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Abstract. In this paper, we analyze the security of HMAC and NMAC,
both of which are hash-based message authentication codes. We present
distinguishing, forgery, and partial key recovery attacks on HMAC and
NMAC using collisions of MD4, MD5, SHA-0, and reduced SHA-1. Our
results demonstrate that the strength of a cryptographic scheme can be
greatly weakened by the insecurity of the underlying hash function.

1 Introduction

Many cryptographic schemes use hash functions as a primitive. Various assump-
tions are made on the underlying hash function in order to prove the security
of the scheme. For example, some proofs assume that the hash function behaves
as a random oracle, while other proofs only assume collision resistance. With
the continuing development in hash function research, especially several popular
ones are no longer secure against collision attacks, a natural question is whether
these attacks would have any impact on the security of existing hash-based cryp-
tographic schemes.

In this paper, we focus our study on HMAC and NMAC, which are hash-based
message authentication codes proposed by Bellare, Canetti and Krawczyk [2].
HMAC has been implemented in widely used security protocols including SSL,
TLS, SSH, and IPsec. NMAC, although less known in the practical world, is the
theoretical foundation of HMAC — existing security proofs [2,1] were first given
for NMAC and then extended to HMAC. It is commonly believed that the two
schemes have identical security.

The constructions of HMAC and NMAC are based on a keyed hash function
Fk(m) = F (k, m), in which the IV of F is replaced with a secret key k. NMAC
has the following nested structure: NMAC(k1,k2)(m) = Fk1(Fk2 (m)), where k =
(k1, k2) is a pair of secret keys. HMAC is similar to NMAC, except that the key
pair (k1, k2) is derived from a single secret key using the hash function. Hence,
we can view HMAC as NMAC plus a key derivation function.

The security of HMAC and NMAC was carefully analyzed by its design-
ers [2]. They showed that NMAC is a pseudorandom function family (PRF)
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under the two assumptions that (A1) the keyed compression function fk of
the hash function is a PRF, and (A2) the keyed hash function Fk is weakly
collision resistant1. The proof for NMAC was then lifted to HMAC by fur-
ther assuming that (A3) the key derivation function in HMAC is a PRF. The
provable security of HMAC, besides its efficiency and elegancy, was an im-
portant factor for its wide deployment. However, recent collision attacks on
hash functions [21,24] imply that assumption (A2) in the original proof no
longer holds when considering concrete constructions such as HMAC-MD5 and
HMAC-SHA1. To fix this problem, Bellare recently showed [1] that NMAC is
a PRF under the sole assumption that the keyed compression function fk is
a PRF. This implies that the security of HMAC now depends only on as-
sumptions (A1) and (A3). The main advantage of the new analysis is that
the proof assumptions do not seem to be refuted by existing attacks on hash
functions.

The new security proofs are quite satisfying, especially since they are based on
relatively weak assumptions of the underlying hash function. On the other hand,
they have also raised interesting questions as whether the proof assumptions
indeed hold for popular hash functions. In particular, does any existing collision
attack on a hash function compromise the PRF assumption? And if so, does it
lead to possible attacks on HMAC and NMAC?

1.1 Summary of Main Results

In this paper, we analyze the security of HMAC and NMAC. We answer the
aforementioned questions in the affirmative by constructing various attacks on
HMAC and NMAC based upon weaknesses of the underlying hash function.

Our analysis is based upon existing analyses of hash functions, especially the
attacks on MD4, MD5, SHA-0, and reduced SHA-1 presented in [25,9,10,7]. We
first show that the collision differential path in these earlier attacks can be used
to construct distinguishing attacks on the keyed compression function fk. Hence,
for MD4, MD52, SHA-0, and reduced SHA-1, fk is not a PRF.

Building upon the above attacks, we show how to construct distinguishing,
forgery, and partial key recovery attacks on HMAC and NMAC when the under-
lying hash functions are MD4, MD5, SHA-0, and reduced SHA-1. The complexity
of our attacks is closely related to the total probability of the collision differential
path, and in some cases it is less than the 2n/2 generic bound for birthday-type
attacks. A summary of our main results is given in Table 1. We remark that in
our key recovery attack the adversary can retrieve the entire inner key k2. This
can greatly weaken the security of the scheme. In particular, when the keyed
inner function is degraded to a hash function with a known IV, further attacks
such as single-block forgeries become possible.

1 Please refer to Section 3 for precise definitions of fk and Fk. The notion of weakly
collision resistant (WCR) was introduced in [2]. Roughly, Fk is WCR if it is compu-
tationally infeasible to find m �= m′ s.t. Fk(m) = Fk(m′) for hidden k.

2 In the case of MD5, fk is not a PRF under related-key attacks.
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Table 1. Result summary: number of queries in our attacks on HMAC/NMAC

hash distinguish & key recovery comments
function forgery attacks attacks

HMAC/NMAC MD4 258 263

NMAC MD5 247 247 related-key attacks

HMAC/NMAC SHA-0 284 284

reduced 234 234 inner function
HMAC/NMAC SHA-1 is 34 rounds

1.2 Use of Hash Collisions in Our Attacks

Our attacks on HMAC and NMAC are based on collisions of the keyed inner
function Fk2 . The main reason that an adversary can observe such collisions is
that in our scenario the outer function Fk1 , although hiding the output of the
inner function, does not hide the occurrence of an inner collision.

In our key recovery attacks, each bit of collision information – whether or not
a collision occurs from a set of properly chosen messages – roughly reveals one bit
of the inner key. This is due to the fact that a collision holds information about
the entire hash computation, and hence the secret key. Our techniques illustrate
that collisions within a hash function can potentially be very dangerous to the
security of the upper-layer cryptographic scheme.

1.3 Other Results

General framework for analyzing HMAC and NMAC.We extend the approach
in our attacks to provide a general framework for analyzing HMAC and NMAC.
This framework also points to possible directions for hash function attacks that
most likely lead to further improved attacks on HMAC and NMAC.

Attacks on key derivation in HMAC-MD5.We study the key derivation func-
tion in HMAC-MD5, which is essentially the MD5 compression function keyed
through the message input. We describe distinguishing and second preimage
attacks on the function with complexity much less than the theoretical bound.

New modification technique. We develop a new message modification tech-
nique in our key recovery analysis. In contrast with Wang’s techniques [21,22],
our method does not require full knowledge of the internal hash computation
process. We believe that our new technique may have other applications.

1.4 Implications

In practice, HMAC is mostly implemented with MD5 or SHA-1. To a much lesser
extent, there is some deployment of HMAC-MD4 (for example, see [12]). We are
not aware of any deployment of NMAC. The attacks presented in this paper do
not imply any immediate practical threat to implementations of HMAC-MD5 or
HMAC-SHA1. However, our attacks on HMAC-MD4 may not be out of range
of some adversaries, and therefore it should no longer be used in practice.
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We emphasize that our results on HMAC complement, rather than contradict,
the analysis in [2,1]. While the designers proved that HMAC is secure under
certain assumptions on the underlying hash function, we show that attacks are
possible when these assumptions do not hold.

1.5 Organization of the Paper

In Section 3, we provide brief descriptions of HMAC, NMAC and the MDx family.
In Section 5, we present all three types of attacks on NMAC-MD5, which is
based on the MD5 pseudo-collision (Section 4). The simplicity of the underlying
differential path in this case facilitates our explanation, especially the technical
details of our key recovery attack. For attacks on HMAC and NMAC using other
underlying hash functions, the methods are similar and thus we just focus on
what is different in each case in Section 6. In Section 7, we describe a general
framework for analyzing HMAC and NMAC.

2 Related Work

Our analysis on HMAC and NMAC is closely related to various attacks on hash
functions, especially those in the MDx family. In addition, our work is also re-
lated to the rich literature on message authentication codes. Many early heuristic
designs for MACs were broken, sometimes in ways that allowed forgery and key
recovery [17,18,19]. These early analyses were the driving force behind proposals
with formal security proofs, namely HMAC and NMAC [2]. Since their publi-
cation, most of the security analysis was provided by the designers. Recently,
Coron et al. [11] studied the security of HMAC and NMAC in the setting of
constructing iterative hash functions. After our submission to Asiacrypt’06, we
learned that Kim et al. [15] did independent work on distinguishing and forgery
attacks on HMAC and NMAC when the underlying functions are MD4, SHA-0,
and reduced SHA-1. They did not consider key recovery attacks.

Some of our attacks are in the related-key setting. Related-key attacks were
introduced by Biham [5] and Knudsen [14] to analyze block ciphers. A theoret-
ical treatment of related-key attacks was given by Bellare and Kohno [4]. The
relevance of related-key cryptanalysis is debated in the cryptographic commu-
nity. For example, some suggest that the attacks are only practical in poorly
implemented protocols. On the other hand, cryptographic primitives that resist
such attacks are certainly more robust, and vulnerabilities can sometimes indi-
cate weaknesses in the design. See the introduction to [13] for example settings in
which related-key attacks can be applied. We note that the designers of HMAC
and NMAC did not consider the related key setting in their security analysis.

3 Preliminaries

3.1 Hash Functions and the MDx Family

A cryptographic hash function is a mathematical transformation that takes an
input message of arbitrary length and produces an output of fixed length, called
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the hash value. Formal treatment of cryptographic hash functions and their prop-
erties can be found in [20]. In practice, hash functions are constructed by iterat-
ing a compression function f(cv, x) which takes fixed length inputs: a chaining
variable cv of n bits and a message block x of b bits. The hash function F is
defined as follows: First divide the input message m into x1, x2, ..., xs according
to some preprocessing specification, where each xi is of length b. Then set the
first chaining variable cv0 as the fixed IV, and compute cvi = f(cvi−1, xi) for
i = 1, 2, ..., s. The final output cvs of the iteration is the value of F .

The MDx family of hash functions includes MD4, MD5, SHA-0, SHA-1, and
others with similar structure. Here we briefly describe the structure of MD5 and
omit others. The compression function of MD5 takes a 128-bit chaining variable
and a 512-bit message block. The chaining variable is split into four registers
(A, B, C, D), and the message block is split into 16 message words m0, . . . , m15.
The compression function consists of 4 rounds of 16 steps each, for a total of 64
steps. In each step, the registers are updated according to one of the message
words. The initial registers (A0, B0, C0, D0) are set to be some fixed IV. Each
step t (0 ≤ t < 64) has the following general form3:

Xt ← (At + φ(Bt, Ct, Dt) + wt + Kt)<<<st

(At+1, Bt+1, Ct+1, Dt+1)← (Dt, Xt + Bt, Bt, Ct)

In the above equation, φ is a round-dependent Boolean function, Kt is a step-
dependent constant, and st is a step-dependent rotation amount. In each round,
all 16 message words are applied in a different order, and so wt is one of the
16 message words. After the 64 steps, the final output is computed as (A64 +
A0, B64 + B0, C64 + C0, D64 + D0).

3.2 Message Authentication Codes, HMAC and NMAC

A message authentication code is a mathematical transformation that takes as
inputs a message and a secret key and produces an output called authentication
tag. The most common attack on MACs is a forgery attack, in which the adver-
sary can produce a valid message/tag pair without knowing the secret key. For
MACs that are based on iterative hash functions, there is a birthday-type forgery
attack [17,3] that requires about 2n/2 MAC queries, where n is the length of the
authentication tag.

HMAC and NMAC are both hash-based MACs. Let F be the underlying
hash function and f be the compression function. The basic design approach
for NMAC is to replace the fixed IV in F with a secret key (aka keyed via the
IV). Following the notation in [2], we use fk(x) = f(k, x) to denote the keyed
compression function and Fk(x) = F (k, x) the keyed hash function. Let (k1, k2)
be a pair of independent keys. The NMAC function, on input message m and
secret key (k1, k2), is defined as:

NMAC(k1,k2)(m) = Fk1(Fk2 (m)).
3 We use a slightly different notation from previous work so that there is a unified

description for all the steps.
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The construction of HMAC was motivated by practical implementation needs.
Since NMAC changes the fixed IV in F into a secret key, this requires a modifi-
cation of existing implementations of the hash function. To avoid this problem,
the designers introduced the fixed-IV variant HMAC. Let const1 and const2
be two fixed constants. The HMAC function, on input message m and a single
secret key k, is defined as:

k1 = f(IV, k ⊕ const1) (1)
k2 = f(IV, k ⊕ const2) (2)

HMACk(m) = NMAC(k1,k2)(m).

In the above description for HMAC, we can consider Equations (1) and (2)
together as a key derivation function KDF which takes a single secret key k and
outputs a pair of keys (k1, k2). That is, (k1, k2) = KDF(k). Hence, HMAC is
essentially “KDF + NMAC”. We remark that the term “key derivation function”
was not used in [2], but this view of the HMAC construction will be quite
convenient for our later analysis.

4 Pseudo-collisions of MD5

In [9], den Boer and Bosselaers analyzed the compression function of MD5 and
found pseudo-collisions of the form f(cv, m) = f(cv′, m), where cv and cv′ are
two different IVs. Such pseudo-collisions of MD5 are the basis for our related-
key attacks on NMAC-MD5. In this section, we discuss some properties of the
pseudo-collisions under the framework of differential cryptanalysis.

Differential cryptanalysis was introduced by Biham and Shamir [8] to analyze
the security of DES. The idea also applies to the analysis of hash functions. In
a hash collision attack, we consider input pairs with an appropriately defined
difference and analyze how the differences in the chaining variables evolve dur-
ing the hash computation. The intermediate differences collectively are called
a differential path, and its probability is defined to be the probability that the
path holds when averaged over all input pairs satisfying the given difference.

For the MD5 pseudo-collisions in [9], the messages are the same and the input
difference is only in the chaining variables. The pair of initial chaining variables
(cv, cv′) as well as all the intermediate values satisfy the following difference:

cv ⊕ cv′ = ( 80000000 80000000 80000000 80000000 ) def= Δmsb. (3)

Putting in concrete terms, the differences are only in the most significant bit
(MSB) of each register At, Bt, Ct, Dt. This simple pattern propagates through
all 64 steps of MD5. Because of the extra addition operation at the end, the
difference disappears, yielding a pseudo-collision.

The differential path requires the following conditions on the IV:

MSB(B0) = MSB(C0) = MSB(D0) = b, (4)
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where b = 0 or 1. Moreover, the MSBs of the intermediate registers are the same
for most of the first round. Namely, for 1 ≤ t < 15,

MSB(At) = MSB(Bt) = MSB(Ct) = MSB(Dt) = b.

The total probability of the differential is 2−46.

5 Related-Key Attacks on NMAC-MD5

In this section, we present distinguishing, forgery, and partial key recovery at-
tacks on NMAC-MD5 in the related-key setting. In this setting, the goal of the
adversary is to break the MAC by obtaining input/output pairs of two MAC
oracles whose keys are different but with a known relation.

As described in Section 4, the differential path for the MD5 pseudo-collision
holds with probability 2−46. Given the path, we can construct a related-key dis-
tinguishing attack on the keyed MD5 compression function that requires about
247 queries. This distinguishing attack is the basis for all three types of attacks on
NMAC-MD5. Since the distinguishing attacks on the MD5 compression function
and on NMAC-MD5 are nearly identical, we omit the details of the former.

Recall that in NMAC, the inner function Fk2 is keyed through the IV. Hence,
in our related-key attacks, the difference in the inner key k2 is set according to
the input IV difference given by Equation (3). More specifically, we have the
following setting for our related-key attacks on NMAC-MD5:

– There are two oracles NMAC(k1,k2) and NMAC(k′
1,k′

2). The relation between
(k1, k2) and (k′

1, k
′
2) is set as:

k1 = k′
1 and k2 ⊕ k′

2 = Δmsb. (5)

– The adversary queries each oracle on input messages of its choice and is
given the corresponding authentication tag.

5.1 Related-Key Distinguishing and Forgery Attacks on
NMAC-MD5

We first present a related-key distinguishing attack on NMAC-MD5, based upon
the lack of pseudorandomness of the keyed MD5 compression function. In this
attack, the adversary is given two oracles (O, O′), which can either be the two
NMAC oracles as defined by Equation (5) or oracles for truly random functions.
The adversary generates 246 random messages and queries both oracles. If a
collision O(m) = O′(m) is observed for any message m, it identifies the oracles
as NMAC; otherwise, it identifies them as a truly random function.

The correctness of the attack is easy to see: After 246 messages, a collision of
the inner function is expected. That is, Fk2 (m) = Fk′

2
(m). Since the outer key k1

is the same, the inner collision yields a collision for the two NMAC oracles. The
complexity is 246 random queries to each oracle, for a total of 247 queries. The
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attack succeeds if k2 satisfies the condition given by Equation (4). Hence, for
two random NMAC key pairs which satisfy the relation given by Equation (5),
the success probability of our distinguishing attack is 1/4.

It is worth noticing that the outer function in NMAC, although making the
output of the inner function hidden, does not hide the occurrence of an inner
collision. This property is very useful for converting the distinguishing attack
on the inner function (which is the keyed MD5 compression) to a distinguishing
attack on NMAC. Such a conversion also applies to HMAC.

The attack can be extended to a forgery attack as follows [17,3]: Once a
message m is found that causes a collision of the two NMAC oracles, the ad-
versary queries the first oracle on m||e for any extension e and obtains tag =
NMAC(k1,k2)(m||e). Then, it produces (m||e, tag) as a forgery for the second ora-
cle. Since NMAC(k1,k2)(m||e) = NMAC(k′

1,k′
2)

(m||e), the forged authentication tag is
valid. The complexity is 247 random queries plus one chosen query. Hence, the
total number of queries is about 247 and the success probability is 1/4.

5.2 Related-Key Key Recovery Attack on NMAC-MD5

We present a partial key recovery attack on NMAC-MD5, in which the adversary
can retrieve the entire inner key k2 in NMAC. This is the most technical part of
the paper, so we start with a high level description of the key recovery algorithm
consisting of four phases:

– Phase 1. The attacker generates random messages until it obtains a message
m that causes a collision of the two NMAC oracles.

– Phase 2. The attacker modifies certain bits of m to create new messages
m∗ and observes whether any m∗ causes a new collision. This collision infor-
mation allows the attacker to recover many bits in the intermediate registers
S = (A14, B14, C14, D14) in the computation of Fk2(m).

– Phase 3. Similar to Phase 2, the attacker recovers a few additional bits from
other registers, and uses this information to determine more bits of S with
a possible small additive error.

– Phase 4. The attacker guesses all remaining unknown bits of S and steps
through the MD5 computation backwards to get (A0, B0, C0, D0) – a candi-
date for k2. It verifies whether Fk2(m) = Fk′

2
(m). If so, it outputs k2 as the

inner key; Otherwise, go back to Phase 1.

Phase 1 and Phase 4 of the key recovery algorithm are fairly straightforward,
and so for the rest of the section we focus on Phase 2 and Phase 3. We first
explain the main idea and then present detailed analysis.

Main idea. For Phase 2 and Phase 3, the objective is to recover bits of some
intermediate registers through collision information. To achieve this goal, we take
a closer look at the collision differential paths and analyze what information can
be derived from such paths. Let DPm denote the differential path induced by m,
i.e., all the intermediate differences in the computation of Fk2(m) and Fk′

2
(m).
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Since m yields a collision, we know that DPm follows the differential path for
the MD5 pseudo-collision. In particular, for the computation of Fk2(m), we have
MSB(Bt) = b for 1 ≤ t < 15. WLOG, we assume b = 0.

For a given step t in the first round, we introduce a new message m∗ that is
defined based on message m as follows:

m∗
j =

⎧
⎨

⎩

mj if 0 ≤ j < t
mj + Δ if j = t
random if t < j < 16

(6)

We next consider the differential path DPm∗ , induced by m∗. Since m and m∗

are the same up to Step t−1, the two paths DPm and DPm∗ are the same until this
step. For Step t, let B∗

t+1 be the newly computed register by replacing mt with
m∗

t = mt +Δ. We know that B∗
t+1 will be different from Bt+1. A key observation

is that if MSB(B∗
t+1) changes from 0 to 1, then the path DPm∗ will drift away from

the collision differential path, and hence the chance of it producing a collision
after 64 steps is negligible. More precisely, we have the following lemma.

Lemma 1. Let m∗ be a message defined as in Equation (6), and let p∗ be the
probability that m∗ causes a collision Fk2(m

∗) = Fk′
2
(m∗). If MSB(B∗

t+1) = 0,
then p∗ = 2t−45 when averaged over all random m∗

j (j > t). If MSB(B∗
t+1) = 1,

then p∗ ≈ 2−128.

For a given value Δ, Lemma 1 can be used to detect the MSB of B∗
t+1 as follows:

generate about 245−t messages satisfying Equation (6) and query both NMAC
oracles on these messages. If a collision is observed, then the MSB of B∗

t+1 is 0;
otherwise, the bit is 1.

In what follows, we show how to use the above collision information to recover
Bt+1. To better illustrate the intuition, we consider a simplified step function
where the rotate is eliminated. Hence Step t becomes Bt+1 = mt +T and B∗

t+1 =
m∗

t + T , where the value T has been determined before Step t. To detect bit i
of Bt+1, we set m∗

t = mt + 2i. This implies that

B∗
t+1 = Bt+1 + 2i. (7)

We consider the effect of the above increment, depending on whether bit i of
Bt+1 is 0 or 1:

– If bit i of Bt+1 is 0, then the increment will not cause a carry. In this case,
MSB(B∗

t+1) = MSB(Bt+1) = 0, and we will observe a collision in the expected
number of queries.

– If bit i of Bt+1 is 1, then the increment causes a carry. Furthermore, if we
can set bits [(i+1)..30] of B∗

t+1 to be all 1, then the carry will go all the way
to the MSB of B∗

t+1 . In this case, MSB(B∗
t+1) = MSB(Bt+1) + 1 = 1, and we

will not observe a collision.
To ensure carry propagates to the MSB, we set m∗

t = mt + 2i + d, for an
appropriate choice of d. So Equation (7) becomes B∗

t+1 = Bt+1 + 2i + d.
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The above analysis yields an algorithm for determining Bt+1 one bit at a time,
from bit 30 to bit 0. (Note that we already know bit 31 of Bt+1 is 0 by assump-
tion.) We refer to this algorithm as the bit flipping algorithm, and the complete
description is given in Appendix A.

Detailed analysis. The main idea described above generally applies to any
register Bt for 0 ≤ t < 15. In Phase 2, the registers to be recovered are

(B11, B12, B13, B14) = (A14, D14, C14, B14).

The reason why we choose later registers rather than earlier ones is to minimize
the number of oracle queries, which is 245−t per oracle per bit computed of
register Bt+1. We leave B15, B16 free so that there is enough randomness for
generating new collisions.

We now consider how to apply the bit flipping algorithm in the presence of
rotation. We need to do B∗

t+1 = Bt+1 + 2i + d for i = 30, 29, . . . , 0. However,
we are not able to do so by just setting m∗

t = mt + 2i + d because of the
rotation operation <<<st. Instead, we use a modified bit flipping algorithm (see
Appendix A for details). In this algorithm, we set m∗

t = mt + 2i′ + d′ where

i′ + st = i mod 32 and d′<<<st = d.

Note that if addition and rotation could commute, then setting m∗
t as above

would have the same effect as B∗
t+1 = Bt+1 + 2i + d. Since this is not the case,

some error might occur when applying the modified algorithm. Fortunately, the
error is manageable — we can show that the modified algorithm almost always
succeeds for recovering the most significant (32−st) bits of Bt+1. In other words,
if it fails, it is almost always on the least significant st bits. More precisely, we
have the following lemma. The proof is omitted due to space limit.

Lemma 2. For step t, let pt be the probability that the modified bit flipping
algorithm correctly recovers the most significant (32 − st) bits of Bt+1, when
averaged over all possible input messages m. Then pt ≥ 1− 2−st − 2−st−1.

For the four steps t = 10, 11, 12, 13, the rotation amounts are st = 17, 22, 7, 12.
Hence, we can use the modified bit flipping algorithm to determine the following
bits of the registers:

A14 = B11 : most significant 15 bits
D14 = B12 : most significant 10 bits
C14 = B13 : most significant 25 bits
B14 = B14 : most significant 20 bits

In total we already recover 70 bits of the registers. We could proceed to Phase 4
and guess the remaining 58 bits. This would yield a key recovery algorithm with
query complexity 247 and time complexity equal to about 258 MD5 operations,
which is much less than exhaustive key search.
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With refined analysis, we can further reduce the workload by doing an in-
significant number of additional queries in Phase 3. We do so by following similar
steps as in Phase 2, except recovering bits of earlier registers, namely the most
significant (32 − st) bits of B10, B9, B8. Once these bits are known, the inter-
action between successive steps can be used to determine 10 more bits of the
registers (A14, D14, C14, B14) up to a possible small additive error. Due to space
limits, specific details are omitted. Together with an early stopping technique in
Phase 4, the remaining workload is at most 245 MD5 operations. This can be
reduced further, but 245 is already do-able with moderate computing resources.
The total number of queries is still dominated by that of Phase 1, which is 247.

Implementation results. We have implemented the key recovery attack on
NMAC-MD5. In our implementation, we used a reduced-round version of MD5,
in which the last round (16 steps) is omitted. Since the attack only depends on
properties of the first round, the reduction in rounds does not affect the analysis
except that the query complexity is reduced from 247 to 231. In our experiment,
the algorithm correctly recovered the inner key bits.

Remarks on message modification techniques. In the key recovery analy-
sis, we use information about the collision differential paths to derive information
about the intermediate registers. To generate useful paths, we developed a new
message modification technique that works even when the internal hash compu-
tation is unknown due to the presence of the secret key.

It is worth comparing our modification techniques with Wang’s original mes-
sage modification techniques [21,22], which deals with the situation where the
entire hash computation is known since there is no secret for a keyless hash
function. Note that the objective of the modification is also different for collision
attacks and our key recovery attacks: the goal for the former is to modify mes-
sages so that collisions can occur with high probability; the goal for the latter is
to modify messages so that certain collisions may or may not occur, depending
upon the value of the secret key.

5.3 Attacks on the KDF in HMAC-MD5

Given our related-key attacks on NMAC-MD5, an immediate question is whether
they are applicable to HMAC-MD5. Since the difference between HMAC and
NMAC is the extra key derivation function KDF, we analyze properties of KDF in
HMAC-MD5, which consists of two functions of the form ki = f(IV, k⊕consti).
Here the MD5 compression function f is used as f(x, K), where x ∈ {0, 1}128
and the key K ∈ {0, 1}512. For ease of reference, we denote f(x, K) by gK(x).
So {gK}K∈{0,1}512 is a family of functions indexed by K.

As noted in Section 5.4 of [1], Rijmen observed that it seems possible to
extend the pseudo-collision of MD5 [9] to a distinguishing attack on {gK}. Here,
we describe the details of such an attack: The adversary generates 246 random
pairs (x, x′) such that x⊕x′ = Δmsb, and queries an oracle, which is either gK or
a truly random function. If the adversary observes a collision for any pair, then
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it identifies the oracle as gK ; otherwise, it identifies the oracle as a truly random
function. The complexity of the attack is 247 queries.

Recall that the HMAC security proofs [1,2] require KDF to be a PRF. However,
the above distinguishing attack implies that the KDF in HMAC-MD5 is not a
PRF. Despite the non-pseudorandomness, its presence does help HMAC-MD5
to resist our related-key attacks for the following reason. In order to apply the
attacks to HMAC-MD5, we would need to set appropriate differences in the
single key k and hope that (k1, k2) = KDF(k) would yield the required difference
for k2 while keeping k1 the same (see Equation (5)). However, this appears to be
very difficult, since any differences in k would almost certainly cause differences
in both k1 and k2, thus making the attacks impossible.

Of independent interest, we present a second preimage attack on gK , also
based on [9]. Here the key K can be either secret or known. The attack works as
follows: For a given random input x ∈ {0, 1}128, the adversary sets x′ such that
x⊕x′ = Δmsb, and outputs x′ as a second preimage of x. The success probability
is about 2−48, since the probability that x satisfies Equation (4) is 2−2, and the
probability that the pair (x, x′) then follows the differential path to produce a
collision is 2−46 (meaning x′ is a second preimage of x). Hence, the above attack
requires O(1) workload, no queries, and succeeds with probability 2−48, which
is much higher than the 2−128 theoretical bound.

6 Attacks on HMAC/NMAC with Other Hash Functions

The basis for our attacks on NMAC-MD5 is a collision differential path for the
keyed MD5 compression function that holds with relatively large probability. The
same ideas and techniques also apply to other underlying hash functions such
as MD4, SHA-0, and reduced SHA-1. In this section, we present three types of
attacks on HMAC and NMAC for these underlying hash functions, all in the
standard setting.

6.1 Attacks on HMAC/NMAC-MD4

MD4 has long been known to be insecure, but it was an open question whether
HMAC-MD4 can still be used as a PRF or a secure MAC. We answer the question
in the negative by presenting attacks on HMAC/NMAC-MD4.

Our attacks are based upon the second preimage attack on MD4 by Yu et
al. [25]. Table 3 of [25] gives a differential path that leads to a collision with
probability 2−62. The details that are most relevant to our attacks are the mes-
sage difference: there is only a one-bit difference in one of the message words,
namely, m4 ⊕m′

4 = 2i, and the path holds for any i (0 ≤ i < 32), for a total
of 32 possible paths. Given the paths, we can mount a distinguishing attack on
the keyed MD4 compression function, implying that the function is not a PRF.

For our distinguish attack on HMAC-MD4, there is only a single oracle O,
which can be either HMACk or a truly random function. The adversary generates
about 262 message pairs (m, m′) such that m4 ⊕m′

4 = 2i for some i, queries the
oracle, and observes whether a collision O(m) = O(m′) occurs. If so, it identifies
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the oracle as HMAC; otherwise, it identifies it as a truly random function. The
expected query complexity is 263, and the success probability is one. From the
collision, a forgery attack easily follows (similar to Section 5.1) which requires
an additional chosen query.

We can reduce the query complexity to 258 by using a structure, which is a
common trick in differential cryptanalysis. The idea is to take advantage of the
multiple differential paths by generating input pairs (m, m′) in a more compact
way as follows: First, generate 226 random m3 (it can actually be any message
word mj as long as j �= 4). Second, for each m3, generate all 232 possible values
for m4. Hence, the total number of messages is 258. It is easy to show that the
258 messages collectively create 262 pairs of (m, m′) for which m4 ⊕m′

4 = 2i for
some i. One of the pairs is expected to produce a collision.

We can construct a partial key recovery attack on HMAC-MD4 following
similar phases as that of NMAC-MD5. Given the form of the 32 differential
paths and their associated conditions, it is better to use only one path (i = 22)
for key recovery. Our analysis shows that the query complexity is roughly 263

and the remaining computation is order 240 MD4 operations.

6.2 Attacks on HMAC/NMAC-SHA0

Chabaud and Joux [10] presented the first collision attack on SHA-0 with com-
plexity 261. Their analysis also introduced important concepts such as local
collisions and disturbance vectors, which prove to be the basis for all subsequent
attacks on SHA-0 and SHA-1. The differential path used in their attack holds
with probability p = 2−83 (see Table 4 in [10] for detailed calculation). We can
use the differential path to construct distinguish and forgery attack on HMAC-
SHA0 with query complexity 284. One subtle issue for SHA-0 (and SHA-1) is
that we should generate message pairs so that they not only satisfy the required
message difference but also extra conditions on certain message bits.

A partial key recovery attack on HMAC-SHA0 can also be constructed. In
fact, the analysis would be much simpler than that of NMAC-MD5 due to
the particular form of the SHA-0 (and SHA-1) step function, which is Ai =
(Ai−1<<<5)+ fi(Bi−1, Ci−1, Di−1)+ Ei−1 + mi−1 + ki. Since there is no rotation
associated with the message word, we can use the bit flipping algorithm directly
(rather than the modified version) to recover the register Ai. Our analysis shows
that the query complexity is about 284, and the time complexity is about 260.

6.3 Attacks on Reduced-Round Variants of HMAC/NMAC-SHA1

Biham et al. [7] presented collision attacks on several reduced-round variants of
SHA-1. Their attack on 34-round SHA-1 used a disturbance vector with very
low Hamming weight (see Table 1 of [7]). Based on this vector, we calculated
the probability of the differential path to be 2−33, and it holds for half of the
randomly chosen IVs. This path implies that 34-round SHA-1 is not a PRF.
Using our techniques developed earlier, we can construct all three types of attacks
on HMAC-SHA1 when the inner function is reduced to 34 rounds. The query
complexity is about 234 and the success probability is 1/2 for a random key.



50 S. Contini and Y.L. Yin

6.4 Further Improvements

It is possible to further improve the complexity of our attacks. Krawczyk [16]
pointed out a useful tradeoff between query complexity and the success prob-
ability of the attacks. More specifically, we can construct new attacks with 2t

queries and success probability 2t−q, where 2q is the number of queries in our
original attacks and 1 ≤ t ≤ q. Biham [6] suggested that attacks on HMAC can
be extended to 40-round SHA-1 using results in [7].

7 A General Framework for Analyzing HMAC/NMAC

In this section we extend the approach in our attacks to provide a general frame-
work for analyzing HMAC/NMAC. Let DP be a collision differential path for the
compression function f , and let Δ = (Δcv, Δm) be the required input difference
for the path. Suppose that the path holds with probability at least P0 = 2−w

for a fraction q of all randomly chosen inputs (cv, cv′) and (m, m′) satisfying Δ.
We consider two cases depending on Δcv:

– Δcv = 0. In this case, the path DP yields a real collision. The attacks to be
considered are in the standard setting and apply to both HMAC and NMAC.

– Δcv �= 0. In this case, the path DP yields a pseudo-collision. The attacks to
be considered are in the related-key setting and apply only to NMAC.

There are three types of possible attacks, all having success probability q.

1. Distinguishing attack. The complexity is about O(2w+1) queries.
2. Forgery attack. If the hash function F is iterative, the distinguishing attack

implies a forgery attack with one additional chosen query.
3. Key recovery attack. If F has similar step functions as MDx, the collision

path may allow the recovery of the inner key in HMAC and NMAC. The
query complexity is O(2w+1), and the time complexity depends on the form
of the collision path.

To beat the generic birthday-type forgery attack, we need to find a collision
differential path such that P0 > 2−n/2, and to beat the exhaustive key search
attack, we need P0 > 2−n. Hence, the above general framework reduces the
problem of attacking HMAC/NMAC to the problem of finding a “good” collision
differential path for the underlying compression function.

Finding suitable differential paths. There have been many collision attacks
on hash functions, each relying on a specific differential path. One important
point is that a differential path that works best for finding collisions may not
be the best for the purpose of attacking HMAC and NMAC. To better explain
this, we introduce a variable Pr, which is the probability of the differential path
from Step r to the last step.

– For collision attacks, we should select a path such that Pr is minimized,
assuming message modification techniques can apply up to Step r-1 of the
hash function.

– For attacks on HMAC and NMAC, we should select a path such that P0 is
minimized.
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For example, for the purpose of analyzing HMAC-SHA0, Chabaud and Joux’s
attack offers a better differential path than the improved collision attack in [23],
since the probability P0 associated with the differential path in the former attack
is much larger than the latter.

To break HMAC-MD5, we would need to find differential paths that hold with
large enough probability P0 and lead to real collisions. The differential path in
Wang’s MD5 attack [21] was constructed to minimize P17 (≈ 2−37) so that it
works best with modification techniques. The total probability P0 of the path
is only about 2−300. So far, improvements to the MD5 attack were all due to
refined modification techniques: nobody has discovered new differential paths.
An open question is whether differential paths for MD5 with P0 > 2−128 can be
found. New automated search methods may provide promising ways for finding
such differential paths.
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A The Bit Flipping Algorithms

We first give the bit flipping algorithm in Figure 1. This is for the simplified
MD5 step function where the rotation is eliminated.

For j = 0, . . . , t− 1, set m∗
j = mj

Set d = 0 (a)
For i = 30 downto 0 do (b)
{

Set m∗
t = mt + 2i + d (c)

Repeat order 246−t times
{

Choose m∗
t+1, . . . , m

∗
15 at random.

/* now all 16 words of m∗ have been set */
Query the two nmac oracles on m∗

If there is a collision, then
{

Bit i of Bt+1 is 0
Set d = d + 2i (d)
break;

}
}
If no collision found, then bit i of Bt+1 is 1

}

Fig. 1. Bit flipping algorithm for computing Bt+1
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The modified bit flipping algorithm is similar, except the following four steps:

– Step (a) ⇒ Set d′ = 0
– Step (b) ⇒ For i′ = 30− st downto 0 do
– Step (c) ⇒ Set m∗

t = mt + 2i′ + d′

– Step (d) ⇒ Set d′ = d′ + 2i′


	Introduction
	Summary of Main Results
	Use of Hash Collisions in Our Attacks
	Other Results
	Implications
	Organization of the Paper

	Related Work
	Preliminaries
	Hash Functions and the MDx Family
	Message Authentication Codes, HMAC and NMAC

	Pseudo-collisions of MD5
	Related-Key Attacks on NMAC-MD5
	Related-Key Distinguishing and Forgery Attacks on NMAC-MD5
	Related-Key Key Recovery Attack on NMAC-MD5
	Attacks on the KDF in HMAC-MD5

	Attacks on HMAC/NMAC with Other Hash Functions
	Attacks on HMAC/NMAC-MD4
	Attacks on HMAC/NMAC-SHA0
	Attacks on Reduced-Round Variants of HMAC/NMAC-SHA1
	Further Improvements

	A General Framework for Analyzing HMAC/NMAC
	The Bit Flipping Algorithms


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




