of XACML. It is challenging to generalize these verification approaches
to support full-feature XACML policies with complex conditions. In addition, most of
these approaches require users to specify a set of properties to be verified; however,
policy properties often do not exist in practice. The systematic policy testing approach
proposed in this paper works on full-feature XACML policies without requiring prop-
erties, complementing the existing policy verification approaches.

A test adequacy or coverage criterion provides a stopping rule for testing and a mea-
surement of a test suite’s quality [43]. A test coverage criterion can be used to guide
test selection. A coverage criterion typically specifies testing requirements based on
whether all the identified features in a program or specification have been fully exer-
cised. Identified features in a program can be statements, branches, paths, or definition-
use paths. Identified features in a specification can be choices for categories [4, 5] or
conditions [12] in specifications.

The importance of test coverage criterion in fault detection can be shown through
a fault propagation model such as the PIE (Propagation, Infection, and Execution)
model [40]. For example, in order to expose a bug in a statement in a program, a test
needs to at least cover the buggy statement. Note that the coverage of a buggy statement
is not a sufficient condition to expose the buggy behavior in program outputs; addition-
ally the execution of the buggy statement needs to produce a wrong data state and the
wrong data state needs to have an effect on program outputs.

Within our knowledge, our approach is the first that proposes policy coverage and
develops an automatic measurement tool and a request reduction tool for it. But there
exist several approaches for defining and measuring coverage of rules for grammar-
based software or SQL statements for database applications. For example, Hennessy
and Power [21] defined rule coverage for context-free grammar and used rule coverage
to reduce a test suite for grammar-based software such as C++ compilers. Suarez-Cabal
and Tuya [39] defined coverage of SQL queries and developed a tool to automate the
measurement. Kapfhammer and Soffa [28] defined a family of test adequacy criteria for
database-driven applications based on dataflow information that is associated with enti-
ties in a database. Different from these existing coverage measurement approaches for
grammars, SQL queries, or database entities, our new approach defines and measures
coverage information for policies.

11 Conclusion

In this paper, we have developed a first step toward systematic policy testing by defin-
ing and measuring policy coverage. We have proposed the concept of policy testing and
policy coverage based on a general access control model. We further defined three levels
of specific policy coverage for XACML policies: policy hit percentage, rule hit percent-
age, and condition hit percentage. To support systematic policy testing based on policy
coverage automatically, we have developed a coverage-measurement tool, a request-
generation tool, and a request-reduction tool. By using mutation testing, we have con-
ducted an experiment that assesses the coverage-based request reduction and its effect

156 E. Martin, T. Xie, and T. Yu

on fault-detection capabilities. The experimental results showed that the coverage-based
request reduction substantially reduce the size of the request set but incur only relatively
low loss of fault-detection capabilities. We also conducted a study on the policy cover-
age achieved by manually generated requests for policies in a conformance test suite for
XACML specifications [6] and a conference reviewing system [41]. Our results showed
that our measurement results can pinpoint uncovered areas of policies and guide the de-
velopment of new requests to achieve higher policy coverage.

In future work, we plan to develop a comprehensive suite of techniques and tools
for systematic policy testing. In particular, we plan to extend our policy coverage to
consider cases that reflect the interactions of different rules or different policies, which
are not focused by our existing policy coverage. We also plan to conduct experiments
on a larger scope of policies.

References

1. OASIS eXtensible Access Control Markup Language (XACML). http://www.oasis-
open.org/committees/xacml/, 2005.

2. Sun’s XACML implementation. http://sunxacml.sourceforge.net/, 2005.
3. XACML.NET. http://mvpos.sourceforge.net/, 2005.
4. N. Amla and P. Ammann. Using Z specifications in category partition testing. In Proc. 7th

Annual Conference on Computer Assurance, pages 3–10, June 1992.
5. P. Ammann and J. Offutt. Using formal methods to derive test frames in category-partition

testing. In Proc. 9th Annual Conference on Computer Assurance, pages 69–80, June 1994.
6. A. Anderson. XACML 1.1 committee specification conformance tests. http://www.oasis-

open.org/committees/xacml/ConformanceTests/, 2002.
7. R. J. Anderson. A security policy model for clinical information systems. In Proc. IEEE

Symposium on Security and Privacy, pages 30–43, 1996.
8. E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A logical framework for reasoning on data

access control policies. In Proc. 12th IEEE Computer Security Foundations Workshop, pages
175–189, 1999.

9. E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web documents
with an XML-based language. In Proc. 6th ACM Symposium on Access Control Models and
Technologies, pages 57–65, Chantilly, VA, May 2001.

10. P. Bonatti, S. Vimercati, and P. Samarati. A modular approach to composing access control
policies. In Proc. ACM Conference on Computer and Communication Security, pages 164–
173, Athens, Greece, November 2000.

11. C. Bussler and S. Jablonski. Policy resolution for workflow management systems. In Proc.
Hawaii International Conference on System Science, pages 831–840, Maui, Hawaii, January
1995.

12. J. Chang and D. J. Richardson. Structural specification-based testing: automated support and
experimental evaluation. In Proc. 7th ESEC/FSE, pages 285–302, 1999.

13. E. Clarke, M. Fujita, P. McGeer, J. Yang, and X. Zhao. Multi-terminal binary decision dia-
grams: An efficient data structure for matrix representation. In Proc. International Workshop
on Logic Synthesis, pages 1–15, 1993.

14. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy specification language.
In Proc. International Workshop on Policies for Distributed Systems and Networks, pages
18–38, 2001.

15. R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34–41, April 1978.

Defining and Measuring Policy Coverage in Testing Access Control Policies 157

16. K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification and change-
impact analysis of access-control policies. In Proc. 27th International Conference on Soft-
ware Engineering, pages 196–205, 2005.

17. R. Geist, A. J. Offutt, and F. Harris. Estimation and enhancement of real-time software
reliability through mutation analysis. IEEE Transactions on Computers, 41(5):55–558, 1992.

18. M. M. Greenberg, C. Marks, L. A. Meyerovich, and M. C. Tschantz. The soundness and
completeness of Margrave with respect to a subset of XACML. Technical Report CS-05-05,
Department of Computer Science, Brown University, 2005.

19. P. Griffiths and B. Wade. An authorization mechanism for a relational database systems.
ACM Transactions on Database Systems, 1(3), 1976.

20. M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the size of a test
suite. ACM Trans. Softw. Eng. Methodol., 2(3):270–285, 1993.

21. M. Hennessy and J. F. Power. An analysis of rule coverage as a criterion in generating
minimal test suites for grammar-based software. In Proc. 20th IEEE/ACM International
Conference on Automated Software Engineering, pages 104–113, November 2005.

22. G. Hughes and T. Bultan. Automated verification of access control policies. Technical Report
2004-22, Department of Computer Science, University of California, Santa Barbara, 2004.

23. D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In Proc. 8th
ESEC/FSE, pages 62–73, 2001.

24. T. Jaeger, X. Zhang, and F. Cacheda. Policy management using access control spaces. ACM
Transactions on Information and System Security, 6(3), 2003.

25. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical language for expressing autho-
rizations. In Proc. 1997 IEEE Symposium on Security and Privacy, pages 31–42, 1997.

26. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino. A unified framework for enforc-
ing multiple access control policies. In Proc. ACM SIGMOD International Conference on
Management of Data, pages 474–485, 1997.

27. D. S. Johnson. Approximation algorithms for combinatorial problems. J. Comput. System
Sci., 9:256–278, 1974.

28. G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria for database-driven
applications. In Proceedings of the 9th ESEC/FSE, pages 98–107, 2003.

29. M. Kudo and S. Hada. XML document security based on provisional authorization. In Proc.
ACM Conference on Computer and Communication Security, pages 87–96, Athens, Greece,
November 2000.

30. M. Lorch, D. Kafura, and S. Shah. An XACML-based policy management and authorization
service for globus resources. In Proc. International Workshop on Grid Computing, pages
208–212, Phoenix, AZ, Nov 2003.

31. E. C. Lupu and M. Sloman. Conflict in policy-based distributed systems management. IEEE
Transaction on Software Engineering, 25(6):852–869, 1999.

32. T. Moses, A. Anderson, S. Proctor, and S. Godik. XACML Profile for Web-Services (WSPL).
OASIS Working Draft, Sept. 2003.

33. G. J. Myers. Art of Software Testing. John Wiley & Sons, Inc., 1979.
34. J. Offutt and R. H. Untch. Mutation 2000: Uniting the orthogonal. In Mutation 2000: Muta-

tion Testing in the Twentieth and the Twenty First Centuries, pages 45–55, October 2000.
35. G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An empirical study of the effects of min-

imization on the fault detection capabilities of test suites. In Proc. International Conference
on Software Maintenance, pages 34–43, 1998.

36. T. Ryutov and C. Neuman. Representation and evaluation of security policies for distributed
system services. In Proc. DARPA Information Survivability Conference and Exposition,
pages 172–183, January 2000.

158 E. Martin, T. Xie, and T. Yu

37. R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based aminis-
tration of roles. ACM Transactions on Information and Systems Security, 2(1):105–135, Feb.
1999.

38. E. Sirer and K. Wang. An access control language for web services. In Proc. 7th ACM
Symposium on Access Control Models and Technologies, pages 23–30, Monterey, CA, June
2002.

39. M. J. Suarez-Cabal and J. Tuya. Using an SQL coverage measurement for testing database
applications. In Proc. ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 253–262, 2004.

40. J. M. Voas. PIE: A dynamic failure-based technique. IEEE Transactions on Software Engi-
neering, 18(8):717–727, 1992.

41. N. Zhang, M. Ryan, and D. P. Guelev. Synthesising verified access control systems in
XACML. In Proc. 2004 ACM workshop on Formal Methods in Security Engineering, pages
56–65, 2004.

42. N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access control policies through model
checking. In Proc. 8th International Conference on Information Security, pages 446–460,
September 2005.

43. H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test coverage and adequacy. ACM
Comput. Surv., 29(4):366–427, 1997.

	Introduction
	XACML
	Access Control Policies and Policy Coverage
	Policy Coverage in XACML
	Request Generation
	Request Reduction
	Measuring Fault-Detection Capability
	Experiment on Request Reduction and Its Effect on Fault Detection
	Metrics
	Results
	Threats to Validity

	Empirical Study of Manually Generated Requests' Policy Coverage
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

