
Synergy: Sharing-Aware Component Composition for
Distributed Stream Processing Systems

Thomas Repantis1, Xiaohui Gu2, and Vana Kalogeraki1,�

1 Dept. of Computer Science & Engineering, University of California, Riverside, CA 92521
{trep,vana}@cs.ucr.edu

2 IBM T.J. Watson Research Center, Hawthorne, NY 10532
xiaohui@us.ibm.com

Abstract. Many emerging on-line data analysis applications require applying
continuous query operations such as correlation, aggregation, and filtering to
data streams in real-time. Distributed stream processing systems allow in-network
stream processing to achieve better scalability and quality-of-service (QoS)
provision. In this paper we present Synergy, a distributed stream processing mid-
dleware that provides sharing-aware component composition. Synergy enables
efficient reuse of both data streams and processing components, while composing
distributed stream processing applications with QoS demands. Synergy provides
a set of fully distributed algorithms to discover and evaluate the reusability of
available data streams and processing components when instantiating new stream
applications. For QoS provision, Synergy performs QoS impact projection to ex-
amine whether the shared processing can cause QoS violations on currently run-
ning applications. We have implemented a prototype of the Synergy middleware
and evaluated its performance on both PlanetLab and simulation testbeds. The
experimental results show that Synergy can achieve much better resource utiliza-
tion and QoS provision than previously proposed schemes, by judiciously sharing
streams and processing components during application composition.

Keywords: Distributed Stream Processing, Component Composition, Shared
Processing, Quality-of-Service, Resource Management.

1 Introduction

Stream processing applications have gained considerable acceptance over the past few
years in a wide range of emerging domains such as monitoring of network traffic for in-
trusion detection, surveillance of financial trades for fraud detection, observation of cus-
tomer clicks for e-commerce applications, customization of multimedia or news feeds,
and analysis of sensor data in real-time [1,2]. In a typical stream processing application,
stream processing components process continuous data streams in real-time [3] to gen-
erate outputs of interest or to identify meaningful events. Often, the data sources, as well
as the components that implement the application logic are distributed across multiple
sites, constituting distributed stream processing systems (DSPSs) (e.g., [4,5,6,7,8,9]).
Stream sources often produce large volumes of data in high rates, while workload spikes

� The work of the third author is supported by NSF Award 0330481.

M. van Steen and M. Henning (Eds.): Middleware 2006, LNCS 4290, pp. 322–341, 2006.
c© IFIP International Federation for Information Processing 2006

Synergy: Sharing-Aware Component Composition for DSPSs 323

cannot be predicted in advance. Providing low-latency, high-throughput execution for
such distributed applications entails considerable strain on both communication and
processing resources and thus presents significant challenges to the stream processing
middleware design.

While a DSPS provides the components that are needed for an application execution,
a major challenge still remains: Namely, how to select among different component in-
stances to compose stream processing applications on-demand. While previous efforts
have investigated several aspects of component composition [6,7] and placement [8] for
stream applications, our research focuses on enabling sharing-aware component com-
position for efficient distributed stream processing. Sharing-aware composition allows
different applications to utilize i) previously generated streams and ii) already deployed
stream processing components. The distinct characteristics of distributed stream pro-
cessing applications make sharing-aware component composition particularly challeng-
ing. First, stream processing applications often have minimum quality-of-service (QoS)
requirements (e.g., end-to-end service delay). In a shared processing environment, the
QoS of a stream processing application can be affected by multiple components that
are invoked concurrently and asynchronously by many applications. Second, stream
processing applications operate autonomously in a highly dynamic environment, with
load spikes and unpredictable occurrences of events. Thus, the component composition
must be performed quickly, during runtime, and be able to adapt to dynamic stream
environments. Third, a DSPS needs to scale to a large number of streams and com-
ponents, which makes centralized approaches inappropriate, since the global state of a
large-scale DSPS is changing much faster than it can be communicated to a single host.
Hence, a single host cannot make accurate global decisions.

Despite the aforementioned challenges, there are significant benefits to be gained
from a flexible sharing-aware component composition: i) enhanced QoS provision (e.g.,
shorter service delay) since existing streams that meet the user’s requirements can be fur-
nished immediately, while the time-consuming process of new component deployment
is triggered only when none of the existing components can accommodate a new request;
and ii) reduced resource load for the system, by avoiding redundant computations and
data transfers. As a result, the overall system’s processing capacity is maximized to meet
the scalability requirements of serving many concurrent application requests.

In this paper we present Synergy, a distributed stream processing middleware that
provides sharing-aware component composition. Synergy is implemented on top of a
wide-area overlay network and undertakes the composition of distributed stream pro-
cessing applications. Synergy supports both data stream and processing component
reuse while ensuring that the application QoS requirements1 can be met. The decision
of which components or streams to reuse is made dynamically at run-time taking into
account the applications’ QoS requirements and the current system resource availabil-
ity. Specifically, this paper makes the following major contributions:

– We propose a decentralized light-weight composition algorithm that can discover
streams and components at run-time and check whether any of the existing compo-
nents or streams can satisfy the application’s request. After the qualified candidate

1 In this paper, we focus on the end-to-end execution time QoS metric, consisting of both pro-
cessing delays at different components and network delays between components.

324 T. Repantis, X. Gu, and V. Kalogeraki

components have been identified, components and streams are selected and com-
posed dynamically such that the application resource requirements are met and the
workloads at different hosts are balanced.

– We integrate a QoS impact projection mechanism into the distributed component
composition algorithm to evaluate the reusability of existing stream processing
components according to the applications’ QoS constraints. When a component
is shared by multiple applications, the QoS of each application that uses the com-
ponent may be affected due to the increased queueing delays on the processors
and the communication links. Synergy’s approach is to predict the impact of the
additional workload on the QoS of the affected applications and ensure that a com-
ponent reuse does not cause QoS violations in existing stream applications. Such
a projection can facilitate the QoS provision for both current applications and the
new application admitted in the system.

– We have implemented a prototype of Synergy and evaluated its performance on
the PlanetLab [10] wide-area network testbed. We have also conducted extensive
simulations to compare Synergy’s composition algorithm to existing alternative
schemes. The experimental results show that: i) Synergy consistently achieves
much better QoS provision compared to other approaches, for a variety of appli-
cation loads, ii) sharing-aware component composition increases the number of ad-
mitted applications, while scaling to large request loads and network sizes, iii) QoS
impact projection greatly increases the percentage of admitted applications that
meet their QoS requirements, iv) Synergy’s decentralized composition protocol has
low message overhead and offers minimal setup time, in the order of a few seconds.

The rest of the paper is organized as follows: Section 2 introduces the system model.
Section 3 discusses Synergy’s decentralized sharing-aware component composition ap-
proach and its QoS impact projection algorithm. Section 4 presents an extensive exper-
imental evaluation of our system. Section 5 discusses related work. Finally, the paper
concludes in Section 6.

2 System Model

In this section, we present the stream processing application model, describe the archi-
tecture of the Synergy middleware and provide an overview of its operation. Table 1
summarizes the notations we use while discussing our model.

2.1 Stream Processing Application Model

A data stream si consists of a sequence of continuous data tuples. A stream processing
component ci is defined as a self-contained processing element that implements an
atomic stream processing operator oi on a set of input streams

∑
isi and produces a set

of output streams
∑

osi. Stream processing components can have more than one inputs
(e.g. a join operator) and outputs (e.g. a split operator). Each atomic operator can be
provided by multiple component instances c1, . . . , ck. We associate metadata with each
deployed component or existing data stream in the system to facilitate the discovery

Synergy: Sharing-Aware Component Composition for DSPSs 325

Table 1. Notations

Notation Meaning Notation Meaning

ci Component li Virtual Link
oi Operator si Stream
ξ Query Plan λ Application Component Graph

Qξ End-to-End QoS Requirements Qλ End-to-End QoS Achievements
pvi

Processor Load on Node vi bli
Network Load on Virtual Link li

rpvi
Residual Processing Capacity on Node vi rbli

Residual Network Bandwidth on Virtual Link li
τci

Processing Time for ci xci,vi
Mean Execution Time for ci on vi

σsi
Transmission Time for si ysi,li

Mean Communication Time for si on li
qt Requested End-to-End Execution Time t̂ Projected End-to-End Execution Time
poi

Processing Time Required for oi bsi
Bandwidth Required for si

process. Both components and streams are named based on a common ontology [11]
(e.g., oi.name = Aggregator.COUNT, si.name = Video.MPEGII.Birthday).

A stream processing request (query) is described by a query plan, denoted by ξ. The
query plan is represented by a directed acyclic graph (DAG) specifying the required
operators oi and the streams sj among them2. The CPU processing requirements of the
operators poi , ∀oi ∈ ξ and the bandwidth requirements of the streams bsj , ∀sj ∈ ξ are
also included in ξ. The bandwidth requirements are calculated according to the user-
requested stream rate, while the processing requirements are calculated according to
the data rate and resource profiling results for the operators [12]. The stream processing
request also specifies the end-to-end QoS requirements Qξ = [q1, ...qm], such as end-
to-end execution time and loss rate. Although our schemes are generic to additive QoS
metrics, we focus on the end-to-end execution time metric denoted by qt, which is
computed as the sum of the processing and communication times for a data tuple to
traverse the whole query plan.

The query plan can be dynamically instantiated into different application component
graphs, denoted by λ, depending on the processing and networking availability. The
vertices of an application component graph represent the components being invoked
at a set of nodes to accomplish the application execution, while the edges represent
virtual network links between the components, each one of which may span multiple
physical network links. An edge connects two components ci and cj if the output of the
component ci is the input for the component cj . The application component graph is
generated by our component composition algorithm at run-time, after selecting among
different component candidates that provide the required stream processing operators
oi and satisfy the end-to-end QoS requirements Qξ.

2.2 Synergy Architecture

Synergy is a wide-area middleware that consists of a set of distributed hosts vi con-
nected via virtual links li into an overlay mesh on top of the existing IP network. Syn-
ergy as a distributed stream processing middleware undertakes the component composi-
tion role to enable stream and component reusability while offering QoS management.

2 In general, there may be multiple query plans that can satisfy a stream processing request.
Query plan optimization however involves application semantics and is outside the scope of
this paper. Thus, in this work we assume the query plan is given.

326 T. Repantis, X. Gu, and V. Kalogeraki

C2

C1

C3 C4

C5

C7

C11
C13

C12

C8

C9

C10C6

C11

C4

C9C7

C2

Distributed Stream
Processing Application

Network

Synergy

S5
S1

S3

S2

S4

Fig. 1. Synergy system architecture

Operating System

Monitoring

Composition

Discovery Routing

Sessions

Streams

Components

Fig. 2. Synergy node structure

Figure 1 shows an overview of our architecture. Synergy leverages the underlying over-
lay network for registering and discovering available components and streams in a de-
centralized manner. In our current Synergy prototype we implement a keyword-based
discovery service [13] on top of the Pastry distributed hash table (DHT) [14]. How-
ever, our middleware can also be integrated with other DHTs, or unstructured over-
lays [15], since discovery is an independent module of our system. Synergy adopts a
fully distributed architecture, where any node of the middleware can compose a dis-
tributed stream processing application. After a stream processing request is submitted
and a query plan is produced, Synergy is responsible for selecting existing streams that
satisfy the query and candidate components that can provide the required operators.

Each Synergy node, denoted by vi, as illustrated in Figure 2, maintains a metadata
repository of active stream processing sessions, streams, and components (including
input and output buffers). Additionally, the architecture of a Synergy node includes the
following main modules: i) a composition module that is responsible for running the
component composition algorithm and uses: ii) a discovery module that is responsible
for locating existing data streams and components; iii) a routing module that routes
data streams between different Synergy nodes; and iv) a monitoring module that is
responsible for maintaining resource utilization information for vi and the virtual links
connected to vi. In the current implementation, the monitoring module can keep track of
the CPU load and network bandwidth. The current processor load pvi and the residual
processing capacity rpvi on node vi are inferred from the CPU idle time as measured
from the /proc interface. The residual available bandwidth rblj on each virtual link lj
connected to vi is measured using a bandwidth measuring tool (e.g., [16]). We finally
use blj to denote the amount of current bandwidth consumed on lj .

2.3 Approach Overview

We now briefly describe the basic operations of the Synergy middleware. A stream
processing application request is submitted directly to a Synergy node vs, if the client
is running the middleware, or redirected to a Synergy node vs that is closest to the

Synergy: Sharing-Aware Component Composition for DSPSs 327

client based on a predefined proximity metric (e.g., geographical location). Alterna-
tive policies can select vs to be the Synergy node closest to the source or the sink
node(s) of the application. A query plan ξ is produced, that specifies the required op-
erators and the order in which they need to be applied to execute the query. The pro-
cessing requirements of the operators poi , ∀oi ∈ ξ and the bandwidth requirements of
the streams bsj , ∀sj ∈ ξ are also included in ξ. The request also specifies the end-
to-end QoS requirements Qξ = [q1, ...qm] for the composed stream processing appli-
cation. These requirements (i.e., ξ, Qξ) are used by the Synergy middleware running
on that node to initiate the distributed component composition protocol. This protocol

D

C2 C4

C3

O1 O2

C1

S

Fig. 3. Probing example

produces the application component graph
λ that identifies the particular components
that shall be invoked to instantiate the new
request.

To avoid redundant computations, the sys-
tem first tries to discover whether any of the
requested streams have been generated by
previously instantiated query plans, by query-
ing the overlay infrastructure. To maximize the sharing benefit, the system reuses the
result stream(s) generated during the latest possible stages in the query plan. Thus, the
system only needs to instantiate the remaining query plan for processing the reusable
existing stream(s), to generate the user requested stream(s). The system then probes
those candidate nodes that can provide operators needed in the query plan, to deter-
mine: i) whether they have the available resources to accommodate the new applica-
tion, ii) whether the end-to-end latency is within the required QoS, and iii) whether
the impact of the new application would cause QoS violations to existing applications.
Figure 3 gives a very simple example of how probes can be propagated hop-by-hop
to test many different component combinations. Assuming components c1 and c2 offer
operator o1, while components c3 and c4 offer operator o2, and assuming that the com-
ponents can be located at any node in the system, probes will attempt to travel from the
source S to the destination D through paths S → c1 → c3 → D, S → c1 → c4 → D,
S → c2 → c3 → D, and S → c2 → c4 → D. A probe is dropped in the middle
of the path if any of the above conditions are not satisfied in any hop. Thus, the paths
that create resource overloads, result to end-to-end delays outside the requested QoS
limits, or unacceptably increase the delays of the existing applications, are eliminated.
From the successful candidate application component graphs, our composition algo-
rithm selects the one that results in a more balanced load in the system and the new
stream application is instantiated. The detailed operation of Synergy’s sharing-aware
component composition is described in the next section.

3 Design and Algorithm

In this section, we describe the design and algorithm details of our Synergy distributed
stream processing middleware, that offers sharing-aware component composition. Syn-
ergy can i) reuse existing data streams to avoid redundant computations, and ii) reuse
existing components if the new stream load does not lead to QoS violations of the

328 T. Repantis, X. Gu, and V. Kalogeraki

S1
O1

O2 O4

O5O3

O6
S8

S6

S7
S5

S4

DestinationSource

S2

S3

Fig. 4. Query plan example

Destination

����
����
����
����

����
����
����
����

C10

C19

C29

C20

C30

C39 C59

C50

C49

C40

C60

C69

O1

O2 O4

O6

O5O3

......

...

... ...

...

Source

Fig. 5. Synergy composition example

existing applications. We first describe the decentralized component composition pro-
tocol, followed by the detailed algorithms for stream reuse and component sharing.
Synergy’s fully distributed and light-weight composition protocol is executed when in-
stantiating a new application.

3.1 Synergy Composition Protocol

Given a stream processing request, the Synergy node first gets the locally generated
query plan ξ and then instantiates the application component graph based on the user’s
QoS requirements Qξ. Figure 4 shows an example of a query plan, while Figure 5
shows a corresponding component composition example. To achieve decentralized,
light-weight component selection, Synergy employs a set of probes to concurrently dis-
cover and select the best composition. Synergy differs from previous work (e.g., [6,13])
in that it judiciously considers the impact of stream and component sharing on both the
new and existing applications. The probes carry the original request information (i.e.,
ξ, Qξ), collect resource and QoS information from the distributed components, perform
QoS impact projection, and select qualified compositions according to the user’s QoS
requirements. The best composition is then selected among all qualified ones, based on
a load balancing metric. The composition protocol, a high level description of which is
shown in Algorithm 1, consists of the following five main steps:

Step 1. Probe creation. Given a stream processing query plan ξ, the Synergy node
vs first discovers whether any existing streams can be used to satisfy the user’s request.
The goal is to reuse existing streams as much as possible to avoid redundant compu-
tations. For example, in Figure 4, starting from the destination, vs will first check if
the result stream (stream s8) is available. If not, it will look for the streams one hop
away from the destination (streams s6 and s7), then two hops away from the destination
(streams s4 and s5) and so on, until it can find any streams that can be reused. We denote
this Breadth First Search on the query plan as identification of the maximum sharable
point(s). The nodes generating the reusable streams may not have enough available
bandwidth for more streaming sessions or may have virtual links with unacceptable
communication latencies. In that case all probes are dropped by those nodes and vs

checks whether there exist components that can provide the operators requested in the
query plan, as if no streams had been discovered. The details about determining the
maximum sharable points and about discovering sharable streams and components are

Synergy: Sharing-Aware Component Composition for DSPSs 329

Algorithm 1. Synergy composition

Input: query 〈ξ, Qξ, 〉, node vs

Output: application component graph λ
vs identifies maximum sharable point(s) in ξ
vs spawns initial probes
for each vi in path

checks available resources AND checks QoS so far in Qξ AND checks projected QoS impact
if probed composition qualifies

performs transient resource allocation at vi

discovers next-hop candidate components from ξ
spawns probes for selected components

else
drops the received probe

vs selects the most load-balanced component composition λ
vs establishes the stream processing session

described in Section 3.2. Next, the Synergy node vs initiates a distributed probing pro-
cess to collect resource and QoS states from those candidate components that provide
the maximum sharable points. The goal of the probing process is to select qualified
candidate components that can best satisfy ξ and Qξ and result in the most balanced
load in the system. The initial probing message carries the request information (ξ and
Qξ) and a probing ratio, that limits the probing overhead by specifying the maximum
percentage of candidate components that can be probed for each required operator. The
probing ratio can be statically defined, or dynamically decided by the system, based on
the operator, the components’ availability, the user’s QoS requirements, current con-
ditions, or historical measurement data [6]. The initial probing message is sent to the
nodes hosting components offering the maximum sharable points. We do not probe the
nodes that are generating streams before the maximum sharable points, since the over-
head would be disproportional to the probability that they can offer a better component
graph than the one starting after the maximum sharable points.

Step 2. Probe processing. When a Synergy node vi receives a probing message
called probe Pi, it processes the probe based on its local state and on the information
carried by Pi. A probe has to satisfy three conditions to qualify for further propagation:
i) First, vi calculates whether the requested processing and bandwidth requirements poi

and bsj can be satisfied by the available residual processing capacity and bandwidth
rpvi and rblj , of the node hosting the component and of the virtual link the probe came
from respectively. Thus, both rpvi ≥ poi and rblj ≥ bsj have to hold3. ii) Second,
vi calculates whether the QoS values of the part of the component graph that has been
probed so far already violate the required QoS values specified in Qξ. For the end-to-end
execution time QoS metric qt this is done as follows: The sum of the components’ pro-
cessing and transmission times so far has to be less than qt. The time that was needed
for the probe to travel so far gives an estimate of the transmission times, while the

3 In the general case, where other node resources such as memory or disk space are to be taken
into account in addition to the processing capacity, congruent equations have to hold for them
as well.

330 T. Repantis, X. Gu, and V. Kalogeraki

processing times are estimated in advance from profiling [12]. iii) Third, vi calculates
the QoS impact on the existing stream processing sessions by admitting this new re-
quest. In particular, the expected execution delay increase due to the additional stream
volume introduced by the new request is calculated. The details about the QoS impact
projection are described in Section 3.3. Similarly, the impact of the existing stream pro-
cessing sessions on the QoS of the new one is calculated. Both the new and the existing
sessions have to remain within their QoS requirements.

If any of the above three conditions cannot be met, the probe is dropped immedi-
ately to reduce the probing overhead. Otherwise, the node performs transient resource
allocation to avoid conflicting resource admissions (overallocations) caused by concur-
rent probes for different requests. The transient resource allocation is cancelled after a
timeout period if the node does not receive a confirmation message to setup the stream
processing application session.

Step 3. Hop-by-hop probe propagation. If the probe Pi has not been dropped, vi

propagates it further. vi derives the next-hop operators from the query plan and ac-
quires the locations of all available candidate components for each next-hop operator
using the overlay infrastructure. Then vi selects a number of candidate components to
probe, based on the probing ratio. If more candidates than the number specified by the
probing ratio are available, random ones are selected, or –if a latency monitoring ser-
vice [17] is available– the ones with the smallest communication latency are selected.
If no candidate components for the next operator are found, a new component has to be
deployed. We choose to collocate this new component with the current one, deploying
it in the same node, if processing resources are available, as this approach minimizes
the communication delay between the two components. Other approaches for choosing
an appropriate location with regards to future needs can also be employed [8,18]. Since
the probe processing checks will take place for the new component as well, possible
resource or QoS violations can be detected. While the resource allocation is transient,
the component deployment is permanent. If the particular application session is not es-
tablished through this path, the newly deployed component might serve other stream
processing sessions.

After the candidate components have been selected, vi spawns new probes from Pi

for all selected next-hop candidates. Each new probe in addition to ξ (including poi and
bsj), Qξ, and the probing ratio, carries the up-to-date resource state of vi, namely rpvi

and rblj , and of all the nodes the previous probes have visited so far. Finally, vi sends
all new probes to the nodes hosting the selected next-hop components.

Step 4. Composition selection. After reaching the destination specified in ξ, all suc-
cessful probes belonging to a composition request return to the original Synergy node vs

that initiated the probing protocol. After selecting all qualified candidate components,
vs first generates complete candidate component graphs from the probed paths. Since
the query plan is a DAG, vs can derive complete component graphs by merging the
probed paths. For example, in Figure 5, a probe can traverse c10 → c20 → c40 → c60

or c10 → c30 → c50 → c60. Thus, vs merges these two paths into a complete com-
ponent graph. Second, vs calculates the requested and residual resources for the can-
didate component graphs based on the precise states collected by the probes. Third,
vs selects qualified compositions according to the user’s operator, resource, and QoS

Synergy: Sharing-Aware Component Composition for DSPSs 331

requirements. Let Vλ be the set of nodes that is being used to instantiate λ. We use ci.o
to represent the operator provided by the component ci. The selection conditions are as
follows:

operator constraints : ci.o = oi, ∀oi ∈ ξ, ∃ci ∈ λ (1)

QoS constraints : qλ
r ≤ qξ

r , 1 ≤ r ≤ m (2)

processing capacity constraints : rpvi ≥ 0, ∀vi ∈ Vλ (3)

bandwidth constraints : rblj ≥ 0, ∀lj ∈ λ (4)

Among all the qualified compositions that satisfy the application QoS requirements,
vs selects the best one according to the following load balancing metric φ(λ). The
qualified composition with the smallest φ(λ) value is the selected composition.

φ(λ) =
∑

vi∈Vλ,oi∈ξ

poi

rpvi
+ poi

+
∑

lj∈λ,sj∈ξ

bsj

rblj + bsj

(5)

Step 5. Application session setup. Finally, the Synergy node vs establishes the
stream processing application session by sending confirmation messages along the se-
lected application component graph. If no qualified composition can be found (i.e., all
probes were dropped, including the ones without stream reuse), the system node returns
a failure message. If all probes were dropped, apparently the existing components are
too overloaded to accommodate the requested application with the specified QoS re-
quirements, or nodes in the probing path are too overloaded to host components that
need to be deployed. New components can then be instantiated in strategically chosen
places in the network [8,18].

The goal of the described protocol is to discover and select existing streams and com-
ponents to share in order to accommodate a new application request, assuming compo-
nents are already deployed on nodes. This is orthogonal to the policies that might be in
place regarding new component deployment, which is outside the scope of this paper.
Furthermore, Synergy is adaptable middleware, taking into account the current status
of the dynamic system at the moment the application request arrives. Therefore, it does
not compare to optimal solutions calculated offline that apply to static environments.

3.2 Maximum Stream Sharing

Synergy utilizes a peer-to-peer overlay of the nodes in the system for registering and
discovering the available components and streams in a decentralized manner. As was
mentioned in Section 2.2, the current Synergy implementation is built over Pastry [14].
We follow a simple approach to enable the storage and retrieval of the static metadata
of components and streams in the DHT, which include the location (node) hosting the
component or stream. As was described in Section 2.1, each component and stream is
given a name, based on a common ontology [11]. This name is converted to a key, by
applying a secure hash function (SHA-1) on it, whenever a component or stream needs
to be registered or discovered. On the DHT this key is used to map the metadata to a spe-
cific node, with the metadata of duplicated components or streams being stored in the
same node. Configuration changes caused by node arrivals and departures are handled

332 T. Repantis, X. Gu, and V. Kalogeraki

gracefully by the DHT. Whenever components are instantiated or deleted, or streams
are generated by new application sessions, or removed because they are not used by
any sessions anymore, the nodes hosting them register or unregister their metadata with
the DHT.

The stream processing query plan ξ specifies the operators oi and streams sj needed
for the application execution. Using a Maximum Sharing Discovery algorithm, the Syn-
ergy node in which the query plan was submitted utilizes the peer-to-peer overlay for
discovering existing streams and components. Since different users can submit queries
that have the same or partially the same query plans, we want to reuse existing streams
as much as possible to avoid redundant computations. The goal of the Maximum Shar-
ing Discovery algorithm is to identify the maximum sharable point(s) in ξ. This is the
operator(s) closest to the destination (in terms of hops in ξ), whose output streams cur-
rently exist in the system and can (at least partially) satisfy the user’s requirements. An
extreme case is that the final stream or streams already exist in the system, which can
then be returned to the user directly without any further computation, as long as the
residual bandwidth and communication latencies permit so. For example in Figure 4 if
s8 is already available in the system, it can be reused to satisfy the new query, incurring
only extra communication but no extra processing overhead. In that case, the maximum
sharable point in ξ is o6 and Synergy will prefer to use no components if possible. If the
final stream or streams are not available, the system node backtracks hop-by-hop the
query plan to find whether preceding intermediate result streams exist. For example, in
Figure 4, if result streams s8 and s7 are not found, but s6 and s5 are already available
in the system, they may be reused to satisfy part of the query plan. By reusing those
existing streams, the Synergy node will prefer to compose a partial component graph
covering the operators after the reused streams, if the resource and QoS constraints
permit so. In that case, the maximum sharable points in ξ are o3 and o4 and only com-
ponents offering operators o5 and o6 will be needed. To discover existing streams and
existing components that might be needed, the peer-to-peer overlay is utilized as was
described.

3.3 QoS-Aware Component Sharing

To determine whether an existing candidate component can be reused to satisfy a new
request, we estimate the impact of the component reuse to the latencies of the existing
applications. An existing component can be reused if the additional workload brought
by the new application will not violate the QoS requirements of the existing stream
processing applications (and similarly the load of the already running applications will
not violate the QoS requirements of the new application). To calculate the impact of
admitting a new stream processing application to the QoS of the existing ones (and
also the impact of the running applications to the potential execution of the one to be
admitted), a Synergy node that processes a probe utilizes a QoS Impact Projection al-
gorithm. This algorithm runs in all nodes with candidate components through which
the probes are propagated. The QoS Impact Projection is performed for all the applica-
tions that use components on those nodes. If the projected QoS penalty will cause the
new or the existing applications to violate their QoS constraints, these components are
not further considered and are thus removed from the candidate set. For example, in

Synergy: Sharing-Aware Component Composition for DSPSs 333

Figure 5, candidate components c10 and c40 are used by existing applications and with
the new stream workload QoS violations are projected. Thus, c10 and c40 are not consid-
ered as candidate components for the operators o1 and o4 respectively. On the contrary,
even though c20 and c39 are used by existing applications, they are still considered as
candidate components for the operators o2 and o3 respectively, because no QoS viola-
tion is projected for them.

The QoS Impact Projection algorithm to estimate the effect of component reuse
works as follows: For each component ci, the node estimates its execution time. This
includes the processing time τci of the component ci to execute locally on the node and
the queueing time in the scheduler’s queue as it waits for other components to com-
plete. The queueing time is defined as the difference between the arrival time of the
component invocation and the time the component actually starts executing. We can
then determine the mean execution time xci,vi for each component ci on the node vi.
We assume a simple application behavior approximated by an M/M/1 queueing model
for the execution time. Our experimental results show that this simplified model can
provide good projection performance. If pvi represents the load on the node hosting
component ci, the mean execution time for component ci on node vi is given by:

xci,vi =
τci

1 − pvi

(6)

The mean communication time ysi,li on the virtual link li for the stream si trans-
mitted from component ci to its downstream component cj is estimated similarly: It
includes the transmission time σsi for the stream si, and also the queueing delay on the
virtual link. If bli represents the load (consumed bandwidth) on virtual link li connect-
ing component ci, the mean communication time ysi,li to transmit stream si through
the virtual link li is then given by:

ysi,li =
σsi

1 − bli

(7)

Given the processing times τci and the transmission times σsi required respectively
for the execution of the components ci and the data transfer of the streams si of an
application, as well as the current respective loads pvi and bli , a Synergy node can
compute the projected end-to-end execution time for the entire application as:

t̂ = maxpath

∑

vi∈Vλ,li∈λ

(
τci

1 − pvi

+
σsi

1 − bli

)

(8)

where the maxpath is used in the cases where the application is represented by a graph
with more than one paths, in which case the projected execution time of the entire
application is the maximum path latency. The processing τci and transmission σsi times
are however easily extracted from the poi and bsi values which are included for the
corresponding operators oi and streams si in the query plan ξ and have been calculated
by combining the user requests with profiling [12]. The current loads pvi and bli are
known locally at the individual nodes. These values are used to estimate the local impact
δ of the component reuse on the existing applications as follows:

334 T. Repantis, X. Gu, and V. Kalogeraki

Let
τci

1−pvi
denote the mean execution time required for invoking component ci on

the node vi by the application. After sharing the component with the new application,
the projected execution time would become:

τci

1−(pvi
+τci

) , where (pvi + τci) represents

the new processing load on the node after reusing the component. We can then compute
the impact δ in the projected execution time for the entire application, as the difference
of the projected end-to-end execution time after the reuse, t̂′, from the one before the
reuse, t̂:

δ = t̂′ − t̂ =
τci

1 − (pvi + τci)
− τci

1 − pvi

(9)

The projected impact δ is acceptable if δ+ t̂ ≤ qt, in other words if the new projected
execution time is acceptable. In the above inequality, qt is the requested end-to-end
execution time QoS metric that was specified by the user in Qξ. Similarly to ξ, it is
cached for every application on each node that is part of the application. t̂ is the current
end-to-end execution time for the entire application. t̂ is measured by the receiver of
a stream processing session and communicated to all nodes participating in it using a
feedback loop [15]. This enables the processing to adapt to significant changes in the
resource utilization, such as finished applications or execution of new components. For
an application that is still in the admission process, t̂ is approximated by the sum of the
processing and transmission times up to this node, as carried by the application’s probe.

Equation 9 summarizes the QoS Impact Projection algorithm. A Synergy node has
locally available all the required information to compute the impact δ for all applications
it is currently participating in. This information is available by maintaining local load
information, monitoring the local processor utilization, and caching ξ and Qξ for all
applications it is running, along with their current end-to-end execution times. It uses
the projected application execution time to estimate the effect of the component reuse
on the existing applications, by considering the effects of increased processor load on
the time required to invoke the components.

This projection is performed for all applications currently invoking a component to
be reused, for all applications invoking other components located on the node, and also
for the application that is to be admitted. If the projected impact is acceptable for all
applications, the component can be reused. Otherwise, and if there are no other local
components that can be reused, the probe is dropped.

4 Experimental Evaluation

We now present the experimental evaluation of Synergy, both through our prototype
implementation over the PlanetLab [10] wide-area network testbed, and through simu-
lations. The prototype provided a realistic evaluation. We used simulations in addition
to the prototype, to be able to test larger network sizes.

4.1 Prototype over PlanetLab

Methodology. Our Synergy prototype was implemented as a multi-threaded system of
about 18000 lines of Java code, running on each of 88 physical nodes of PlanetLab. The

Synergy: Sharing-Aware Component Composition for DSPSs 335

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

Average Application End-to-End Delay (sec)

Random Composition Synergy

Fig. 6. Average application end-to-end delay

 0

 50

 100

 150

 200

 250

 300

 350

 400

Successful Application Requests

Random Composition Synergy

Fig. 7. Successful application requests

implementation was based on the SpiderNet service composition framework [13]. Uni-
formly across the nodes were instantiated 100 components, with a replication degree
of 5. We used a probing ratio of 10%. Application requests asked for 2 to 4 compo-
nents chosen randomly and for the corresponding streams between the components. We
generated approximately 9 requests per second throughout the system. We generated
queries using a Zipf distribution with α = 1.6, expecting stream processing applications
to follow trends similar to media streaming and web content provision applications [19].
We also experimented with different request distributions in the simulations.

We compared Synergy against two different composition algorithms: A Random al-
gorithm that blindly selected one of the candidates for each application component.
A Composition algorithm (such as [13]), that discarded those component candidates
whose hosting nodes would not have the required processing power or communica-
tion bandwidth to support the request with the specified QoS and among the remaining
candidates it chose the ones that resulted in the minimum end-to-end delay.

Results and Analysis. In this set of experiments we investigated Synergy’s perfor-
mance and overhead in a real setting.

Average Application End-to-End Delay. Figure 6 shows the average application end-
to-end delay achieved by the three composition approaches for each transmitted data
tuple. Synergy offers a 45% improvement over Random and a 25% improvement over
Composition. The average end-to-end delay is in the acceptable range of less than a
second. Reusing existing streams offers Synergy an advantage, since for some of the
requests (fully or partially) only transmission and no processing time is required.

Successful Application Requests. An important metric of the efficiency of a com-
ponent composition algorithm is the number of requests it manages to accommodate
and meet their QoS demands, shown in Figure 7. Synergy successfully accommodates
27% more applications than Composition and 37% more than Random. Random does
not take the QoS requirements into account, thus misassigns a lot of requests. While
Composition takes operator, resource, and QoS requirements into account, it does not
employ QoS impact projection to prevent QoS violations on currently running appli-
cations. This results to applications that fail to meet their QoS demands during their
execution, due to dynamic arrivals of new requests in the system. Synergy’s composi-
tion algorithm manages to increase the capacity of the system and also limit the QoS
violations.

336 T. Repantis, X. Gu, and V. Kalogeraki

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60 70 80 90

N
um

be
r o

f P
ro

be
 M

es
sa

ge
s

Number of Nodes

Protocol Overhead

Random
Composition

Synergy

Fig. 8. Protocol overhead

Setup Time (ms) Random Composition Synergy

Discovery 240 188 243
Probing 4509 4810 3141

Total 4749 4998 3384

Fig. 9. Breakdown of average setup time

Protocol Overhead. We show the overhead of the composition protocols which is
attributed to the probe messages in Figure 8. To discover components and streams we
use the DHT-based routing scheme of Pastry, which keeps the number of discovery
messages low, while the number of messages needed to probe alternative component
graphs quantifies our protocol’s overhead. Synergy’s sharing-aware component compo-
sition manages to reduce the number of probes: By being able to discover and reuse
existing streams to satisfy parts or the entire query plan, it keeps the number of can-
didate components that need to be probed smaller. Also important is that the overhead
grows linearly to the number of nodes in the system, which allows the protocol to scale
to larger numbers of nodes. The probing ratio is another knob that can be used to tune
the protocol overhead further [6]. While Random’s overhead could also be tuned to
allow less candidates to be visited, its per hop selections would still be QoS-blind.

Average Setup Time. Table 9 shows the breakdown of the average time needed for
an application setup, for the three composition algorithms. The setup time is divided in
time spent to discover components and streams and time spent to probe candidate com-
ponents. As is shown, the discovery of streams and components is only a small part of
the time needed to set up a stream processing session. The major part of the time is spent
in transmitting probes to candidate components and running the composition algorithm
in them. Sharing streams allows Synergy to save time from component probing, which
effectively results to 32% faster setup time than Composition. The total setup time is
only a few seconds. Having to discover less components balances out the cost of having
to discover streams. Discovering a stream, especially if it is the final output of the query
plan, can render multiple component discoveries unnecessary.

4.2 Simulations

Methodology. To further evaluate the performance of Synergy’s sharing-aware com-
position algorithm we implemented a distributed stream processing simulator in about
7500 lines of C++ code. The network topology fed to the simulator was a transit-stub
topology of 1500 routers, generated by the GT-ITM internetwork topology genera-
tor [20]. We simulated a large overlay network of 500 nodes chosen randomly from
the underlying topology. Nodes and links were assigned processing and communica-
tion capacities from discrete classes, to simulate a heterogeneous system.

Synergy: Sharing-Aware Component Composition for DSPSs 337

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-to
-E

nd
 D

el
ay

 (s
ec

)

Number of Application Requests

Scalability

Random
Greedy

Composition
Synergy

Fig. 10. Scalability

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-to
-E

nd
 D

el
ay

 (s
ec

)

Number of Application Requests

Performance Gain Breakdown

Composition
composition + projection

Synergy

Fig. 11. Performance gain breakdown

A total of 1000 components were distributed uniformly across the nodes of the sys-
tem, with a uniform replication degree of 5. In other words, 200 unique components and
800 component replicas were instantiated at the nodes. Application requests consisted
of requests for 2 to 10 components chosen randomly and of streams of random rates
transmitted between the components. For each application we set its QoS requirement
30% higher than its projected execution time. We made experiments to investigate both
the performance of Synergy’s composition algorithm and its sensitivity to the parame-
ters mentioned above.

We compared Synergy not only against Random and Composition, but also against
a Greedy algorithm that at each composition step selected the candidate component
that resulted in the minimum delay between the two components. Note, that this does
not necessarily result in the minimum end-to-end delay for the entire application. To
implement this algorithm in a distributed prototype some latency monitoring service
such as [17] would be needed. We included it in the simulations though, as a popular
centralized approach that provides results with low overhead.

Other than the average application end-to-end delay, which includes processing,
transmission, and queueing delays, our main metric for the algorithms’ comparison
was the success rate, defined as the percentage of application requests that get admitted
and complete within their requested QoS limits. This effectively captures the success of
a composition algorithm to provide the requested operators, resources, and QoS.

Results and Analysis. In this set of experiments we investigated the performance of
Synergy’s sharing-aware component composition algorithm for increasing loads.

Scalability. Figure 10 shows the average end-to-end delay of all the applications
that are admitted in the system for increasing application load. Synergy consistently
achieves the minimum average end-to-end delay. Furthermore, it manages to maintain
the average end-to-end delay low, by not admitting more applications than those that
can be supported by the system. This is not the case with Random, Greedy, or the
Composition algorithm which do not employ QoS impact projection. As the number
of deployed and requested applications increases, the probability that existing streams
can be shared among applications increases as well. This gives Synergy an additional
advantage, which explains the slight decline of the average end-to-end delay for large
numbers of application requests.

338 T. Repantis, X. Gu, and V. Kalogeraki

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350 400 450 500

S
uc

ce
ss

 R
at

e
(%

)

Number of Application Requests

System Throughput Capacity

Random
Greedy

Composition
Synergy

Fig. 12. System throughput capacity

 0

 20

 40

 60

 80

 100

 3 3.5 4 4.5 5 5.5 6 6.5 7

S
uc

ce
ss

 R
at

e
(%

)

Replication Degree of Components

Sensitivity to Replication

Random
Greedy

Composition
Synergy

Fig. 13. Sensitivity to replication

Performance Gain Breakdown. To investigate what part of the performance bene-
fit of Synergy can be attributed to QoS Impact Projection and what part to Maximum
Sharing Discovery, we incorporated QoS projection to the Composition algorithm. Fig-
ure 11 shows how Composition together with the QoS projection (“composition + pro-
jection”) compares to Composition and Synergy, in terms of achieved end-to-end delay.
QoS projection improves system performance particularly in high loads. While for 100
requests Composition enhanced with projection offers only 8% lower delay than plain
Composition, that improvement rises to 42% for 500 requests.

System throughput capacity. Figure 12 shows the success rate for increasing request
load. The benefit of sharing-aware component composition is evident, as Synergy is
able to scale to much larger workloads, by reusing existing streams. QoS impact pro-
jection helps Synergy to achieve very high success rates by avoiding to disrupt currently
running applications. Cases of applications that miss their deadlines even with Synergy
can be explained by inaccurate estimations because of the current execution time up-
date frequency, or because of inaccuracies in the approximation of the execution time of
the admitted applications. As expected, random allocation results in poor QoS. Greedy
allocation does not perform well either and the reason is that resources are assigned
hop-by-hop ad hoc, blindly to the applications’ end-to-end QoS requirements. Another
interesting observation is that ensuring that there will be enough resources to run the
admitted applications by eliminating resource violations, as the Composition algorithm
does, does not suffice for these applications to meet their QoS requirements.

In the following set of experiments we kept the number of application requests at
100, which was a reasonable load for all algorithms as Figure 12 demonstrated. We
then investigated the sensitivity of Synergy to various parameters.

Sensitivity to Replication. Figure 13 shows the success rate, as a function of the repli-
cation degree of the components in the system. The success of Synergy’s composition,
as well as its advantage over the other composition algorithms is clear, regardless of
the replication degree of the components. Having more candidates to select from in the
composition process does not seem to affect the QoS of the composed applications.

Sensitivity to QoS Requirements. Figure 14 shows the success rate as a function of the
QoS demands of the applications. Even for very strict requirements, where applications
can only tolerate a 10% of extra delay, Synergy’s QoS impact projection is able to
deliver in-time execution in more than 80% of the cases, whereas the other composition
algorithms (Random, Greedy, Composition) fail in as many as 80% of the requests. As

Synergy: Sharing-Aware Component Composition for DSPSs 339

 0

 20

 40

 60

 80

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

S
uc

ce
ss

 R
at

e
(%

)

QoS Strictness (%)

Sensitivity to QoS Requirements

Random
Greedy

Composition
Synergy

Fig. 14. Sensitivity to QoS requirements

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 A
pp

lic
at

io
n

E
nd

-to
-E

nd
 D

el
ay

 (s
ec

)

Repeated Application Requests (%)

Sensitivity to Popularity of Requests

Random
Greedy

Composition
Synergy

Fig. 15. Sensitivity to popularity of requests

QoS requirements become more lax, the performance of those algorithms improves.
Yet, even in the case of a 50% tolerance in the delay, the best of them, Composition,
still delivers 12% less applications within their deadlines than Synergy.

Sensitivity to Popularity of Requests. To investigate how the distribution of user re-
quests affects Synergy’s performance in comparison to the rest of the composition al-
gorithms, we assumed a non-Zipfian distribution of application requests with a varying
percentage of repetitions. Figure 15 shows the average end-to-end delay of all the ap-
plications that are admitted in the system. Synergy utilizes stream sharing and thus
can deliver results for the repeated application requests without extra processing. For
a request repetition factor of 20% Synergy’s Maximum Sharing Discovery algorithm
offers 34% lower average end-to-end delay than Composition. For a repetition factor
of 40% Synergy achieves an improvement of 25% in comparison to load without any
repetitions. Since the rest of the composition algorithms do not offer stream reuse, their
performance is not affected by the repetition in application requests. That is as long as
the repetition factor is not extremely large, which would result in rejecting application
requests due to resource contention.

5 Related Work

Distributed stream processing [4,9] has been the focus of several recent research efforts
from many different perspectives. In [8] and [18] the problem of operator placement
in a DSPS to make efficient use of the network resources and maximize query perfor-
mance is discussed. Our work is complementary, in that our focus is on the effects of
sharing existing operators, rather than deploying new ones. While [8] mentions operator
reuse, they do not focus on the impact on already running applications. [7] describes an
architecture for distributed stream management that makes use of in-network data ag-
gregation to distribute the processing and reduce the communication overhead. A clus-
tered architecture is assumed, as opposed to Synergy’s totally decentralized protocols.
Service partitioning to achieve load balancing taking into account the heterogeneity of
the nodes is discussed in [21], while load balancing based on the correlation of the
load distributions across nodes is proposed in [22]. While a balanced load is the final
selection criterion among candidate component graphs in Synergy as well, our focus
is on QoS provision. The distributed composition probing approach is first presented
in [13,6]. Synergy extends this work by considering stream reuse and evaluating the

340 T. Repantis, X. Gu, and V. Kalogeraki

impact of component sharing. Our techniques for distributed stream processing compo-
sition directly apply to multimedia streams [23,15] as well.

Application task assignment has also been the focus of many grid research efforts.
GATES [5] is a grid-based middleware for distributed stream processing. It uses grid
resource discovery standards and trades off accuracy with real-time response. While we
also address real-time applications, our focus is on the composition of the application
component graph. Similarly, work on grid resource management [24] focuses on opti-
mally assigning individual tasks to different hosts, rather than instantiating composite
network applications. Work on resource discovery such as SWORD [25] can assist in
component composition, and is thus complementary to our work.

Component composition has also been studied in the context of web services from
many aspects, such as coordinating among different services to develop production
workflows [26], or providing reliability through replication [27]. Similar problems are
also encountered when providing dynamic web content at large scales [28], or personal-
ized web content [29], the changing and on-demand nature of which render them more
challenging than static content delivery [30]. While we focus on component composi-
tion for stream processing, our techniques may be applicable to other applications with
QoS requirements as well, such as composing QoS-sensitive web services.

6 Conclusion

In this paper we have presented Synergy, a distributed stream processing middleware
that provides sharing-aware component composition. Synergy is built on top of a totally
decentralized overlay architecture and utilizes a Maximum Sharing Discovery algorithm
to reuse existing streams, and a QoS Impact Projection algorithm to reuse existing com-
ponents and yet ensure that the QoS requirements of the currently running applications
will not be violated. Both our prototype implementation of Synergy over PlanetLab and
our simulations of its composition algorithm show that sharing-aware component com-
position can enhance QoS provision for distributed stream processing applications. Our
future work includes the integration of iterative execution of Synergy’s composition
protocol with techniques for application migration. This can enable application adapta-
tion to QoS-affecting changes in the environment, such as a node failure or overload.

References

1. Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an uncertain
world. In: Proceedings of CIDR, Asilomar, CA. (2003)

2. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava,
U., Widom, J.: STREAM: The Stanford data stream management system. (to appear) (2005)

3. Golab, L., Ozsu, M.: Update-pattern-aware modeling and processing of continuous queries.
In: Proceedings of 24th ACM SIGMOD Conference, Baltimore, MD, USA. (2005)

4. Abadi, D., et al.: The design of the borealis stream processing engine. In: Proceedings of
CIDR, Asilomar, CA. (2005)

5. Chen, L., Reddy, K., Agrawal, G.: GATES: A grid-based middleware for distributed pro-
cessing of data streams. In: Proceedings of IEEE HPDC-13, Honolulu, HI. (2004)

6. Gu, X., Yu, P., Nahrstedt, K.: Optimal component composition for scalable stream process-
ing. In: 25th IEEE ICDCS, Columbus, OH. (2005)

Synergy: Sharing-Aware Component Composition for DSPSs 341

7. Kumar, V., Cooper, B., Cai, Z., Eisenhauer, G., Schwan, K.: Resource-aware distributed
stream management using dynamic overlays. In: 25th IEEE ICDCS, Columbus, OH. (2005)

8. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.: Network-
aware operator placement for stream-processing systems. In: Proc. of 22nd ICDE. (2006)

9. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.: Design,
implementation, and evaluation of the linear road benchmark on the stream processing core.
In: Proceedings of 25th ACM SIGMOD Conference, Chicago, IL, USA. (2006)

10. PlanetLab Consortium: http://www.planet-lab.org/ (2004)
11. Arabshian, K., Schulzrinne, H.: An ontology-based hierarchical peer-to-peer global service

discovery system. Journal of Ubiquitous Computing and Intelligence (JUCI) (2005)
12. Abdelzaher, T.: An automated profiling subsystem for QoS-aware services. In: Proc. 6th

IEEE RTAS, Real-Time Technology and Applications Symposium, Washington, DC. (2000)
13. Gu, X., Nahrstedt, K., Yu, B.: SpiderNet: An integrated peer-to-peer service composition

framework. In: Proceedings of IEEE HPDC-13, Honolulu, HI. (2004)
14. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. In: Proceedings of IFIP/ACM International Conference on
Distributed Systems Platforms, Heidelberg, Germany. (2001)

15. Chen, F., Repantis, T., Kalogeraki, V.: Coordinated media streaming and transcoding in
peer-to-peer systems. In: Proceedings of 19th IPDPS, Denver, CO. (2005)

16. Hu, N., Steenkiste, P.: Exploiting internet route sharing for large scale available bandwidth
estimation. In: Proc. of Internet Measurement Conference, IMC, New Orleans, LA. (2005)

17. Tang, C., McKinley, P.: A distributed approach to topology-aware overlay path monitoring.
In: Proceedings of 24th IEEE ICDCS, Tokyo, Japan. (2004)

18. Seshadri, S., Kumar, V., Cooper, B.: Optimizing multiple queries in distributed data stream
systems. In: 2nd Int. IEEE Workshop on Networking Meets Databases, NetDB. (2006)

19. Cherkasova, L., Gupta, M.: Analysis of enterprise media server workloads: Access patterns,
locality, content evolution, and rates of change. IEEE/ACM Transactions on Networking,
TON 12(5) (2004) 781–794

20. Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In: Proceedings
of IEEE INFOCOM, San Francisco, CA, USA. (1996)

21. Gedik, B., Liu, L.: PeerCQ: A decentralized and self-configuring peer-to-peer information
monitoring system. In: Proceedings of 23rd IEEE ICDCS, Providence, RI, USA. (2003)

22. Xing, Y., Zdonik, S., Hwang, J.: Dynamic load distribution in the borealis stream processor.
In: Proc. of 21st International Conference on Data Engineering, ICDE, Tokyo, Japan. (2005)

23. Kon, F., Campbell, R., Nahrstedt, K.: Using dynamic configuration to manage a scalable
multimedia distributed system. Computer Communications Journal 24 (2001) 105–123

24. Cai, W., Coulson, G., Grace, P., Blair, G., L.Mathy, Yeung, W.: The gridkit distributed re-
source management framework. In: Proc. of European Grid Conference, EGC. (2005)

25. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Design and implementation trade-
offs for wide-area resource discovery. In: Proceedings of 14th IEEE HPDC-14. (2005)

26. Tai, S., Khalaf, R., Mikalsen, T.: Composition of coordinated web services. In: Proceedings
of ACM/IFIP/USENIX 5th International Middleware Conference, Toronto, Canada. (2004)

27. Bartoli, A., Jimenez-Peris, R., Kemme, B., Pautasso, C., Patarin, S., Wheater, S., Woodman,
S.: The adapt framework for adaptable and composable web services. IEEE Distributed
Systems On Line, Web Systems Section (2005)

28. Amza, C., Cox, A., Zwaenepoel, W.: A comparative evaluation of transparent scaling tech-
niques for dynamic content servers. In: Proceedings of 21st ICDE, Tokyo, Japan. (2005)

29. Colajanni, M., Grieco, R., Malandrino, D., Mazzoni, F., Scarano, V.: A scalable framework
for the support of advanced edge services. In: Proc. of HPCC-05, Sorrento, Italy. (2005)

30. Karbhari, P., Rabinovich, M., Xiao, Z., Douglis, F.: ACDN: A content delivery network for
applications. In: Proceedings of 21st ACM SIGMOD Conference, Madison, WI. (2002)

	Introduction
	System Model
	Stream Processing Application Model
	Synergy Architecture
	Approach Overview

	Design and Algorithm
	Synergy Composition Protocol
	Maximum Stream Sharing
	QoS-Aware Component Sharing

	Experimental Evaluation
	Prototype over PlanetLab
	Simulations

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

