A Model Driven Approach for Building OWL DL
and OWL Full Ontologies

Saartje Brockmans', Robert M. Colomb?, Peter Haase!, Elisa F. Kendall?,
Evan K. Wallace*, Chris Welty®, and Guo Tong Xie®

L ATIFB, Universitit Karlsruhe (TH), Germany
2 School of Information Technology and Electrical Engineering, The University of
Queensland, Australia
3 Sandpiper Software, Inc., Los Altos, California
4 US National Institute of Standards and Technology, Gaithersburg, Maryland
5 IBM Watson Research Center, New York
6 IBM China Research Lab, China

Abstract. This paper presents an approach for visually modeling OWL
DL and OWL Full ontologies based on the well-established visual mod-
eling language UML. We discuss a metamodel for OWL based on the
Meta-Object Facility, an associated UML profile as visual syntax, and
transformations between both. The work we present supports model-
driven development of OWL ontologies and is currently undergoing the
standardization process of the Object Management Group. After describ-
ing our approach, we present the implementation of our approach and
an example, showing how the metamodel and UML profile can be used
to improve developing Semantic Web applications.

1 Introduction

The standardization of the Web Ontology Language (OWL, [§]) by the World
Wide Web Consortium (W3C) contributed heavily to the wide-spread use of on-
tologies. In 2003, the Object Management Group (OMG), a standardization con-
sortium for various aspects of software engineering including the well-established
Unified Modeling Language (UML, [24]), replied to this by issuing a Request for
Proposal for an Ontology Definition Metamodel (ODM, [1§]). The intention was
to provide a Meta-Object Facility (MOF, [23]) based metamodel to support the
development of ontologies using UML modeling tools and the two-way transfor-
mation between ontologies written in a specific ontology representation language
and ontologies modeled using a dedicated UML syntax. Since that time, a sub-
mission team has developed a submission (see [7] for a concise overview) which
has undergone several revisions, based on comments solicited not only of the
OMG but from the W3C, ISO and Semantic Web communities as well.

The ODM submission supports the knowledge representation languages OWL
[8], RDF [I], Common Logic [15] and Topic Maps [I4]. The modular structure
of MOF makes it straightforward for third parties to extend and enhance the
metamodel.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 187200 2006.
© Springer-Verlag Berlin Heidelberg 2006

188 S. Brockmans et al.

This paper focuses on the OWL portions of the ODM submission, which is
currently in adoption recommendation vote at OMG. It supports model-driven
development of OWL DL as well as OWL Full ontologies using UML and two-way
transformations between ontologies modeled in OWL and ontologies modeled us-
ing the UML profile. We have not explicitly covered OWL Lite, but all constructs
are provided in the base OWL and OWL DL packages. The paper starts with an
introduction of the Model Driven Architecture and its Meta-Object Facility, and
UML profiles in Section 2l Then, the metamodel for OWL, the associated UML
profile and the transformations between the different models are described in
Section Bl Section M shows the implementation of our approach and an example.
Finally, after discussing related work in Section B, we conclude by summarizing
our work and addressing future investigations in Section [6l

2 Background

2.1 Model Driven Architecture and the Meta-object Facility

Before presenting the model-driven approach to ontology engineering in the next
sections, we summarize the Object Management Group’s Model Driven Archi-
tecture (MDA, [5]) and its Meta-Object Facility (MOF, [23]), which is one of
the main pillars of our approach.

In the history of software engineering, there has been a notable increase of
the use of models and the level of abstraction in the models. The basic idea
of MDA is that the system functionality is defined as a platform-independent
model, using an appropriate specification language and then translated to one
or more platform-specific models for the actual implementation. To accomplish
this goal, MDA defines an architecture that provides a set of guidelines for struc-
turing specifications expressed as models. The translation between a platform-
independent model and platform-specific models is often performed using auto-
mated tools.

MDA comprises of a four-layer metamodel architecture: meta-metamodel
(M3) layer, metamodel (M2) layer, model (M1) layer, and instance (MO0) layer.
At the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines
an abstract language and framework for specifying, constructing and managing
technology neutral metamodels. It is the foundation for defining any model-
ing language such as UML. MOF also defines a framework for implementing
repositories that hold metadata (models) described by metamodels. The main
objective of having the four layers with a common meta-metamodel is to support
multiple metamodels and models and to enable their extensibility, integration
and generic model and metamodel management. Note that the meta-metamodel
layer is hard wired in the sense that it is fixed, while the layer of the metamodels
is flexible and allows expression of various metamodels. All metamodels, stan-
dard or custom, defined by MOF are positioned at the M2 layer. One of these is
UML, a graphical modeling language for specifying, visualizing and documenting
software systems. The models of the real world, represented by concepts defined
in the corresponding metamodel at M2 layer (e.g., UML metamodel) are at M1

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 189

layer. Finally, at MO layer, are objects from the real world or information objects
representing these in an information system.

A MOF-based metamodel has clear advantages being based on a standard
meta-metamodelling system with a well-developed suite of software tools and
integrated transformation possibilities with other MOF-based metamodels.[11].

2.2 UML Profiles

UML methodology, tools and technology seem to be a feasible approach for sup-
porting the development and maintenance of ontologies. The UML class diagram
is a rich representation system, widely used, and well-supported with software
tools. However, an ontology cannot be sufficiently represented in UML [12] and
a dedicated visual ontology modeling language is needed. The two representa-
tions share a set of core functionalities but despite this overlap, there are many
features which can only be expressed in OWL, and others which can only be
expressed in UML. Examples for this disjointness are transitive and symmetric
properties in OWL or methods in UML.

The UML profile mechanism is an extension mechanism to tailor UML to spe-
cific application areas. UML profiles provide specializations, using stereotypes,
of existing UML constructs. They are grounded in MOF, in that they are defined
in terms of the MOF meta-metamodel. Moreover, they are based on the UML
Kernel package and the Profiles section defined in [21].

3 Approach

In this section, we present a MOF-based metamodel for OWL DL and OWL Full.
Models based on these metamodels are OWL ontologies. OWL constructs have
a direct correspondence with those of the metamodel. Analogously, we define
a MOF-based UML profile, which is instantiated by concrete UML models, to
enable the use of UML notation and tools for ontology modeling. Within the
MOF framework, the UML models are transformed into OWL definitions and
vice versa.

3.1 A Metamodel for OWL DL and OWL Full

Overview and Design Considerations. As mentioned in Section [} although
we focus on OWL in this paper, the ODM submission at OMG provides meta-
models for several knowledge representation languages. All these are independent
of each other, except the OWL metamodel which extends the RDFS metamodel,
as the OWL language itself extends the RDF-S language. The metamodel for
OWL specifically, contains three packages. First of all, the primary OWLBase
package contains the metamodel constructs common to both OWL DL and OWL
Full. Two additional subpackages, the OWLDL package and the OWLFull pack-
age, contain constraints and extensions required to distinguish the two dialects
OWL DL and OWL Full from one another, as explained in more detail later in

190 S. Brockmans et al.

this section. Users can elect to support the primary package and either or both
of the subordinate packages in order to have complete coverage of either or both
dialects of OWL. All metamodel packages are provided with constraints in the
Object Constraint Language (OCL, [20]). These expressions specify invariant
conditions that must hold for the ontologies being modeled. For the constraints
on the metamodel, we refer the user to [13].

We now go through the different parts of the OWLBase metamodel package
and show some of the diagrams. Subsequently, we introduce the OWLDL and
OWLFull packages.

RDFSResource ROFGraph

P

Prioe ersion Incompetibleiith i)
+ontology +OWLprioi\farsion +OWLincompatibleViith ontology
. 0.y A0 a.*
CcwLontology GraphorOmiclogy OWLGraph
a.” 1.0
+ertology +owiGraph 1
ol Graph
FStatementorGraph
+owiStatement
StatementForOntology . LA
0.r 17 OWLStatement
0. 0. % o g tomdegy ent
4ontology | +OWLbackwardCompatiblelith | +antalogy +OWWLimparts +HmportingOntology
BeckwardCompatiblelVih Vrsioninfol Imports
+OWLiersicnkip W
. ROFStatement
RODFSLiteral

IsRelfledOnly : Boolean[0.1]
isReified : Boolean[D..1]

Fig. 1. The Ontology Diagram

OWLBase Package - OWL Ontology. The RDF metamodel represents an
RDFStatement as a triple, containing subject, predicate and object whereas an
RDFGraph is a set of triples (RDFStatements). As shown in Figure[l] the OWLGraph
class specifies the subset of RDF graphs that are valid OWL graphs, consisting
of all OWL expressions. Similarly, the subset of RDF statements that are valid
OWL statements is reflected by the OWLStatement class. The distinction be-
tween OWLStatement and RDFStatement is required, as in OWL DL not every
RDFStatement is a valid OWLStatement. An ontology is identified by a URI refer-
ence (inherited from RDFSResource), which allows us to make statements about
that ontology.

OWLBase Package - Class Descriptions. The metamodel has a class
OWLClass for simple OWL class definitions defined as a special type of
RDFSClass. Moreover, it has subclasses which represent special types of OWL
class descriptions: ComplementClass, EnumeratedClass, IntersectionClass,

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 191

RDFSClass
L
. +OWlenuivalentClass -+ LdisjointWith
EquivalentCiass] = -
+equivalentClass - = +digjointClass
0. OWLClass 0.*

isDeprecated : Boolean[0..1]

+OWLintersectionOf
+ 0.
O complementOf IntersectionCiassForlmtersection
1
0+
+OWLunionOf
ComplementCidssForComplement Zr UnionGClassFarlinion
+complementClass +unionClass
0. -
| ComplementClass H EnumeratedClass || IntersectionClass ‘ ‘ OWLRestriction ‘ ‘ UnionClass |
0. -
+enumeratedClags +intersectionClass

IndhivicualForEnumeratedClass

+OWLaoneOf
..

Individual

Fig. 2. OWL Class Descriptions

OWLRestriction and UnionClass. An EnumeratedClass is connected to
Individuals through an association role OWLoneOf. Associatons between
the classes define the classes in the class descriptions, e.g. the association
IntersectionClassForIntersection between IntersectionClass and
OWLClass connects the classes of an intersection. Associations EquivalentClass
and DisjointClass represent the OWL class axioms, e.g. EquivalentClass
connects a class to another class with which it is defined to be equivalent.

The class OWLRestriction is defined as a subclass of OWLClass. OWL dis-
tinguishes two kinds of property restrictions: value constraints and cardinality
constraints. All OWL property restriction types are defined as subclasses of
the class OWLRestriction. A restriction class should have exactly one property
OWLonProperty linking the restriction to a particular property. The restriction
class must also have a property that represents the value or cardinality constraint
on the property under consideration.

OWLBase Package - Properties. As shown in Figure B the OWL meta-
model refines the RDFProperty class to support specific OWL properties. Both
object properties and datatype properties can be declared as "functional". For
this purpose, we define the class FunctionalProperty as a special subclass
of the class Property. Property is an abstract class that simplifies repre-
sentation of property equivalence and deprecation, simplifies constraints for
OWL DL and OWL Full, and facilitates mappings with other metamodels.

192 S. Brockmans et al.

The class InverseFunctionalProperty is a subclass of OWLObjectProperty,
since only object properties can be declared to be inverse functional. A prop-
erty is defined as symmetric or transitive by making it an instance of the class
SymmetricProperty or TransitiveProperty respectively, both defined as sub-
classes of OWLObjectProperty. Equivalent and inverse properties can be speci-
fied with the associations EquivalentProperty and InverseProperty.

RDFProperty
]

| +OWLeguivalentProperty
- EquivalentPropery

‘ OWLAnnotationProperty | | OWLOntologyProperty | Property 0.+
| |isDeprecated : Boolean(0..1] +equivalentProperty
% +0WWLinverseOf
| | ‘ 0.1 IversePropeny
‘ FunctionalProperty ‘ | OWLDatatypeProperty ‘ | OWLObjectProperty |E| -
| [% |+|nversePrUpeny
‘ Inverse FunctionalProperty | | SymmetricPropernty ‘ |Tmnsi(ivePrope|ty|

Fig. 3. The OWL Properties Diagram

OWLBase Package - Individuals. Individuals are represented in a sub-
class Individual of the class RDFSResource. OWL does not make the so-called
unique name assumption. For the statements that two individuals are differ-
ent or the same, the ODM has two associations DifferentIndividual and
SameIndividual connected to the class Individual. The OWL construct owl:
AllDifferent is represented by a subclass of OWLClass, the class OWLA11Different,
for which the property DistinctIndividuals is defined to link an instance of
OWLAIIDifferent to a list of Individuals.

OWLBase Package - Datatypes. OWL makes use of the RDF datatyping
scheme and provides an additional construct, OWLDataRange, for defining a range
of data values, namely an enumerated datatype. It makes use of the owl:oneOf
construct. The subject of OWLoneOf is an anonymous node of class OWLDataRange
and the object is a list of RDFSLiterals.

OWLBase Package - OWL Universe. In Figure @l we provide the part
of the metamodel which facilitates ontology traversal for mapping purposes as
well as utility in defining constraints for distinguishing OWL DL and OWL

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 193

Full. The class OWLUniverse specifies the set of ontology elements (i.e. classes,
individuals, and properties) that together comprise a particular OWL ontology.
It is intended to simplify packaging/mapping requirements for cases where the
ability to determine the set of all elements is required.

RDFSResource

[owLuniverse | UnivarserorOniology OWLOntology

|1A’ [

+owlUniverse +antology

| OWLClass | ndividual | Property
|isDeErecated:Boolean[C..1] | | IsDeprecated : Boolean(0. 1]
OWLOntologyProperty OWLAnnotationProperty

‘ OWLDataRange

Fig. 4. The OWL Universe Diagram

OWLDL and OWLFull Package. The OWLBase package we just described
supports the constructs common to both OWL DL and OWL Full. We provide
two additional subpackages to distinguish between the two dialects. Both consist
of either extensions or constraints on the OWLBase package. Users can use either
or both of the subpackages together with the OWLBase package, depending on
whether they want to work with OWL DL or OWL Full. For a complete listing
of OWLDL and the OWLFull package, we refer the reader to Sections 11.8 and
11.9 of [13]. An extract of them is given here.

Some of the constraints in the OWLDL package are:

— The set of classes, datatypes, datatype properties, object properties, anno-
tation properties, ontology properties, individuals, data values, and other
built-in vocabulary are pairwise disjoint.

— All classes and properties must be explicitly typed as class respectively prop-
erties.

— Axioms about individual equality and difference must be about named indi-
viduals only (a consequence of category separation).

The OWLFull package contains additional extensions to support the lack of
disjointness between classes, properties and individuals. In particular, these ex-
tensions provide additional attributes on the OWLBase metamodel classes as

194 S. Brockmans et al.

well as definitions of new intersection classes required as a workaround to im-
plement OWL Full. The need for this workaround results from a limitation in
the MOF2 instances model, which requires that an InstanceSpecification be as-
sociated with exactly one classifier. This makes it impossible to have an object
as an instance both of Individual and OWLClass, for example. When a future
revision of MOF relaxes the instances model to permit multiple classifiers, the
OWLFull Package will become superfluous.

3.2 A UML Profile for OWL Ontologies

Our UML profile is designed to support modelers developing ontologies in OWL
through reuse of UML notation using tools that support UML2 extension mech-
anisms. The profile reflects the structure of the OWL metamodel (and the OWL
language). We reuse the standard UML2 notation when the constructs have the
same intuitive semantics as OWL, or, when this is not possible, stereotyped
UML constructs that are consistent and as close as possible to OWL semantics.
Stereotypes are leveraged extensively and are represented as the OWL metaclass
names enclosed in ’<<...>>?. In the following, we introduce our UML2 profile
for OWL ontologies. We focus on property representation and refer the reader
to Chapter 14 of [13] for a full account. First, we represent the constructs for
RDF properties, since the OWL profile package imports the RDF profile pack-
age. Then, we show how we refine these RDF property constructs for OWL. We
provide considerable flexibility so that property representation is truly intuitive
for those familiar with UML.

In UML, a property can be defined as part of an association or on the class
that defines the domain of the property. In this case the type of the property
is the class that defines its range. When a property is part of an association,
the association is binary with unidirectional navigation, from the class that de-
fines the domain of the property to the class that defines its range. In RDF and
OWL, properties are defined globally, that is, they are available to all classes in
all ontologies. For RDF properties that are defined without specifying a domain
or range, the profile uses a global Thing class (Thing for RDF/S, owl:Thing
in OWL ontologies) as default for the SmissingT end class. Properties that are
defined with such a default domain or range may not have multiplicities (other
than [0..*]) or other constraints that correspond to OWL restrictions. Figure
shows an example of a property without a specified domain. From a UML
perspective, properties are semantically equivalent to binary associations with
unidirectional navigation (Sone-wayT associations). Figure@shows the alternate
representation for properties. Just like a UML property, there is efficient navi-
gation from an instance of Thing to an instance of Color through the hasColor
end. Moreover, associations can be classes, as shown in Figure[7l An association
class can have properties, associations, and participate in generalization as any
other class. Notice that the association has a (slightly) different name than the
property, by capitalizing the first letter, to distinguish the association class from
the property itself. A stereotype <<rdfProperty>> is introduced to highlight
such binary, unidirectional association classes, as shown in the Figure.

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 195

=wrifsClagss> +hasColor =<rdfsClass==
Thing —= Calor

Fig. 5. Property hasColor without Fig.6. Property hasColor without

<srdfeClags =
Tring
hasCalor : Color

specified domain specified domain - alternate represen-
tation
=<rdfsClasss> +hasCalar| <<rdfsClass==
Thing = Color

“<rdfProperty>>
HasCalor

Fig. 7. Property hasColor - association class representation

The representation of RDF/S and OWL property subtyping (i.e.,
rdfs:subPropertyOf) is depending on which of the three notations above
is used. In case of the UML property representation (Figure [Bl), we
add a second property entry in the class, and use subsetting by adding
{subsets <super-property-name>} at the end of that property entry. For
the unidirectional association (Figure [6)), we add another association for the
subproperty, and add {subsets <super-property-name>} to the association.
In case of the association classes (Figure [7), a UML generalization with the
stereotype <<rdfsSubProperty0f>> is preferred. For specific OWL properties,
we use stereotypes like <<objectProperty>> instead of <<rdfProperty>>. In
these properties, additional characteristics, e.g. a property being functional or a
property being symmetric, are represented as UML properties.

If users want to specify a owl:equivalentProperty or owl:inverseOf rela-
tion between two properties, the notation is quite straightforward as well. For
instance, Figure [§ shows an owl:inverseOf relation being modeled between two
association classes using an <<inverse0f>> stereotype. An arrowhead is used
opposite from the association class that will have owl:inverseOf in XML syntax.

<<object Property>>
childof

) <inverseQf>»
<<inverseOf=>

<<pbjectProperty=>
parentOf

Fig. 8. Using owl:inverseOf Between Association Classes

196 S. Brockmans et al.

3.3 Mappings Between UML and OWL

This Section introduces mappings to transform models between OWL and UML,
based on the metamodel and the profile described in the previous sections. The
ODM Request for Proposals (RFP [19]) called for a normative mapping be-
tween the single, unified Ontology Definition Metamodel originally envisioned
and UML. If a such a single, normative mapping were provided, for a given
implementation to be considered compliant, it would necessarily support that
exact mapping. Over the course of development of the ODM, we determined that
restricting our potential user community to any specific dialect of OWL (Lite,
DL, or Full) would not support the long term vision we outlined in the usage
scenarios given in Chapter 7 of the specification. Any single, normative mapping
would necessarily force adherence to a specific dialect of OWL.

That said, we claim that the mappings given in the specification can be very
informative, and are included in the specification for a number of reasons. First,
they demonstrate feasibility of mapping in general and implement one set of
design choices, providing a baseline from which a particular implementation can
vary. Second, they bring clearly to the fore the detailed relationships among
the metamodels. These relationships can help those who understand one of the
target languages to come to an understanding of the others. Finally, for many ap-
plications, particularly lighter weight vocabularies and ontologies, the mapping
provided is sufficient to support transformations between OWL and equivalent
UML models, which remains a primary goal of the ODM.

Table 1. Feasible Mappings between UML and OWL

UML Feature OWL Feature Comment

class, type class

instance individual

ownedAttribute, property,

binary association inverseOf

subclass, subclass,

generalization subproperty

N-ary association, association class class, property Requires decomposition

enumeration oneOf

disjoint, cover disjointWith, unionOf

multiplicity minCardinality, OWL cardinality
maxCardinality, restrictions declared
FunctionalProperty, only for range
InverseFunctionalProperty

package ontology

Table [T provides a very high level summary comparison of some features of
UML giving the equivalent OWL feature. UML features are grouped in clusters

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 197

that translate to a single OWL feature or a cluster of related OWL features.
The mapping itself, as described in Chapter 16 of [I3], reflects transformation
of a model represented in the ODM metamodels for RDF and OWL to the cor-
responding UML metamodel element(s), and is informed by the profile(s) given
in Chapter 14. The representation given in the specification includes both ex-
planatory text and a formal mapping expressed in the recently adopted MOF
Query/Views/Transformations (QVT) language [19], which provides a standard-
ized MOF-based platform for mapping instances of MOF metamodels from one
metamodel to another. The mapping provided is explicitly between UML 2 and
the DL dialect of OWL. For a full account of the informative mappings and their
formal expressions in QVT, we refer to [13].

4 Implementation and Examples

This section demonstrates two implementations which have been developed in
the context of the ODM submission at OMG: the Visual Ontology Modeler and
the Integrated Ontology Development Toolkitl.

Gi Class Diagram: IT Service / Main

t.-:umnlm_]yclass:-:-. [<<pntolagyClass>>
Identified Objact " | Business Senice

<<allMalussFrom>> [\ <<disjontWith=><<digjointWith>>

<<ontologyClass>>
IT Senice

= = S
:I:I:ia:g g <<hasTemnplataSlots>

<=<slotRelation== <<ontologyClass>»

<<hasTemplateSlots> 5 IT Senvice Link

<valuaTyper>
e =

S B W
T A YOS
L LAl

“chacTemalateSloe> | S<slotRelation>> <¢ontn|_og]rclass>>
Lo AmpRlen P | hasiTSContext [<YWETOE> | i gonice Contaxt

<<onfologyClass>>
Semvice Unil

<ehasTamplataSlot>y| S<SIOtRelation>> | oo Typess
'\b 2l) hasSemwicelint dadiidbllos =

iy

logyClasss> [gyClasss> <<ontalegyClasss>
Database IT Senice WS Contaner [T Serice | | 'WSM Intermediary [T Service

Fig. 9. A diagram modeled with the VOM tool

! Commercial equipment and materials might be identified to adequately specify cer-
tain procedures. In no case does such identification imply recommendation or en-
dorsement by the U.S. National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available
for the purpose.

198 S. Brockmans et al.

Visual Ontology Modeler. Visual Ontology Modeler (VOM), developed at
the company Sandpiper, is currently implemented as an add-in to IBMSs Ratio-
nal Rose product. The current release is compatible with our ODM metamodels
and profile for RDFS/OWL. A library of ontology components including on-
tologies representing several metadata and ISO standards are available for use
with the tool. VOM supports forward and reverse engineering of RDFS/OWL
ontologies and import/export of ODM/XMI ([22]) (and thus of any MOF meta-
model or UML model that can be transformed to ODM/XMI). VOM users have
demonstrated measurable productivity gains in ontology development and main-
tenance as well as increased consistency in RDFS/OWL generation for new and
existing ontologies. Figure [shows a simple ontology fragment for management
application integration (J[I7]) modeled using VOM (for lack of space we do not
show a full screenshot). The second-generation VOM, which is currently in de-
velopment, will support IBMSs Eclipse ([@]) and Eclipse Modeling Framework
(EMF, [6]) based modeling environment. An open-source version of the software
that provides basic functionality will be available for EMF users.

Integrated Ontology Development Toolkit. The EMF-based IBM Inte-
grated Ontology Development Toolkit (IODT) is a toolkit for ontology-driven
development, including an EMF Ontology Definition Metamodel ([25]) (EODME,
based on our ODM), an Eclipse-based ontology-engineering environment, and an
OWL ontology repository, which has been evaluated to be highly scalable and
perform better than several other well-known systems [I6]. The toolkit supports
RDFS/OWL parsing and serialization, TBox and ABox reasoning, transforma-
tion between RDFS/OWL and other data-modeling languages, and SPARQIE‘
query. This toolkit has over 1,800 downloads in alphaWorks and Eclipse.

5 Related Work

In recent years, an increasing range of software systems engage in a variety of
ontology management tasks, including the creation, storage, search, query, reuse,
maintenance, and integration of ontologies. Recently, there have been efforts to
externalize such ontology management burden from individual software systems
and put them together in middleware known as an ontology management system.
However, as far as we know, other proposals based on the visual UML and MOF
(121, 131, [4], [10]) provide an approach with some similarities and some different
design considerations as well, but no full implementation. [2], [3] and [4] are
currently being merged with our solution.

6 Conclusion and Future Investigations

We presented a MOF based metamodel and a respective UML profile for OWL
DL and OWL Full. Furthermore, we provided feasible mappings which support

2 http://www.eclipse.org/emft /projects/eodm /
3 http://www.w3.org/ TR /rdf-sparql-query /

A Model Driven Approach for Building OWL DL and OWL Full Ontologies 199

the transformation between OWL ontologies and UML models and vice versa.
This enables ontology engineers to build OWL ontologies based on UML using
existing UML tools. Considering the amount of people familiar to UML, our
solution will be an good approach to ontology modeling for ordinary develop-
ers. With the ODM defined in MOF, we can further utilize MDA’s support in
modeling tools, model management and interoperability with other MOF-defined
metamodels. We expect that the interoperability with existing software tools and
applications will ease ontology development and thus contribute to the adoption
of semantic technologies and their success in real-life applications.

We have implemented our approach to validate our ideas in the Visual On-
tology Modeler and the Integrated Ontology Development Toolkit.

Next to finishing and evaluating the ODM submission in the near future, we
plan to extend the ODM to facilitate the development of rules as well. Which
rule formalisms we will eventually support, is heavily depending on the outcome
of the Rule Interchange Format working group at W3C ([26]). Some initial work
on a metamodel and UML Profile for rules is presented in [2].

References

1. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, February 2004. W3C Recommendation.

2. S. Brockmans, P. Haase, P. Hitzler, and R. Studer. A Metamodel and UML Profile
for Rule-extended OWL DL Ontologies. In 3rd Annual European Semantic Web
Conference, Budva, Montenegro, June 2006. Springer.

3. S. Brockmans, P. Haase, and H. Stuckenschmidt. Formalism-Independent Speci-
fication of Ontology Mappings - A Metamodeling Approach. In 5th International
Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE
2006, Montpellier, France, November 2006.

4. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual modeling of OWL DL
ontologies using UML. In Proceedings of the Third International Semantic Web
Conference, pages 198-213, Hiroshima, Japan, November 2004. Springer.

5. A. Brown. An introduction to Model Driven Architecture - Part 1. MDA
and today’s systems, February 2004. http://www-106.1ibm.com/developerworks/
rational/library/3100.html.

6. F. Budinsky, R. Ellersick, T. J. Grose, E. Merks, and D. Steinberg. Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional, first edition, 2003.

7. R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall.
The Object Management Group Ontology Definition Metamodel. In F. Ruiz,
C. Calero, and M. Piattini, editors, Ontologies for Software Engineering and Tech-
nology. Springer, 2006. to appear.

8. M. Dean and G. Schreiber. OWL Web Ontology Language Reference. Technical
report, World Wide Web Consortium (W3C), Feb 2004. W3C Recommendation.

9. J. des Rivieres and W. Beaton. Eclipse Platform Technical Overview. July 2001.
Updated April 2006 for Eclipse 3.1.

10. D. Djuric, D. GaZevic, V. Deveddic, and V. Damjanovic. MDA Development of
Ontology Infrastructure. In Proceedings of the IADIS International Conference
Applied Computing, pages 1I-23-11-26, Lisbon, Portugal, 2004.

http://www-106.ibm.com/developerworks/rational/library/3100.html
http://www-106.ibm.com/developerworks/rational/library/3100.html

200

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

S. Brockmans et al.

D. Frankel, P. Hayes, E. Kendall, and D. McGuinness. The Model Driven Se-
mantic Web. In The 1st International Workshop on the Model-Driven Semantic
Web (MSDW 2004), Monterey, California, USA, September 2004. http://www.
sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf.

L. Hart, P. Emery, R. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
E. Kendall, and M. Dutra. OWL Full and UML 2.0 Compared, March 2004.
http:// www.itee.uq.edu.au/~colomb/Papers/UML-0WLont04.03.01.pdf|

IBM and Sandpiper Software. Ontology Definition Metamodel. Sixth Revised Sub-
mission, Object Management Group, June 2006. http://www.omg.org/cgi-bin/
doc?ad/2006-05-01.

ISO/IEC. Topic Maps U Data Model. Technical Report 13250-2, December 2005.
ISO/IEC. Information technology — Common Logic (CL) - A framework for a
family of logic-based languages. Technical Report 24707, April 2006. Official ISO
FCD Draft.

L. Ma, Y. Yang, Z. Qiu, G. Xie, and Y. Pan. Towards A Complete OWL On-
tology Benchmark. In 8rd Annual European Semantic Web Conference, Budva,
Montenegro, June 2006. Springer.

T. Nitzsche, J. Mukerji, D. Reynolds, and E. Kendall. Using Semantic Web
Technologies for Management Application Integration. In proceedings of the
workshop on Semantic Web Enabled Software Engineering (SWESE), Galway,
Ireland, November 2005. http://www.mel.nist.gov/msid/conferences/SWESE/
accepted_papers.html.

Object Management Group. Ontology Definition Metamodel — Request For Pro-
posal, March 2003. http://wuw.omg.org/docs/ontology/03-03-01.rtf.

Object Management Group. Revised submission for MOF 2.0 Query/Views/Trans-
formations RFP. http://www.qvtp.org/downloads/1.1/qvtpartnersl.1.pdf}
August 2003.

Object Management Group. OCL 2.0 Specification. Technical Report Version 2.0,
June 2005.

Object Management Group. Unified Modeling Language: Superstructure. Techni-
cal Report Version 2.0, August 2005.

Object Management Group. XMI Mapping Specification. Technical Report Version
2.1, September 2005.

Object Management Group. Meta Object Facility (MOF) Core Specification. Tech-
nical Report Version 2.0, January 2006. OMG Available Specification.

Object Management Group. Unified Modeling Language: Infrastructure. Technical
Report Version 2.0, March 2006.

Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee. Model-Driven Ontology
Engineering. In Journal of Data Semantics VII, 2006. Springer.

W3C. Rule interchange format working group charter. http://wuw.w3.0rg/2005/
rules/wg/charter, 2005.

http://www.sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf
http://www.sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf
http://www.itee.uq.edu.au/$sim $colomb/Papers/UML-OWLont04.03.01.pdf
http://www.itee.uq.edu.au/$sim $colomb/Papers/UML-OWLont04.03.01.pdf
http://www.omg.org/cgi-bin/doc?ad/2006-05-01
http://www.omg.org/cgi-bin/doc?ad/2006-05-01
http://www.mel.nist.gov/msid/conferences/SWESE/accepted_papers.html
http://www.mel.nist.gov/msid/conferences/SWESE/accepted_papers.html
http://www.omg.org/docs/ontology/03-03-01.rtf
http://www.qvtp.org/downloads/1.1/qvtpartners1.1.pdf
http://www.w3.org/2005/rules/wg/charter
http://www.w3.org/2005/rules/wg/charter

	Introduction
	Background
	Model Driven Architecture and the Meta-object Facility
	UML Profiles

	Approach
	A Metamodel for OWL DL and OWL Full
	A UML Profile for OWL Ontologies
	Mappings Between UML and OWL

	Implementation and Examples
	Related Work
	Conclusion and Future Investigations

