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Abstract. As Structured Peer-to-Peer (P2P) Networks become popular, there is 
an emerging need to monitor continuously the huge number of participants in a 
robust and scalable manner. To this end, aggregation has emerged as a basis for 
the self-management of these networks. However, the structured P2P networks 
lack today of efficient mechanisms for the decentralized computation of these 
aggregates. In this paper, we propose a hierarchical theoretic model based on 
Cayley Graphs, which overcomes the requisite to accommodate growth without 
impacting the efficiency of distributed applications. Also, the paper presents an 
aggregation protocol that fuses the fault-resilience of gossip algorithms with the 
scalability of trees. In particular, simulation results show that this algorithm is 
capable to cope with the distributed and unreliable nature of P2P networks.  
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1   Introduction 

In recent years,  Structured Peer-to-Peer (P2P) Networks, which offer an efficient, 
scalable, resilient and self-organizing substrate for building distributed applications 
have become widely popular, including Chord[1], CAN[2], Pastry[3] and Tapestry[4].  
As these networks grow in popularity, there is an emerging need to collect a variety of 
statistical information about resources and/or peers to allow primarily individuals and 
then administrators to perform global control actions without explicit coordination. 
However, the P2P principles themselves pose a challenge for developing large scale 
management applications. Particularly, it is apparent that their decentralized nature 
should not be violated for any reason. Precisely, it is this need of decentralization 
what do P2P management systems be markedly different from traditional ones. In this 
line, we believe that the main challenge of P2P paradigm concerning management lies 
in developing decentralized architectures capable to support up-to-date techniques 
without disregarding the symmetric functionality of peers. To this end, a first natural 
step consists of enabling AGGREGATION, i.e. the computation of global network 
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parameters through the use of functions MIN, MAX, SUM, COUNT or AVG, which 
is an efficient technique for provisioning nodes with valuable information.  

A research area that can benefit substantially from AGGREGATION is autonomic 
computing: monitoring is an essential feature of autonomic systems and entails to log 
statistics about autonomic elements which serve as the basis for self-adaptation; self-
healing, self-protection etc. Note that the essence of autonomic computing systems is 
self-management, the intent of which is to free system administrators from the details 
of system operation and maintenance.  

The focus of this paper is on a decentralized model for computing AGGREGATION 
functions in Distributed Hash Tables, DHTs. Briefly, a DHT is a decentralized object-
location mechanism for P2P systems that manages the distribution of content among a 
dynamic set of nodes by using a consistent mapping of keys to nodes. The DHT 
abstraction provides the same functionality as a hash table — associating key-value 
pairs with physical network nodes rather than hash buckets. They provide the put(key, 
value) and get(key) functions to allow DHT members to efficiently store and retrieve 
stored resources by name without using centralized servers. In practice, we consider 
that a nice AGGREGATION scheme for DHTs must fulfill the following: 

i. Accuracy: let us consider a request to compute an aggregate function F.  
Then, “accuracy” refers to the maximum allowed error (ζ) for the returned 
estimation  . We define accuracy as (1−  /Ftrue), where Ftrue denotes the true 
value for function F. Then, if the answer lies in the range [(1−ζ)Ftrue, (1+ζ)Ftrue], 
we say that the aggregation scheme ensures practical validity. 

ii. Scalability: popular P2P networks maintain a large number of participants 
throughout the time. Consequently, a management protocol must scale to 
networks of very large size, that is, the load and the traffic generated by message 
exchanges must be small and evenly distributed.    

iii. Robustness:  the participants of a DHT are expected to be very dynamic. This 
means that our protocol must adapt gracefully to changes in the overlay, 
including node and link failures.  

In this paper, we propose DECA: a hierarchical management framework capable to 
augment ordinary DHTs with robust, accurate and scalable AGGREGATION facilities.  

 Significant contributions distinguish DECA from previous work. These are: 

― Hierarchical P2P-theoretic model that effortlessly exploits the in-built recursive 
decomposition of ordinary DHTs. The main reason is that hierarchies are ideal for 
accommodating growth and isolating faults. To this end, we introduce a powerful 
tool based on Cayley graphs which converts an overlay — like Chord, Pastry, CAN 
... — in a collection of clusters mimicking a hierarchical organization. Hereinafter, 
we refer to this as function Ή. Although in [5] we devise a pragmatic technique for 
constructing hierarchical DHTs, however, Ή extents are broader. It endeavors to 
uncover the hidden hierarchical structure of typical DHTs. Also, we assume that 
there exists an effective mapping tool that groups topologically close nodes into the 
same cluster. It is our position to consider that topology concerns are of paramount 
importance for a practical P2P AGGREGATION service. To the date, we believe that 
DECA is the first attempt to build an effective management infrastructure built on 
top of a hierarchical DHT.  

F̂F̂
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― Efficient AGGREGATION protocol that blends together the scalability of trees with 
the resilience of epidemic algorithms. To compute a global parameter, a system 
must provide redundancy to ensure practical validity. Node failures must not lead 
to severely hampering management operation. Hence, a gossip protocol is a better 
alternative than a single tree to compute function F over the weights of all nodes in 
the system. 

The paper is organized as follows. Section 2 reviews related work. Section 3 
describes formally our hierarchical model and AGGREGATION algorithm. Section 4 
provides a discussion about function Ή.  Section 5 provides Whirl, the Chord instance 
of our framework. Section 6 describes our simulation results. Finally, Section 7 draws 
some conclusions. 

2   Related Work 

Although there exists a large body of literature in the network management area, we 
believe that DECA is the first attempt to build a P2P distributed AGGREGATION [6, 7] 
mechanism based on hierarchical distributed hash tables, DHTs.  

To the best of our knowledge, there are only a few proposals that try to solve the 
node aggregation problem in DHTs. In [8, 9, 10], a tree structure is constructed and 
maintained to propagate aggregates to the root. Except SOMO[10], fault-tolerance is 
achieved in these approaches by a mechanism that reconstructs the tree after node 
addition, removal or failure. Ji Li et al. in [8] demonstrated analytically that even with 
the presence of a refreshing algorithm that corrects failures; tree infrastructures cannot 
ensure practical validity. Besides, tree-based aggregation schemes share another 
important difficulty. Since link and node congestion increase as the distance to the 
root decreases, the scalability of the whole system becomes tightly coupled not only 
to the nodes capacities, but also to the actual tree organization of participants.  

Willow[11] and DASIS[12] built a logical binary tree on top of a P2P system to 
provide participants with aggregation facilities. Whereas Willow is a general purpose 
aggregation service, DASIS employs aggregates to load balance the underlying peer-
to-peer graph. In contrast, DECA is a multilayered hierarchical model which offers an 
efficient dissemination infrastructure; it organizes participants in a hierarchy of self-
contained clusters which are, in practice, locality-aware overlays.  

GAP[13] is characterized by the construction and maintenance of a BFS tree on top 
of the network and consequently, it suffers from the same aforementioned drawbacks.  

The most similar abstraction in spirit to ours is Astrolabe[14]. In short, Astrolabe is 
a distributed management service designed to monitor and report continuously the 
state of a collection of dynamically changing resources to users. To do it, it organizes 
the resources into a hierarchy of domains, called zones, and associates attributes with 
each zone. A zone name, which is unique and describes its position in the hierarchy, is 
given to each zone to globally identify it. Similar to us, Astrolabe uses aggregation 
and a gossip protocol for quickly spreading changes throughout the system. However, 
it presents three important shortcomings. It is not self-organized since the hierarchy is 
implicitly defined when the administrators name the zones. It is semi-decentralized as 
each zone elects a set of hosts, called representatives, to gossip on behalf of the zone 
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and it is not fault-tolerant. With only one representative per zone, Astrolabe is highly 
sensitive to host crashes.    

3   A Hierarchical Management Framework 

To meet the scalability demands for distributed AGGREGATION, we propose a hybrid 
technique that blends together the scalability of trees with the resilience of epidemic 
algorithms.  

3.1   Hierarchical Model  

We are considering a dynamic P2P overlay graph G(V(t), E(t)), where V(t) is the set 
of vertices at time t, and E(t) ⊆ V(t)×V(t) is the set of edges that may change over 
time. Each node x has an associated value wx(t) at time t. It represents the value that is 
being subjected to the AGGREGATION function F. 

 Because G is a DHT, it has a finite m-bit identifier space of 2m elements denoted 
as I. Besides, G is also a hierarchical substrate recursively built up from a proper 
nesting of clusters. By a proper nesting, we mean that for any pair of clusters in G, the 
two clusters are either disjoint, or one is a proper subset of the other. Technically, the 
latter means that our architecture defines a partial-order tree; nodes are organized into 
clusters, clusters are organized into superclusters, superclusters are organized into 
hyperclusters etc. As a result of this partial ordering, the set I is at tier-0, the highest 
tier, whilst in any subsequent tier-k provided k > 0, the potential number of identifiers 
for each cluster falls off. This occurs because each cluster C∈G is a proper subset of I, 
that is, C ⊂ I. In other words, there are not duplicate identifiers since I ⊇ G and C∈G. 
To conclude, let L denote the number of tiers.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A DECA hierarchy 

Node status. Each node x (that is a peer) is contained in a sequence of telescoping 
clusters: Cl−1(x) ⊂ Cl−2(x) ⊂ … ⊂ C0(x), for some l ∈ {0 ,…, L – 1} and where Cl−1(x) 
denotes the x’s leaf cluster and l − 1 its tier depth. For each C∈G, we say that C is a 
leaf cluster if and only if C is not a union of a finite number of other sets in G. In 
other words, any node is part of a raising sequence of larger groups up to the root. To 
retain the routing capabilities of the flat design, each node x requests for some routing 
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information at each tier-k, for k > 0. Particularly, it is Ή responsibility to provide an 
efficient hierarchical substrate equivalent in degree and diameter to the flat design. 
Later in section 4, we discuss in more detail the Ή involvements. 

Let Ni(x) be the set of tier-i subtrees not including node x. Let N be the collection 
of sets Ni(x) for all i ∈ {0, 1, …, L – 1}. Then, for each subtree Sj(x) ∈ {Ni(x) | ∀ Ni(x) 
∈ N} node x knows at least one node, namely, x΄ in Sj(x). Such a node x΄ is said to be 
the x’s delegate node in Sj(x). In fact, a delegate node x΄ can be viewed as a kind of 
bridge since it lets a pair of nodes exchange its weights w(t) at a given time t. Because 
function Ή strips G into smaller graphs of the same “family”, each node x has at least 
one delegate in each height-k subtree, k > 0. The latter is advantageous in that nodes 
joining or leaving require only local changes in the network. Besides, it isolates faults; 
it enables effective bandwidth utilization, adaptation to the underlying network and a 
scalable network management. We note that no global information about the structure 
of the hierarchy is necessary; it suffices for each node to know its current position in 
the hierarchy and the list of ancestor groups up to the root. To ease the membership 
management, we assume that each cluster has a unique group identifier.  

When a node x joins the system, x asks an arbitrary existing node, say y, to 
determine the closest node to x — using a topological aware mapping. Denote this 
closest node by z. Node x then initializes its routing table with z’s routing table. Let 
x’s routing table be defined as follows. Let D(x) be the set of x’s delegate nodes. Let 
L(x) be the x’s routing table for its leaf cluster. Then, the x’s routing table consists of 
D(x) + L(x) nodes. For robustness to node failures, a “diversity” property should be 
maintained across the routing tables of nodes in the system. To accomplish this goal, 
it suffices for each node x to apply the maintenance rules of the flat design along the 
sequence of telescoping clusters: Cl−1(x) ⊂ Cl−2(x) ⊂ … ⊂ C0(x). Therefore, 
maintenance of the hierarchical network is relatively simple and almost identical to 
the flat overlay.  
 
― Network Awareness. As mentioned above, one of the most challenging questions 

facing DHTs is whether they can compute aggregates for real-time management. 
To do it, a common technique consists of integrating the so-called “proximity” into 
the target DHT. In DECA, this means that nodes that are topologically close are 
organized into clusters; topologically-close clusters are gathered into superclusters 
etc. Because the cluster nestings come directly up from the underlying topology, 
DECA can assume an asynchronous distributed model i.e., a known upper bounds 
on message transmission delays, and clock drift rates. Hence, we can integrate all 
the above bounds in a known universal maximum delay Δ between any pair of 
nodes. A message sent a time t will be received by the destination node within time 
t to time t + Δ. Also, we can assume that the communication time between two 
nodes within its leaf cluster is smaller than Δ. This method may introduce errors 
but exact synchronization is not necessary, so gossiping fully suffices. 

3.2   Node Aggregation 

In this section, we address the fundamental question regarding DECA: “What is the 
actual protocol used to calculate the global function F over data residing at the nodes 
of a DHT?” We answer this question proposing a hybrid protocol that combines a 
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gossip-based dissemination mechanism with a tree-based propagation structure that 
reflects the hierarchical organization of groups. First, a node “gossips”, within its leaf 
cluster, about the individual weights it knows about. Then, it computes an estimate of 
F in a bottom-up fashion using the estimates it receives from delegate nodes. As G is 
expected to materialize into a proper nesting of clusters, our algorithm requires about 
O(h) phases to compute F, where h is the height of the tree. 

Protocol overview. The major aim of DECA is to cope with the inaccuracies found in 
aggregates and provoked by the transient nature of P2P networks, where a significant 
fraction of nodes become inactive within a short period of time. In such settings, a 
pure tree-based approach tends to be rather unpractical since a single node failure can 
cause the root to miss the information of the whole subtree below the fault. In order to 
achieve more fault-tolerance, we need more redundancy in messages sent. Thus, 
gossip protocols, which are simple and fault-tolerant — though, at the cost of a higher 
number of messages —, constitute an attractive alternative. Fortunately, we believe 
that our scheme far affords the expenses of carrying out such form of massive data 
dissemination. Recall that clusters are expected to be small and topologic-centric. So 
scalability is achieved through the distribution of AGGREGATION across the clusters.            

Regarding the flow of information, we distinguish between push, pull and push-
pull gossip protocols. Assume a node x calls node y. Then, we have:  

i.  In push gossip, the rumor is pushed if x tells y the rumor. 
ii.   In pull gossip, the rumor is pulled if x requests y for the rumor. 

iii.   In push-pull gossip, the rumor is both pulled and pushed.  

These protocols are reliable in a probabilistic sense. Karp et al. [15] show that if a 
push-pull gossiping is run for O(ln n) rounds, then, w.h.p., all nodes have the rumor, 
and in addition, the total number of messages sent is O(n ln ln n). 

In order to bound the communication cost, we assume a push gossip algorithm that 
can be described as follows. Each node x receives rumors for O(log n) epochs, where 
an epoch is a fixed time interval of length Δ (network delay for clusters is O(Δ)). In 
each epoch, each node x gossips to δ other nodes, randomly chosen from the subset of 
nodes x knows about. We will refer to this subset as x’s local view Γx. Views may be 
partial and inconsistent but large enough to ensure a fast convergence.   

In push gossip, nodes gossip at a constant rate in each round, and therefore, the 
number of messages sent is O(n log n). However, we can reduce such overhead by 
tailoring the choice of targets to the underlying graph topology G, but a more general 
strategy applicable to any P2P topology is desirable. 

To conclude this section, we describe how a node x obtains the estimate for level i, 
for (i > 0). We call this method GET_ESTIMATE(i, F). Let Si(x) be the set of all 
height-i subtrees not including x. Let ψi,j(x) be the estimate corresponding to subtree-j 
at height-i not including x. Then, procedure GET_ESTIMATE(i, F) consists of two 
steps. First, it obtains the estimates ψi,j(x) from all x’s sibling subtrees S∈Si(x) through 
the corresponding delegate nodes. Finally, it applies function F over these estimates.  

After these preliminaries, we are ready to describe how our algorithm manages to 
compute F.  

Aggregation algorithm. DECA algorithm starts “simultaneously” at each node. The 
algorithm consists of 3 phases: 
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1. Phase 1: this phase lasts O(log max{|Ck|}k ≥ 0) epochs, where |Ck| denotes the 
cardinality of leaf cluster k. In order to estimate O(log max{|Ck|}k ≥ 0), it suffices 
for nodes to use function MAX over the cardinalities of leaf clusters. In this 
phase, each node x “gossips” about the individual weights stored across its leaf 
cluster, which of course include x’s local weight. To do it, node x i) periodically 
(once in every epoch) selects a random subset of nodes from its local view Γx 
and ii) sends them an arbitrary weight chosen uniformly at random along with 
the identifier of the node that keeps it. In turn, x discovers the weights of other 
nodes of its own cluster the first time it receives them via a push message. After 
O(log max{|Ck|}k ≥ 0) epochs, x applies the function F to all weights it has 
collected in its cluster, and bumps itself to phase 2. 

2. Phase i (1 < i ≤ h + 1): in phase i, each node x invokes GET_ESTIMATE(i, F) 
to obtain the estimate for tier-i. Then, x bumps itself to phase i + 1. Note that 
any node has not available the estimate for its height-i subtree until phase i 
terminates.  

3. Final phase: when a node x finds itself in phase i = h + 1, it has an estimate of the 
global function F evaluated over the entire DHT. Then, the protocol finishes at x. 

Time Complexity. The number of phases for the algorithm is h + 1, where h is the 
height of the hierarchy. Besides, let λ be the set of leaf clusters. Since phase 1 lasts 
O(log c) rounds, where c = max{|C|:  C ∈ λ}, the time complexity for the algorithm is 
O(log c + h). 

Message Complexity. The communication cost is O(bn log n + bn), where b is the 
size in bits of the weights and n the number of nodes in the network. 

4   The Hierarchical Function Ή 

In general, the problem of finding a suitable Ή is complex. In [16], Ganesan et. al. 
provide a framework to transform a variety of DHTs into their hierarchical versions. 
As a part of our ongoing research, we use instead Cayley graphs, a common technique 
in design of interconnection networks, to devise the exact Ή for a given input overlay. 
Briefly, Cayley graphs are extremely helpful in the analysis of static topologies with 
regards to quality measures such as diameter or degree — our hierarchical DHTs must 
preserve the same degree and routing performance as the flat designs. In particular, 
many Cayley graphs, such as hypercubes, are hierarchical. Further, if an algebraic 
theoretic model that can elucidate the hierarchical structure of a graph exits, then to 
procure it a proper Ή is quite simple: upon an overlay is proven to be a Cayley graph, 
it suffices to use the standard definition of hierarchical Cayley graph to approximate 
it. Although many Cayley graphs are hierarchical, not all of them admit a recursive 
decomposition into smaller graphs of the same family. More specifically, we are only 
interested in those DHTs that are recursively built up by adding isomorphic copies of 
smaller Cayley graphs. A hierarchical DHT is not just a graph, but rather a family of 
graphs G0, G1, G2 etc. defined for any of the potential static sizes. 

Definition 1. Let Γ(V, ○) be a finite group, 1 its neutral element, and let S ⊆ V – {1} 
be closed under inversion (i.e. s-1 ∈ S for all s ∈ S). The Cayley graph G(Γ, S) = (V, E) 
of  (V, ○) is the graph on V where x, y are adjacent if and only if x ○ y-1 ∈ S. In other 
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words, there is an edge (x, y) if and only if there exists a generator s ∈ S such that x ○ 
s = y. 

Cayley graphs include a large number of families of graphs, like hypercubes, star and 
pancake graphs [17] etc. The next definition constitutes the core of our scheme to 
build up hierarchies from the ground: 

Definition 2. Let < {s1,s2,…,si} >Γ be the subgroup of Γ(V, ○) generated by  the set 
{s1,s2,…,si } ⊆ S i.e. the smallest subgroup of Γ which contains {s1,s2,…,si}. Let Γ(V, 
○) be a finite group and S ⊆ V – {1} such that S = S-1. Then, the Cayley graph G(Γ,S) 
is said to be hierarchical if there exits an ordering {s1, …, sk} of the generators of G 
such that the subgroups < {s1,s2,…,si} > Γ are all distinct. 

The above definition yields a surprising outcome. If we order the generators such that 
each si+1 is outside the subgroup generated by the subgroup <{s1, s2,...,si}>Γ, then we 
can obtain an accurate approximation of Ή. Specifically, each si+1 incorporates the 
additional edges required to interconnect the exact number of copies of graph Gi to 
produce the next family graph Gi+1. Therefore, Cayley graphs give us a useful hint to 
the question of how to get a suitable method to obtain hierarchical substrates from flat 
topologies. Although Cayley graphs are very helpful, they only give a static solution 
to the problem of hierarchical construction. In fact, adopting a concrete instance of Ή 
involves a further analysis to determine if Ή properly fits in a dynamic environment 
where the nodes join or leave independently. However, this topic is beyond the scope 
of this work.  

To conclude, we want to underlie that in our case study, the hierarchical version of 
Chord we obtain via Ή preserves the logarithmic bound O(log N), both in degree and 
number of routing hops. 

5   Whirl: The Hierarchical Version of Chord 

In this section, we concisely present the hierarchical version for Chord. First, we give 
the Cayley graph definition for Chord. Second, we discuss the specific function Ή 
which manages to map Chord to Whirl, our hierarchical version of Chord. Since a 
detailed description of Whirl was provided in [5], we omit the irrelevant details from 
network management viewpoint. 

Let Γ be the cyclic group (      , +) of 2m elements with generators 2i for i=0…m−1. 
The Cayley Graph G(Γ, {±2i: i∈{0,…,m−1}}) is the Chord graph with diameter m/2 
and degree 2m. 

The next theorem claims that Chord is a hierarchical Cayley graph. It also sets the 
order for the generators ±2i, for i=0…m−1, which reveals the in-built Ή for Chord: 

Theorem 1. Let Γ be the cyclic group (       , +) of 2m elements. Let G(Γ, {±2i: i∈  
{0,…,m−1}}) be the Cayley graph of Chord. Then, Chord is a hierarchical overlay if 
and only if its generators are ordered as follows:  ±2m−1, ±2m−2, …,  ±1. 

Proof. Omitted due to space constraints.  

The above definition theorizes that a Chord graph of 2m elements can be viewed as 
two interleaved copies of a Chord graph of 2m−1 nodes with the additional connections 

2m

2m
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linking adjacent vertices. For example, consider the cyclic group (  8, +) for a Chord 
graph of 8 vertices {0, 1, ..., 7} and degree 6. The ordered set of generators for the 
Cayley graph is {±4, ±2, ±1}. Then, the Chord graph of 8 vertices can be obtained by 
applying the generator ±1 to two copies of 4 vertices, one with vertex set {0, 2, 4, 6}, 
the other with vertex set {1, 3, 5, 7} and both with generators {±4, ±2}. It is easy to 
notice that the vertex sets of both copies are left cosets of group (  8, +). Concretely, 
this leads to a more general implication. It signals that the union of two copies of the 
graph Gi to produce graph Gi+1 entails to establish only one additional link per node. 
Technically, the latter is the reason why Whirl is optimal regarding both degree and 
diameter. For further details, refer to [5]. 

Bearing in mind the above facts, function Ή for Chord is two-fold: (i) it retains the 
standard Chord’s rule for link creation and (ii) performs a simple operation on node 
identifiers. The reason to maintain Chord’s rule is for enabling “hierarchical” lookups 
in Whirl. In general, a hierarchical lookup works as follows. Suppose a node q looks 
for an item k. First, q tries to find k within its leaf cluster to take advantage of network 
proximity. If q finds k the search stops. Otherwise, the query reaches the closest 
predecessor p of k at this tier. Then, node p switches to the next higher cluster and 
continues routing on that cluster. By repeating the latter, item k finally is found.  

Besides, Ή divides the node identifiers in two parts. A PREFIX of m − p bits and a 
SUFFIX of p bits provided 0 ≤ p ≤ m, where m is the length of node identifiers within 
Chord circular identifier space [0, 2m). The SUFFIX determines the cluster of a node 
(cluster ID) whereas the PREFIX, drawn uniformly at random, specifies the identity 
of a node inside the actual cluster (node ID). Then, the application of the generator ±1 
to any pair of neighboring clusters with an m-bit identifier space, produces a larger 
cluster with a (m+1)-bit identifier space and “ring” links between adjacent vertices. 
Also, the generator ±1 installs the delegate nodes at that tier. As a result, merging a 
pair of clusters of the same level is achieved easily by i) contracting the SUFFIXes 
and ii) extending the PREFIXes of nodes one bit, respectively. The last result has a 
broader scope: it lets nodes reuse the links of “lower” clusters for routing at “higher” 
tiers. As simulation results demonstrate in next section, our theoretic model is capable 
to elucidate a hierarchical degree-optimal version of Chord. 

6   Simulation Results 

We now present a battery of tests to evaluate the functionality and performance of our 
framework through simulation. Because the underlying substrate is a Chord overlay, 
maintenance costs are of the same order as Chord. The main hypotheses we want to 
evaluate are: 

1. The basics of Whirl: the degree distribution and average number of routing 
hops to demonstrate the quality of function Ή. 

2. The proximity: the capacity that offers a hierarchical DHT for adaptation to 
the underlying network in comparison to its flat design.  

3. The performance of DECA: it includes the convergence time for a tailored 
push gossip algorithm, applicable to Chord; the communication cost in terms 
of number of messages sent and the accuracy of our solution.  

All of the experiments for this section use a hierarchy with a fan-out of 2 at each 
internal node. The number of tiers in the hierarchy  varies  from 1,  plain  Chord,  to  5.  
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The number of nodes oscillates from 1K to 4K, and all the nodes choose a random 14-
bit identifier. Nodes are evenly distributed across the leaf groups. 

Ή Test. Our first set of experiments evaluates function Ή abilities. In particular, the 
distribution of the number of links and the average number of routing hops are 
provided. Regarding the first metric, figure 2.a) plots the distribution of number of 
links for a 1K-node network in a 1-level (Chord), 2-level and 3-level hierarchy. We 
observe that for Chord this distribution is peaked around the average of 12 links/node. 
As the number of tiers in the hierarchy increases, the mean shifts to the right whilst the 
distribution “flattens out” to the left of this value. Although the number of links is not 
exactly the log|V|, we see that the average number of links is log|V| + c, i.e. O(log|V|), 
where c is a small constant that depends on the number of tiers. On the other hand, 
figure 2.b) depicts the average number of hops required to route between two nodes as 
function of the network size. We see that the number of routing hops is extremely close 
to log|V| irrespective of the number of tiers. To evaluate the above metric, we inserted 
1K items into the system. Later, ten nodes were requested to retrieve all items. For 
each item, a “hierarchical lookup” was issued and the number of hops it spent, 
accounted. In conclusion, DECA through function Ή is capable to produce hierarchical 
versions of flat DHTs that preserve the same degree and number of routing hops.  

Proximity Test. In this test, we evaluate DECA routing performance in terms of 
network delay. To make a fair comparison, both the flat Chord and its hierarchical 
version have the same number of nodes, denoted |V|. In order to measure DECA 
adaptation to the physical network, we use GT-ITM[18] topology generator to 
produce a 100-node highly connected backbone. For each node in the backbone, we 
attach a number of graphs representing stub domains. The latency weights are: 10ms 
for backbone edges, 100ms for backbone-stub edges and 5ms for stub-stub links. To 
construct the desired |V|-node network, we attach each node to a stub through a 1ms-
latency edge. Figure 3 depicts the relative performance of an arbitrary 3-level, 4-level 
Whirl graph versus a plain Chord without proximity. Clearly, it illustrates that Whirl 
widely outperforms Chord. 

Performance Test.  This test evaluates DECA performance in terms of convergence 
time, number of messages sent and degree of accuracy. To this end, we implement a 
push gossip protocol over Chord partially based on the foundations of lbpcast [19]. 
Each node x maintains a partial view Γx of the system that varies as node x discovers 
other nodes via push messages. Also, we employ COUNT function for our analysis. 
Basically, this test aims to count the total number of nodes in the  overlay.  For  all  the  
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        Fig. 3. Average delay between nodes   Fig. 4. Convergence Time 

tests, the probability of a node crash (without recovery) in every epoch and in every 
phase i (i >0) is pf = 0.001. 

Figure 4 shows the relationship between the “gossip” rate δ and the number of 
rounds that it takes to aggregate an event in a leaf cluster. The figure shows that 
increasing δ decreases the number of necessary epochs to aggregate a value, but 
conveys also the fact that the gain is not proportional. Figure 5.a) illustrates the cost in 
number of messages that DECA spends. Note that leaf clusters are expected to be 
several orders of magnitude smaller than a flat DHT. Then, it is easy to see that as the 
average depth of the hierarchy increases, the overhead sharply reduces. Finally, figure 
5.b) presents the fraction of nodes whose estimation of COUNT function is outside 
the range [0.9|V|, 1.1|V|]. The high degree of accuracy comes from: i) the high degree 
of reliability provided by the gossip protocol and ii) from the small quantity of 
delegate nodes required to aggregate. The advantage of using delegates is that the 
maintenance algorithm of the flat design carries out their refreshing. 
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    Fig. 5. a) Number of messages sent (10e+3)               b) Incompleteness probability 

7   Conclusions 

In this paper, we have expressed the need for a scalable AGGREGATION framework for 
DHTs as a basis for wide-area management architectures. We have argued the reason 
why traditional approaches for solving this problem do not scale in large groups, and 
do not perform well over fault-prone networks. To cope with this, we have sought for 
new theories that fit neatly into Peer-to-Peer paradigm foundations. In this line, we 
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have introduced a hierarchical abstraction that manages to extend AGGREGATION to 
P2P wide-area networks. Also, a hierarchical methodology based on Cayley Graphs, 
which produces hierarchical systems from the usual flat DHTs, has been unveiled. 
Finally, an AGGREGATION algorithm which is hybrid, since it combines the fault-
resilience of gossip algorithms with the scalability of trees, has been carefully devised 
to achieve the scalability/fault-tolerance requirements of large-scale P2P networking.  
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