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Abstract. Ontology matching is a crucial task to enable interoperation
between Web applications using different but related ontologies. Today,
most of the ontology matching techniques are targeted to find 1:1 map-
pings. However, block mappings are in fact more pervasive. In this pa-
per, we discuss the block matching problem and suggest that both the
mapping quality and the partitioning quality should be considered in
block matching. We propose a novel partitioning-based approach to ad-
dress the block matching issue. It considers both linguistic and structural
characteristics of domain entities based on virtual documents, and uses a
hierarchical bisection algorithm for partitioning. We set up two kinds of
metrics to evaluate of the quality of block matching. The experimental
results demonstrate that our approach is feasible.

1 Introduction

Web ontologies written in RDF [12] or OWL [19] play a prominent role in the
Semantic Web. Due to the decentralized nature of the Web, there always exist
multiple ontologies from overlapped domains or even from the same domain. In
order to enable interoperation between Web applications using different but re-
lated ontologies, we need to establish mappings between ontologies for capturing
the semantic correspondence between them.

The common relationship cardinality of mappings between concepts, relations
or instances (we uniformly name them as domain entities) of ontologies is 1:1.
However, mappings between sets of domain entities are more pervasive. In par-
ticular, 1:1 mappings can be viewed as a special case of mappings between sets
of domain entities. In this paper, a block is a set of domain entities. A block
mapping is a pair of matched blocks from two ontologies in correspondence. We
refer to the process of discovering block mappings as block matching.

Block matching is required in many occasions. Two discriminative examples
are illustrated as follows.

Example 1. Given two ontologies (denoted by O1 and O2), O1 contains three
domain entities: Month, Day and Year; while O2 contains a single domain entity:
Date. We can see Month, Day and Year are parts of Date. So it is more natural
to match the block {Month, Day, Year} in O1 with the block {Date} in O2.
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Example 2. When two ontologies being compared, block matching can provide
us a general picture at a higher level to explore macroscopical correspondences
between the main topics assigned to these two ontologies, and it may also help
to generate some new focused ontologies from the original block mappings.

The blocking matching problem can be transformed to a special kind of parti-
tioning problem. Usually, it is required that blocks in either of the two ontolo-
gies should be disjointed with each other. So all the block mappings essentially
compose a partitioning of all domain entities from the two ontologies with the
requirement that each partition should contain at least one domain entity from
each of the two ontologies. From the viewpoint of partitioning, the cohesiveness
within each block mapping should be high; while the coupling crossing different
block mappings should be low. Therefore, in addition to the inherent difficulties
in discovering the high quality mappings, the block matching problem is exac-
erbated by having to consider the partitioning quality of the block matching.

Nowadays, quite a lot of algorithms have been proposed in literature address-
ing the ontology matching problem. Glue [6], Qom [7], Ola [8], S-Match [10],
Hcone-merge [13], Prompt [14], V-Doc [20] and I-Sub [23] are such works.
However, these algorithms cannot solve the block matching problem since they
are targeted to find 1:1 mappings. To our knowledge, the block matching prob-
lem has only been addressed before in Pbm [11]. But it merely partitions two
large class hierarchies separately without considering the correspondence be-
tween them. Certainly, the mapping quality is not satisfied. In addition, it just
copes with mappings between classes, thus it is not a general solution for ontol-
ogy matching.

In this paper, we propose a new partitioning-based approach to address the
block matching problem. Partitioning entails both developing a relatedness mea-
sure and choosing an appropriate partitioning algorithm. We consider both
linguistic and structural characteristics of domain entities based on virtual docu-
ments for the relatedness measure [20]. The novelty of this measure is that both
the mapping quality and the partitioning quality can be guaranteed simultane-
ously. We present a hierarchical bisection algorithm for partitioning, which can
provide block mappings at different levels of granularity. We also describe an
automatical process to extract the optimal block mappings with a given number
of block mappings. Besides, we assume the mappings between blocks is 1:1 in
order to avoid the combinatorial explosion of the search space.

The remainder of this paper is organized as follows. Section 2 sketches out
our approach. Section 3 introduces the computation of the relatedness among
domain entities by virtual documents. Section 4 presents a hierarchical bisection
algorithm based on the relatedness, and describes a method to automatically
extract the optimal block mappings for a flat partitioning. Section 5 sets up two
kinds of metrics to evaluate of the quality of the block matching generated by
our approach. Section 6 discusses some related works on ontology matching as
well as some related works on ontology partitioning. Finally, Section 7 provides
concluding remarks.
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2 Overview of the Approach

The overview of the approach is illustrated in Figure 1. Generally speaking, our
approach starts with two ontologies to be compared as input, and then after four
processing stages, the output returns block mappings between the two ontologies.
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Fig. 1. The overview of the approach

1. Constructing virtual documents. The process constructs virtual document
for each domain entity of the input ontologies. We make use of the virtual
documents as the features of domain entities to be compared. The virtual
document of a domain entity consists of a collection of weighted words; these
words come from not only the local descriptions (e.g., labels) but also the
neighboring information to reflect the intended meaning of the entity.

2. Computing relatedness among domain entities. The process sets up the relat-
edness for any two domain entities by computing the similarity between the
virtual documents of them in correspondence. More precisely, it includes the
comparison among domain entities within each of the two ontologies as well
as those crossing the two ontologies. Therefore, the linguistic and structural
characteristics are both revealed simultaneously in a uniform process.

3. Partitioning by a hierarchical bisection algorithm. The hierarchical bisection
algorithm acts on the set of domain entities from the two ontologies. It re-
cursively partitions the unrelated or dissimilar domain entities into disjoint
blocks mappings. As a result, the similar ones are fallen into the same block
mapping (containing the domain entities from the two ontologies). The al-
gorithm returns a dendrogram (a typical type of tree structure) consisting
of layers of block mappings at different levels of granularity.

4. Extracting the optimal block mappings. The process finds the optimal block
mappings in the dendrogram derived from the hierarchical bisection algo-
rithm for a flat partitioning with a given number of block mappings.

We will further describe each process in the next two sections.
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3 Relatedness Among Domain Entities

In this section, we construct virtual documents for the domain entities declared
in OWL/RDF ontologies. Then, we compute the relatedness among the domain
entities by calculating the similarity among the virtual documents.

3.1 Construction of Virtual Documents

The RDF graph model is the foundation of the Semantic Web ontologies, and
OWL ontologies can also be mapped to RDF graphs [19]. Therefore, we uniformly
use the RDF graph model to represent ontologies.

An RDF graph is a set of triples (statements). An RDF triple is conventionally
written in the order (subject, predicate, object). A node in an RDF graph may
be a literal, a URI with an optional local name (URI reference, or URIref), or a
blank node. Please note that a predicate is always a URIref, and a literal cannot
be a subject.

In the field of Information Retrieval, the content of a document might be
represented as a collection of tokens: words, stems, phrases, or other units derived
or inferred from the text of the document. These tokens are usually weighted to
indicate their importance within the document which can then be viewed as a
vector in a high dimensional space. In this paper, a virtual document represents a
collection of weighted tokens, and the weights are rational numbers. To simplify
the expression, we use the term a collection of words instead of a collection of
weighted tokens.

As a collection of words, the virtual document of a domain entity contains
not only the local descriptions but also the neighboring information to reflect
the intended meaning of the entity.

– Local descriptions. For a literal node, the local description is a collection of
words derived from the literal itself. For a URIref, it is a collection of words
extracted from the local name, rdfs:label(s), rdfs:comment(s) and other pos-
sible annotations. For a blank node, it is a collection of words extracted from
the information originated from the forward neighbors. A weighting scheme
is incorporated in the formation of the description.

– Neighboring Information. We capture different kinds of neighbors (subject
neighbors, predicate neighbors and object neighbors) by distinguishing the
places the nodes occurred in triples. The descriptions of these neighbors are
integrated as neighboring information in the virtual document of a domain
entity to reflect the structural information of the domain entity.

For formal definitions, please refer to [20].

3.2 Computation of Relatedness

The similarity among virtual documents of domain entities is calculated in the
Vector Space Model (VSM) [17]. In this model, the virtual document of a domain
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entity is considered to be a vector. In particular, we employ the TF/IDF [21]
term weighting model, in which each virtual document can be represented as
follows:

(tf1 · idf1, tf2 · idf2, ..., tfn · idfn), (1)

where tfi is the frequency of the ith word in a given virtual document and idfi

is the distinguishability of the word in such document w.r.t. the whole. So the
TF/IDF term weighting model gives prominence to the words close by related
to the given virtual documents, which to some extent exposes the latent features
of the virtual documents.

The similarity between virtual documents is measured by the cosine value
between the two vectors

−→
Ni and

−→
Nj, corresponding to two virtual documents Di

and Dj in the Vector Space Model. The measure is defined as follows:

sim(Di, Dj) = cos(
−→
Ni,

−→
Nj) =

∑d
k=1 niknjk

√
(
∑d

k=1 n2
ik)(

∑d
k=1 n2

jk)
, (2)

where d is the dimension of the vector space, and nik (njk) is the kth component
of the vector

−→
Ni (

−→
Nj). If the two virtual documents do not share any words, the

similarity will be 0.0. If all the word scores equal completely, it will be 1.0.
After computing the similarity among virtual documents within each of the

two ontologies as well as crossing the two ontologies, we can obtain a relatedness
matrix, denoted by W . The matrix has the following block structure:

W =
(

W11 W12
WT

12 W22

)

, (3)

where W11 is a matrix representing the relatedness among domain entities within
the ontology O1, and W22 is similarly defined for the ontology O2. W12 is a matrix
representing the relatedness among domain entities between O1 and O2. Please
note that we assume that the relatedness among domain entities is symmetric
in our approach.

The relatedness matrix W has two features. Firstly, both of linguistic and
structural relatedness within each of the two ontologies are reflected in W11
and W22, respectively. For example, to exhibit structural relatedness within O1
or O2, each domain entity collects its neighboring information, i.e., the local
descriptions of the subject, predicate or object neighbors, and then the structural
affinity between any two entities is revealed through shared words obtained from
neighborhood relationship in Vector Space Model. In other words, two entities
within O1 or O2 are more related if they co-occur in more statements. Secondly,
linguistic relatedness crossing ontologies is characterized by W12. This matrix is
one of the most important key points in this paper.
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4 Partitioning for Block Matching

In this section, we present a hierarchical bisection algorithm based on the relat-
edness among domain entities. Besides, we describe a method to automatically
find the optimal block mappings with a given number of block mappings.

4.1 The Hierarchical Bisection Algorithm

The objective of a partitioning solution is seeking to partition the set of vertices
V into disjoint clusters V1, V2, ..., Vn, where by some measure the cohesiveness
among the vertices in a cluster Vi is high; while the coupling crossing different
clusters Vi, Vj is low. In the context of this paper, we seek to partition domain
entities of two ontologies into block mappings, so that the relatedness among
the domain entities in a block mapping is high, and that crossing different block
mappings is low.

The partitioning approach we present in this paper is a hierarchical bisection
algorithm. In each bisection, it partitions the domain entities into two disjoint
block mappings B1, B2. We adopt the min-max cut (Mcut) function [5] as the
criterion function. It minimizes the relatedness between the two block mappings
meanwhile maximizes the relatedness within each block mapping. The Mcut
function is defined as follows:

Mcut(B1, B2) =
cut(B1, B2)

W (B1)
+

cut(B1, B2)
W (B2)

, (4)

where cut(B1, B2) is the sum of the relatedness among domain entities across B1
and B2. W (B1) is the sum of the relatedness within B1 and W (B2) is similarly
defined. The optimal bisection is the one that minimizes the Mcut.

The optimal solution of Mcut is NP-complete. However, the relaxed version of
this objective function optimization can be well solved in a spectral way. Roughly
speaking, spectral partitioning makes use of the eigenvalues and eigenvectors of
the relatedness matrix to find a partitioning. The merit of the spectral methods
is the easiness in implementation and the reasonable performance. Furthermore,
they do not intrinsically suffer from the problem of local optima.

In addition, our approach is a hierarchical approach. The reason is that it is
usually difficult to specify the exact partitioning for a given domain, and there
may not be a single correct answer. The block mappings in each bisection form a
dendrogram. The dendrogram provides a view of the block mappings at different
levels of granularity, which allows flat partitions of different granularity to be
extracted. In Section 4.2, we make use of the dendrogram to extract the optimal
block mappings.

The algorithm is illustrated in Table 1. The input of the algorithm is a related-
ness matrix W . During a run, it recursively bisects a matrix into two submatrices
by searching the minimum Mcut. In the end, it returns a dendrogram consisting
of layers of block mappings at different levels of granularity. The eigenvector cor-
responding to the second smallest eigenvalue in Step 3 is also called the Fielder
vector [9]. It provides a linear search order (Fielder order). The discussion on
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the properties of the Fielder vector is out of the scope of this paper. In Step 4,
we set a parameter ε to limit the minimum number of domain entities in each
block mapping, which can decrease the recursion times. In our experiments, we
set the parameter ε to 10.

Table 1. The hierarchical bisection algorithm

Algorithm. The hierarchical bisection algorithm.

Input. A relatedness matrix W , and a parameter ε.
Output. A dendrogram consisting of layers of block mappings.

1. Initialize a diagonal matrix D with the row sums of W on its diagonal.
2. Solve the eigenvalues and eigenvectors of (D − W ).
3. Let v be the eigenvector corresponding to the second smallest eigenvalue.

3.1 Sort v so that vi < vi+1

3.2 Find the splitting point t such that
(A, B) = ({1, ..., t}, {t + 1, ..., |v|}) minimizes the Mcut.

4. Let WA, WB be the submatrices of W , respectively.
4.1 Recurse (Steps 1–3) on WA until

the number of domain entities within WA is less than ε.
4.2 Recurse (Steps 1–3) on WB until

the number of domain entities within WB is less than ε.

The time complexity of Steps 1–4 is O(m+n), where m denotes the number of
nonzero components in W and n denotes the number of domain entities (equals
to the row (or column) dimension of W ). The most time-consuming step is Step
2. Usually, the time complexity of eigenvalue decomposition is O(n3). Since we
only need a vector with the second smallest eigenvalue, the time complexity can
be decreased to O(m + n) via the Lanczos method [16].

4.2 Extraction of the Optimal Block Mappings

So far, we have constructed a dendrogram by the hierarchical bisection algorithm
presented above. In some cases, we would like to obtain a flat partitioning with
a given number of block mappings k. For this purpose, we need to extract the
optimal block mappings from the dendrogram. In this paper, we use the dynamic
programming method proposed in [2,5].

Let opt(Bi, p) be the optimal block mappings for Bi using p block mappings.
Bl, Br denotes the left and right children of Bi in the dendrogram, respectively.
Then, we have the following recurrence:

opt(Bi, p) =

{
Bi if p = 1
arg min1≤j<p g(opt(Bl, j) ∪ opt(Br, p − j)) otherwise

, (5)
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where g is the objective function, which is defined as follows:

g({B1, B2, ..., Bp}) = min(
cut(B1, B1)

W (B1)
+

cut(B2, B2)
W (B2)

+ · · · + cut(Bp, Bp)
W (Bp)

). (6)

By computing the optimal block mappings from the leaf nodes in the den-
drogram firstly, we can finally gain opt(Broot, k), which includes k optimal block
mappings for a flat partitioning.

5 Evaluation

We have implemented our approach in Java, called Bmo, and then evaluated its
performance experimentally. Due to lack of space, we cannot list all the details
about our experiments. The test cases and all the experimental results can be
downloaded from our website 1. Please note that in our evaluation, we focus on
the domain entities at the schema level, i.e., we just consider the classes and
properties in ontologies. However, it is worthy of noting that our approach can
easily be extended to the ontologies containing instances.

5.1 Case Study

In our evaluation, we choose two pairs of ontologies: russia12 and tourismAB.
They can be downloaded from the website 2. The reasons for selecting them as
test cases are: (i) they are from real world domains and famous in the field of
ontology matching, (ii) their sizes are moderate. If the sizes of ontologies are
too small, it is unnecessary to partition them into blocks; while if the sizes are
too large, they are not appropriate for human observation, and (iii) they have
reference files contains aligned domain entity pairs. Short descriptions of the two
pairs of ontologies are given below.

– russia12. The two ontologies are created independently by different people
from the contents of two travel websites about Russia. russia1 contains 151
classes and 76 properties. russia2 contains 162 classes and 81 properties.
The reference alignment file contains 85 aligned domain entity pairs.

– tourismAB. The two ontologies are created separately by different communi-
ties describing the tourism domain of Mecklenburg-Vorpommern (a federal
state in the northeast of Germany). tourismA contains 340 classes and 97
properties. tourismB contains 474 classes and 100 properties. The reference
alignment file contains 226 aligned domain entity pairs.

5.2 Experimental Methodology and Evaluation Metrics

Let us recall that the ideal block mappings should have both high mapping qual-
ity and high partitioning quality. In order to measure the two kinds of quality,
1 http://xobjects.seu.edu.cn/project/falcon/
2 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/



308 W. Hu and Y. Qu

two experiments are designed to evaluate the effectiveness of Bmo. The first
experiment is to measure the mapping quality of block mappings. The other one
is to assess the partitioning quality of block mappings. Besides, we also make a
comparison between Bmo and Pbm [11].

In the first experiment, we evaluate the mapping quality of the computed block
mappings by observing the correctness with the variation of the number of the
block mappings. The rationale is that the higher the quality of the block matching
is, the more aligned domain entity pairs could be found in the block mappings.

Let B be a set of the computed block mappings (|B| = n). Bi denotes the ith
block mapping in B. Let R be a set of aligned domain entity pairs in a reference
alignment file (|R| = r). Rp denotes the pth aligned domain entity pair in R.
The correctness of B is defined as follows:

correctness(B) =
1
r

n∑

i=1

|{Rp|Rp ⊆ Bi, 1 ≤ p ≤ r}|. (7)

Intuitively, the correctness of B increases when the number of the block mappings
decreases. In particular, when n = 1, the correctness of B is 1.0. However, it is
clear that merely considering the metric of the correctness is not sound. We need
to evaluate the quality of block mappings in other aspects.

In the second experiment, we focus on evaluating the partitioning quality
of the block matching. Three volunteers are trained to set up manual block
mappings. We assess the partitioning quality of the computed block mappings
by comparing with the manual ones. In this experiment, we set n equal to the
number of block mappings of the manual ones. This kind of measurement is
widely adopted in the field of Data Clustering.

We use two well-known metrics to compare the gained block mappings with
the manual ones. The first metric is f-measure. The other one is entropy. Before
introducing the two metrics, we firstly defined two basic operations (precision
and recall), which are used to compare a gained block mapping with a manual
one. Let C be the set of the manual block mappings (|C| = m). Cj denotes
the jth block mapping in C. |Bi| returns the number of domain entities in Bi,
and |Cj | is defined analogously. |Bi ∩ Cj | calculates the mutual domain entities
in both Bi and Cj . The precision and recall of a computed block mapping Bi

referring to Cj are defined as follows respectively:

prec(Bi, Cj) =
|Bi ∩ Cj |

|Bi|
, (8)

reca(Bi, Cj) =
|Bi ∩ Cj |

|Cj |
. (9)

The f-measure is defined as a combination of the precision and recall. Its score
is in the range [0, 1], and a higher f-measure score implies a better partitioning
quality. The f-measure of the set of computed block mappings B is defined as
follows:
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f -measure(B) =
1

∑n
i=1 |Bi|

·
n∑

i=1

f -measure(Bi) · |Bi|, (10)

f -measure(Bi) = max
1≤j≤m

2 · prec(Bi, Cj) · reca(Bi, Cj)
prec(Bi, Cj) + reca(Bi, Cj)

. (11)

The other metric is the entropy. It considers the distribution of domain entities
in block mappings and reflects the overall partitioning quality. A lower entropy
score implies a better partitioning quality. The best possible entropy score is 0;
while the worst is 1. The entropy of the set of the computed block mappings B
is defined as follows:

entropy(B) =
1

∑n
i=1 |Bi|

·
n∑

i=1

entropy(Bi) · |Bi|, (12)

entropy(Bi) = − 1
logm

·
m∑

j=1

prec(Bi, Cj) · log(prec(Bi, Cj)). (13)

In the last experiment, we compare both the mapping quality and the parti-
tioning quality of Bmo with Pbm [11]. Because Pbm merely copes with mappings
between classes, for comparing the mapping quality, we remove the aligned prop-
erty pairs in the reference alignment files, only retaining 70 aligned class pairs
in russia12 and 190 aligned class pairs in tourismAB. In addition, we construct
the manual block mappings only between classes to evaluate the partitioning
quality of these two approaches.

5.3 Discussion on Experimental Results

Firstly, the correctness with the variation of the number of the block mappings
(denoted by n) is depicted in Figure 2. We can see that in the two test cases,
when n increases, the correctness of the block mappings decreases. We can also
find that in most situations, the correctness of the results is fine. In particular, in
tourismAB, when n = 50, the correctness is still larger than 95%. It demonstrates
that the mapping quality of the block mappings computed by Bmo is high. In
addition, the correctness does not decrease drastically as n increases. It implies
that Bmo is stable with a pretty good accuracy.

Secondly, by setting the number of the required block mappings (25 block
mappings for russia12, and 26 block mappings for tourismAB), we can compare
the the results of Bmo with the manual ones to evaluate the partitioning quality.
The partitioning quality of the computed block mappings are shown in Table 2.
Both the f-measure and the entropy are moderate.

Finally, the comparison results of the mapping quality and the partitioning
quality between Bmo and Pbm are presented in Table 3. Both the number of the
required block mappings for russia12 and for tourismAB are 13. From the table,
we can see that the partitioning quality between the two approach are almost
the same. However, the mapping quality of the Bmo approach is far beyond the
one of Pbm. For example, in russia12, the correctness of the Bmo approach is
0.84; while the one of Pbm is merely 0.57.
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Fig. 2. The correctness with the variation of the number of the block mappings n

Table 2. The partitioning quality of Bmo

number f-measure entropy
russia12 25 0.61 0.28
tourismAB 26 0.52 0.22

Table 3. The comparison between Bmo and Pbm

approach number correctness f-measure entropy

russia12
Bmo 13 0.84 0.56 0.37
Pbm 13 0.57 0.65 0.33

tourismAB
Bmo 13 0.98 0.67 0.31
Pbm 13 0.66 0.57 0.30

Based on the observations above, we can make a preliminary and empirical
conclusion that our approach is feasible for achieving a good mapping quality as
well as a good partitioning quality.

6 Related Work

In this section, we firstly discuss some related works on ontology matching, and
then we present some related works on ontology partitioning.

6.1 Ontology Matching

Despite many works (e.g., [6,7,8,10,11,13,14,20,23]) have addressed the ontology
matching (also called ontology mapping or alignment) problem, there exist very
few approaches raising the issue of block matching. Pbm [11] is the only work
we know so far that considers the block matching problem. It exploits block
mappings between two class hierarchies by firstly partitioning them into blocks
respectively, and then constructing the mappings between blocks via the pre-
defined anchors generated by the string comparison techniques. The weakness
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of that work is that it ignores the correspondence between the two hierarchies
when doing partitioning, so the mapping quality is not satisfied. Furthermore,
it just copes with mappings between classes, so it might not be applicable to
ontology matching in general.

In the field of schema matching (please see [18] for a survey), iMap [4] is semi-
automatically discovers both the 1:1 and complex mappings (e.g., room-price =
room-rate∗ (1+tax-rate)). It embeds two new kinds of domain knowledge (over-
lapped data and external data) to find complex mappings. However, iMap may
not be a universal solution, because it is not easy to specify the domain knowl-
edge in some cases. Artemis [1] is another work which vaguely presents the idea
of block matching. It firstly computes the 1:1 mappings between two ontologies
by using WordNet, and then constructs block mappings from the 1:1 mappings
via a clustering algorithm. This is similar to the framework of our approach.
But it is clear that the method always suffers from the high computational com-
plexity for calculating the 1:1 mappings. More importantly, it discards both the
linguistic and structural characteristics in each of the two ontologies, thus the
partitioning quality cannot be guaranteed.

6.2 Ontology Partitioning

From another viewpoint, our method partitions two ontologies into blocks
throughout the process of searching the block mappings. So it might be broken
down into the category of ontology partitioning. [3,15,22,24] are some represen-
tative works. However, these works only provide a flat partitioning on a single
ontology; while our work supports a hierarchical view with different levels of
granularity, and partitions two ontologies at the same time. But, we should note
that these ontology partitioning techniques might also be used to find block map-
pings by partitioning two ontologies separately, and then matching these blocks.
This is just the method adopted in Pbm. Although this kind of methodology
could deal with the block matching problem between large-scale ontologies, as
shown in our experiments, the mapping quality is usually not so good as Bmo’s.

7 Concluding Remarks

In summary, the main contributions of this paper are as follows.

– We discussed the block matching problem and suggested both the mapping
quality and the partitioning quality should be considered in block matching.

– We proposed a relatedness measure based on virtual documents that simul-
taneously importing both linguistic and structural characteristics of domain
entities.

– We presented a hierarchical bisection algorithm to provide block mappings at
different levels of granularity. Also, we described a method to automatically
extract the optimal block mappings for a flat partitioning.

– We set up two kinds of metrics to evaluate of the quality of block matching.
The experimental results demonstrated that our approach is feasible.
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The work reported here is a first step towards block matching for ontologies,
and many issues still need to be addressed. In future work, we plan to find
other possible approaches to block matching, and compare them with each other.
Furthermore, in order to make steady progress on the block matching problem,
it is valuable to set up systematic test cases for block matching. Another issue
is block matching for very large-scale ontologies.

Acknowledgements

The work is supported in part by the NSFC under Grant 60573083, and in part
by the 973 Program of China under Grant 2003CB317004, and also in part by
the JSNSF under Grant BK2003001. We are grateful to Prof. Jianming Deng and
Dr. Yanbing Wang for their valuable suggestions. We also thank Gong Cheng,
Yuanyuan Zhao and Dongdong Zheng for their work in the experiments related
to this paper. In the end, we appreciate anonymous reviewers for their precious
comments.

References

1. Castano, S., De Antonellis, V., and De Capitani Di Vimercati, S.: Global view-
ing of heterogeneous data sources. IEEE Transactions on Knowledge and Data
Engineering. 13(2) (2001) 277–297

2. Cheng, D., Kannan, R., Vempala, S., and Wang, G.: A divide-and-merge method-
ology for clustering. In Proceedings of the 24th ACM Symposium on Principles of
Database Systems (PODS’05). (2005) 196–205

3. Cuenca Grau, B., Parsia, B., and Sirin, E.: Combining OWL ontologies using ε-
connections. Journal of Web Semantics. 4(1) (2005)

4. Dhamankar, R., Lee, Y., Doan, A. H., Halevy, A., and Domingos, P.: iMAP: Dis-
covering complex semantic matches between database schemas. In Proceedings of
the 23th ACM International Conference on Management of Data (SIGMOD’04).
(2004) 383–394

5. Ding, C. H. Q., He, X., Zha, H., Gu, M., and Simon, H. D.: A min-max cut
algorithm for graph partitioning and data clustering. In Proceedings of the 2001
IEEE International Conference on Data Mining (ICDM’01). (2001) 107–114

6. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A. Y.: Learn-
ing to match ontologies on the semantic web. VLDB Journal. 12(4) (2003) 303–319

7. Ehrig, M., and Staab, S.: QOM - quick ontology mapping. In Proceedings of the
3rd International Semantic Web Conference (ISWC’04). (2004) 683–697

8. Euzenat, J., and Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04).
(2004) 333–337

9. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czechoslovak Mathematical Journal. 25 (1975)
619–633

10. Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: An algorithm and an
implementation of semantic matching. In Proceedings of the 1st European Semantic
Web Symposium (ESWS’04). (2004) 61–75



Block Matching for Ontologies 313

11. Hu, W., Zhao, Y. Y., and Qu, Y. Z.: Partition-based block matching of large class
hierarchies. In Proceedings of the 1st Asian Semantic Web Conference (ASWC’06).
(2006) 72–83

12. Klyne, G., and Carroll, J. J. (eds.): Resource description framework (RDF): Con-
cepts and abstract syntax. W3C Recommendation 10 February 2004. Latest version
is available at http://www.w3.org/TR/rdf-concepts/

13. Kotis, K., Vouros, G. A. , and Stergiou, K.: Towards automatic merging of domain
ontologies: The HCONE-merge approach. Journal of Web Semantics. 4(1) (2005)

14. Noy, N. F., and Musen, M. A.: The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies. 59
(2003) 983–1024

15. Noy, N. F., and Musen, M. A.: Specifying ontology views by traversal. In Proceed-
ings of the 3rd International Semantic Web Conference (ISWC’04). (2004) 713–725

16. Parlett, B. N.: The symmetric eigenvalue problem. SIAM Press. (1998)
17. Raghavan, V. V., and Wong, S. K. M.: A critical analysis of vector space model

for information retrieval. Journal of the American Society for Information Science.
37(5) (1986) 279–287

18. Rahm, E., and Bernstein, P.: A survey of approaches to automatic schema match-
ing. VLDB Journal. 10 (2001) 334–350

19. Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (eds.): OWL web ontology lan-
guage semantics and abstract syntax. W3C Recommendation 10 February 2004.
Latest version is available at http://www.w3.org/TR/owl-semantics/

20. Qu, Y. Z., Hu, W., and Cheng, G.: Constructing virtual documents for ontology
matching. In Proceedings of the 15th International World Wide Web Conference
(WWW’06). (2006) 23–31

21. Salton, G., and McGill, M. H.: Introduction to modern information retrieval.
McGraw-Hill. (1983)

22. Seidenberg, J., and Rector, A.: Web ontology segmentation: analysis, classification
and use. In Proceedings of the 15th International World Wide Web Conference
(WWW’06). (2006) 13–22

23. Stoilos, G., Stamou, G., and Kollias, S.: A string metric for ontology alignment. In
Proceedings of the 4th International Semantic Web Conference (ISWC’05). (2005)
623–637

24. Stuckenschmidt, H., and Klein, M.: Structure-based partitioning of large concept
hierarchies. In Proceedings of the 3rd International Semantic Web Conference
(ISWC’04). (2004) 289–303


	Introduction
	Overview of the Approach
	Relatedness Among Domain Entities
	Construction of Virtual Documents
	Computation of Relatedness

	Partitioning for Block Matching
	The Hierarchical Bisection Algorithm
	Extraction of the Optimal Block Mappings

	Evaluation
	Case Study
	Experimental Methodology and Evaluation Metrics
	Discussion on Experimental Results

	Related Work
	Ontology Matching
	Ontology Partitioning

	Concluding Remarks

