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Abstract. A sequential algorithm for computing the distance map using
distances based on neighbourhood sequences (of any length) in the 2D
square grid; and 3D cubic, face-centered cubic, and body-centered cubic
grids is presented. Conditions for the algorithm to produce correct results
are derived using a path-based approach. Previous sequential algorithms
for this task have been based on algorithms that compute the digital
Euclidean distance transform. It is shown that the latter approach is not
well-suited for distances based on neighbourhood sequences.

1 Introduction

In [1], a sequential algorithm for computing distance transforms (DTs, where
each object grid point is assigned the distance value to the closest background
grid point) was introduced. The authors considered only the simple L1 (city-
block) and L∞ (chessboard) metrics and they proved that a two-scan algorithm
will produce a correct distance map. This is due to the fact that the distances
are path-based with fixed adjacency, i.e., the distance between two points is
the length of the shortest path between the points in a graph structure. For
these distances, unit distance between adjacent grid points (weights) is used.
The DTs obtained from L1 and L∞ are very rotation-dependent. Basically, two
alternative ways to decrease the rotational dependency have been introduced
– weighted distances and distances based on neighbourhood sequences (n.s.-
distances or octagonal distances, first defined in [2]). With weighted distances
(each local step is assigned a weight), the weights are allowed to have different
values than one. The literature on weighted distances is rich, see for example the
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early paper [3]. Because of the fixed adjacency, the two scan algorithm applies
for weighted distances on any point-lattice, [4]. With weighted distances, the
rotational dependency is low also for short distances. This is not the case for
n.s.-distances, where the adjacency relation is allowed to vary along the path.
On the other hand, all distance values in each shortest path of length n between
two points consist of all integer values 1, . . . , n. This makes the n.s.-distances
well suited for morphological operations such as dilation and erosion where the
object should be divided into layers.

N.s.-distances have been considered by many authors and in most papers,
the theoretical properties of n.s.-distances are examined. The theory on n.s.-
distances is developed in, e.g., [5,6]. Distances based on neighbourhood sequences
are also of value in applications and has been used for e.g. skeletonization [7] and
shading of three-dimensional objects [8]. For these applications to be efficient, a
fast algorithm for computing the distance transform is of great value.

The situation for n.s.-distances is a bit more complex than for weighted dis-
tances – allowing the adjacency relation to vary implies that a two-scan algo-
rithm is not sufficient. In previous algorithms for computing the DT for n.s.-
distances [9,3,10], the scanning procedure designed for computing the Euclidean
DT [9, 3, 11] were used. We will see that this approach is not appropriate for
n.s.-distances.

Non-standard grids such as the face-centered cubic (fcc) grid and the body-
centered cubic (bcc) grid has gained more and more attention in the last decade.
One reason is that less samples can be used with the same representation/recon-
struction quality compared to the cubic grid [12,13]. For example, image acquisi-
tion techniques [12,13], image processing algorithms [14,15,16] and visualization
techniques [17] have been developed for these grids.

In this paper, conditions for sequential algorithms in the square, cubic, face-
centered cubic, and the body-centered cubic grids to produce correct results are
derived, independently from the algorithm designed for Euclidean DT, using a
path-based approach.

2 Preliminaries

In this paper, we will consider the square grid Z
2, the cubic grid Z

3, the fcc grid
F, and the bcc grid B. When handled in parallel, G is used to denote all of the
four grids.

Two grid points x = (x1, x2, . . . , xn),y = (y1, y2, . . . , yn) ∈ Z
n (n ∈ Z+) are

ρ-neighbours, 1 ≤ ρ ≤ n, if
n∑

i=1

|xi − yi| ≤ ρ and max
i∈{1,2,...,n}

|xi − yi| = 1.

The face-centered cubic grid F and the body-centered cubic grid B are defined
as follows:

F = {(x1, x2, x3) ∈ Z
3 : x1 + x2 + x3 ≡ 0 (mod 2)}, (1)

B = {(x1, x2, x3) ∈ Z
3 : x1 ≡ x2 ≡ x3 (mod 2)}. (2)
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Two grid points x,y ∈ F or B are ρ-neighbours, 1 ≤ ρ ≤ 2 if

3∑

i=1

|xi − yi| ≤ 3 and max
i∈{1,2,3}

|xi − yi| ≤ ρ.

The neighbourhood relations in our four grids are visualized in Figure 1 by
showing the Voronoi regions (the pixels (2D) and voxels (3D)) corresponding to
some grid points.

The points x,y ∈ G are adjacent if x and y are ρ-neighbours for some ρ. The
ρ-neighbours which are not (ρ− 1)-neighbours are called strict ρ-neighbours. A
neighbourhood sequence B in G is a sequence B = (b(i))∞i=1, where each b(i)
denotes a neighbourhood relation in G. If B is periodic, i.e., if for some fixed l ∈
Z+, b(i) = b(i+ l) is valid for all i ∈ Z+, then we write B = (b(1), b(2), . . . , b(l)).

Fig. 1. The grid points corresponding to the light grey, dark grey, and black pix-
els/voxels are 1-, (strict) 2-, and (strict) 3-neighbours to the grid point corresponding
to the white pixel/voxel, respectively. From left to right: Z

2, Z
3, F, and B.

A path, denoted P , in a grid is a sequence x = p0,p1, . . . ,pn = y of adjacent
grid points. A path is a B-path of length n if, for all i ∈ {1, 2, . . . , n}, pi−1 and
pi are b(i)-neighbours.

Definition 1. The B-distance d(x,y; B) between the points x and y is the
length of (one of) the shortest B-path(s) between the points.

Given a path of length n, the following notation is used: ωi = pi − pi−1.
A prime vector is a vector between a grid point and an adjacent grid point. Let

Γ = {�p1, �p2, . . . , �pm}. The set {x ∈ G : x =
∑

αi�pi for any αi ∈ R+} is called
the Γ -sector.

We consider finite subsets of G for the algorithm:

Definition 2 (Image). The finite subset IG of G is denoted the image domain.
We call the function f : IG −→ N an image.

Definition 3 (Foreground and background). We denote the image fore-
ground X and the background X. These sets have the following properties:

1. X ⊂ IG and X ⊂ IG

2. X ∩X = ∅
3. X ∪X = IG.
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3 The Sequential Algorithm

Definition 4 (Distance map). Given a neighbourhood sequence B, the dis-
tance map, DMX , of f is a grey level image, where the value of each point of
the foreground corresponds to its shortest distance to the background, i.e.

DMX :
{IG −→ N

x 
−→ d(x, X ; B) = infy∈X d(x,y; B)

Definition 5 (Scanning mask). A scanning mask M is the set of vectors
from the origin to some grid points adjacent to 0.

Definition 6 (Scanning order). A scanning order (so) is an ordering of the
M = card(IG) distinct points in IG, denoted x1,x2, . . . ,xM .

For a scanning mask to propagate distances correctly, it is important that, in
each step of the propagation, the values at the points in IG to which the mask
propagate distances will propagate distances later in the scan. This is guaranteed
if each point that can be reached by the scanning mask either has not been visited
or is outside the image.

Definition 7 (Mask supporting a scanning order). Let x1,x2, . . . ,xM be
a scanning order andMl a scanning mask. The scanning maskMl supports the
scanning order if

∀xi, ∀�vj ∈ Ml, ((∃i′ > i : xi′ = xi + �vj) or (xi + �vj /∈ IG)) .

Remark 1. If �v ∈ Mk for some k, then −�v /∈ Mk. If both �v,−�v ∈ Mk, then
by Definition 7, there is an i′ such that xi′ = (xi + �v) + (−�v) = xi. This is not
possible since each grid point occurs only once in IG.

Algorithm 1. Initially, f(x) =∞ if x ∈ X and f(x) = 0 if x ∈ X. The image
domain IG is scanned L times using scanning orders such that the scanning
masks Mi, 1 ≤ i ≤ L support the scanning orders soi.
for i = 1 : L
for all x ∈ IG following soi

if f(x) <∞
for all �v ∈Mi

if x and x + �v are b (f(x) + 1)-neighbours
f(x + �v)← min (f(x) + 1, f(x + �v))

Example 1. Consider the image in Z
2 shown in Figure 2(a) (the grid points are

visualized by their pixels). The masks M1 and M2 are such that they propa-
gate distances in the directions shown in Figure 2(b) by dashed and solid lines,
respectively. The correct distance maps for B = (1) (city block), B = (2) (chess-
board), and B = (1, 2) are shown in Figure 2(c), Figure 2(d), and Figure 2(e),
respectively. For B = (1) and B = (2), a two-scan algorithm is sufficient to
propagate the distance between the two pixels in grey. Two scans are, however,
not enough for B = (1, 2).
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Fig. 2. Distance maps of (a) for B = (1), B = (2), and B = (1, 2) are shown in (c),
(d), and (e), respectively. Examples of shortest B-paths are shown in (c)–(e) over the
distance maps. Directions supported by the masks M1 and M2 are shown as dashed
and solid lines, respectively. The directions supported by the masks are shown in (b).

The distance that are propagated depends on previous propagations. Thus, if
local steps fromM2 are needed before local steps fromM1 (as in Figure 2(e)),
then two scans are not enough.

Since Algorithm 1 only propagates distances from mask i in scan i, there must
be a shortest path satisfying the condition in Proposition 1 below for each pair
of grid points in IG for the propagation of distances to be sufficient.

Proposition 1. If for each neighbourhood sequence B and each x,y∈IG there
is a shortest B-path in IG between x and y of length n and integers T0, T1, . . . ,
TL s.t.

ωi ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M1 if 0 = T0 < i ≤ T1

M2 if T1 < i ≤ T2

...
ML if TL−1 < i ≤ TL = n

then Algorithm 1 returns a distance map DMX .

The proof of this proposition is obvious: the first scan propagates the T1 first
steps of the path, the second scan propagates the steps T1 + 1, . . . , T2 and so on
until the last scans propagates the steps TL−1 + 1, . . . , TL.

In the next section, conditions for the masks Mi to fulfill the condition in
Proposition 1 are derived.

4 Theoretic Results

4.1 Conditions for a Path to Be in IG

Definition 8 (Sector-preserving image domain). The image domain is
called sector-preserving if there are integers Li and Ui s.t. Li ≤ 0 < Ui and

IZ2 =
{
(x1, x2) ∈ Z

2 | Li ≤ xi ≤ Ui

}

IZ3 =
{
(x1, x2, x3) ∈ Z

3 | Li ≤ xi ≤ Ui

}



300 R. Strand et al.

IF =
{
(x1, x2, x3) ∈ F | L1 ≤ x1 + x2 + x3 ≤ U1, L2 ≤ x1 + x2 − x3 ≤ U2,

L3 ≤ x1 − x2 − x3 ≤ U3, and L4 ≤ x1 − x2 + x3 ≤ U4

}

IB =
{
(x1, x2, x3) ∈ B | L1 ≤ x1 + x2 ≤ U1, L2 ≤ x2 + x3 ≤ U2, and

L3 ≤ x1 + x3 ≤ U3

}
.

Let Γ 1
Z2 = {(1, 0), (0, 1), (1, 1)}

Γ 1
Z3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
Γ 1

F = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}
Γ 2

F = {(1, 1, 0), (1, 0, 1), (1, 0,−1), (2, 0, 0)}
Γ 1

B = {(1, 1, 1), (1,−1, 1), (1, 1,−1), (2, 0, 0)} .
Definition 9 (Path with ΓG-sector steps). A path that contains only steps
from ΓG is called a path with ΓG-sector steps.

We will see that for any fixed ξ and any grid point x ∈ Dξ
G

defined below,
the distance (i.e. the shortest path) between 0 and x is defined by a path with
Γ ξ

G
-sector steps.

D1
Z2 =

{
x ∈ Z

2 : xi ≥ 0
}

D1
Z3 =

{
x ∈ Z

3 : xi ≥ 0
}

D1
F =

{
x ∈ F : x1 ≥ x2 ≥ x3 ≥ 0 and x1 ≤ x2 + x3

}

D2
F =

{
x ∈ F : x1 ≥ x2 ≥ x3 ≥ 0 and x1 > x2 + x3

}

D1
B =

{
x ∈ B : x1 ≥ x2 ≥ x3 ≥ 0

}

We also will use the following notation: for any y ∈ G, DG(y)={y + x : x∈DG}.
The following proposition follows directly from Theorem 3.5 in [18] (Z2 and Z

3)
and from the proofs of Theorem 2 and 5 in [15] for F and B respectively.

Proposition 2. Let the neighbourhood sequence B and the ξ be given. For any
point y ∈ Dξ

G
(x) such that d(x,y; B) = n, there is a shortest B-path between x

and y with Γ ξ
G
-sector steps.

For the square/cubic grid it is obvious that we need vectors having a value 1
and one/two zero(s) to connect the points by only 1-steps. If the neighbourhood
sequence contains values 2 and there are coordinate differences in at least 2
coordinates, then vectors changing 2 values simultaneously can be used in a
shortest path. In the cubic grid (1, 1, 1) is used if the neighbourhood sequence
contains element 3 and there are differences in all the 3 coordinates.

In the fcc grid if x1 ≤ x2 + x3 then vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) can
produce a shortest path independently of the used neighbourhood sequence (and
in case B = (1) all shortest paths built by them).

In case of x1 > x2 + x3 then the steps (0, 1, 1) are not needed, but we need
(additional) steps to go in direction (x1, 0, 0). If there are values 2 in the neigh-
bourhood sequence, then vector (2, 0, 0) is used in a shortest path. Having not
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(enough) values 2 in the neighbourhood sequence a step by (2, 0, 0) can be sub-
stituted by a step (1, 0, 1) and a step (1, 0,−1).

In the bcc grid one can construct a shortest path by vectors (1, 1, 1) and
(1, 1,−1) if x1 = x2 ≥ x3 ≥ 0. If x1 > x2 then step(s) by vector (2, 0, 0) can
also be used having values 2 in the neighbourhood sequence. Without (enough)
values 2 in the neighbourhood sequence steps by vectors (1, 1,−1) and (1,−1, 1)
are also used in a shortest path.

Definition 10 (Image border point). All grid points x ∈ IG such that there
is a prime vector �v such that x + �v /∈ IG are called image border points.

Lemma 1. Let y ∈ X and x ∈ X be such that x ∈ Dξ
G
(y) for some ξ and there

is a shortest B-path P between y and x defining d(x, X ; B). If either

(A) all image border points are in the background or
(B) the image domain is sector-preserving.

then P is in IG.

Proof. When condition (A) is fulfilled: For some y ∈ X, let x = p0,p1, . . . ,pn =
y be the B-path defining d(x, X ; B) = n. Let y = q0,q1, . . . ,qn = x be the B-
path defining d(y,x; B) = n and assume that qi /∈ IG for some i, 0 < i < n. Let
SG,B(x, k) = {y : d(x,y; B) = k}. Now, qi ∈ SG,B(x, k) for some k ≤ n. There-
fore, by Definition 10, there is a background grid point z ∈ SG,B(x, k − 1) such
that qi and z are adjacent. We thus have n = d(x, X ; B) ≤ d(x, z; B) = k−1 < n,
which is a contradiction. �

When condition (B) is fulfilled: Let y = p0, . . . ,pn = x be a shortest path with
Γ ξ

G
-sector steps between y and x. Assume that there is an i (0 ≤ i ≤ n) such

that pi /∈ IG. Since y ∈ IG, this implies

–
[
Z

2, Z
3
]

pj
i > Uj for some j.

–
[
F, D1

]
p1

i + p2
i + p3

i > U1, p1
i + p2

i − p3
i > U2, p1

i − p2
i − p3

i < L3, or
p1

i − p2
i + p3

i > U4.
–

[
F, D2

]
p1

i + p2
i + p3

i > U1, p1
i + p2

i − p3
i > U2, p1

i − p2
i − p3

i > U3, or
p1

i − p2
i + p3

i > U4.
– [B] p1

i + p2
i > U1, p2

i + p3
i > U2, or p1

i + p3
i > U3.

Now, for all local steps in Γ ξ
G
, these inequalities are valid also for pi+1. Thus

pj /∈ IG for all j ≥ i, which contradicts x ∈ IG. �

4.2 Rules to Swap Steps in a Path

Lemma 2. Let the neighbourhood sequence B and the image IG be such that
either the image domain is sector-preserving or all image border points are in
the background. Let IG be such that y ∈ X and let x ∈ X ∩ Dξ

G
(y) for some ξ

be such that the B-path P with Γ ξ
G
-sector steps of length n between x and y is a
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shortest path defining d(x, X ; B). For any k (1 ≤ k ≤ n), let ρk be such that ωk

corresponds to a strict ρk-neighbour. Let also i, j be two fixed integers such that
1 ≤ i, j ≤ n.

Then for any ω′
i and ω′

j such that

(A1) ω′
i, ω

′
j ∈ Γ ξ

G
,

(A2) ω′
i and ω′

j correspond to strict ρi- and ρj-neighbours respectively,
(A3) ωi + ωj = ω′

i + ω′
j

there is a shortest B-path P ′ in IG of length n between 0 and x such that ω′
k = ωk

if k �= i, j and ω′
i = ωj and ω′

j = ωi.

Proof. Let P be the path x = p0,p1, . . . ,pi−1,pi, . . . ,pj−1,pj , . . . ,pn = y and
let ω′

i and ω′
j satisfy (A1)–(A3). We have

ωi = pi − pi−1 , ω′
i = p′

i − pi−1 (3)
ωj = pj − pj−1 , ω′

j = pj − p′
j−1 (4)

ωi + ωj = ω′
i + ω′

j (by (A3)). (5)

It follows from Equations (3)-(5) that pi−p′
i = pj−1−p′

j−1, i.e., that p′
i = pi−�v

and p′
j−1 = pj−1 − �v for some �v.

We will now see that the path P ′,
x = p0,p1, . . . ,pi−1,p′

i, . . . ,p
′
j−1,pj , . . . ,pn = y defined as

p′
k = pk − �v for any i ≤ k < j

p′
k = pk otherwise. (6)

is a shortest B-path in IG satisfying the Lemma.
By (A1), P ′ is a path with Γ ξ

G
-sector steps. Thus, by Lemma 1, P ′ is in the

image IG.
By the definition of P ′, it is a shortest path (since it is of the same length as

P). Moreover, ωk = pk − pk−1 = p′
k − p′

k−1 = ω′
k for any i < k < j, so pk and

pk−1 are strict ρ-neighbours if and only if p′
k and p′

k−1 are. The cases k = i and
k = j follow from (A2) and when k < i or j < k, p′

k = pk by definition, so P ′

is a B-path.
We can now conclude that P ′ is a shortest B-path in IG between x and y.�

Example 2. Consider F, the neighbourhood sequence B = (1, 2, 1, 1, 2) and the
grid point x = (6, 2, 0). A shortest B-path between 0 and x is

0 = (0, 0, 0), (1, 1, 0), (3, 1, 0), (4, 1,−1), (5, 1, 0), (6, 2, 0) = x.

We have

ω1 = (1, 1, 0), ω2 = (2, 0, 0), ω3 = (1, 0,−1), ω4 = (1, 0, 1), ω5 = (1, 1, 0).

By Lemma 2, the B-paths between 0 and x with the following local steps are
also shortest paths.

ω1 = (1, 1, 0), ω2 = (2, 0, 0), ω3 = (1, 1, 0) ω4 = (1, 0,−1), ω5 = (1, 0, 1)
ω1 = (1, 0, 1), ω2 = (2, 0, 0), ω3 = (1, 0,−1), ω4 = (1, 1, 0), ω5 = (1, 1, 0)
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Thus, any order of the local steps corresponding to 1-neighbours results in short-
est B-paths.

Now we define sets BG
i . We will see that if each of these BG

i :s are in at least one
mask (supporting the scan orders) in Algorithm 1 then Algorithm 1 propagate
correct distance to any x ∈ Dξ

G
.

BZ
2

1 = {(1, 0), (1, 1)} BF
1 = {(1, 1, 0), (2, 0, 0)} BB

1 = {(1, 1, 1), (2, 0, 0)}
BZ

2

2 = {(0, 1), (1, 1)} BF
2 = {(1, 0, 1), (2, 0, 0)} BB

2 = {(1,−1, 1), (2, 0, 0)}
BF

3 = {(0, 1, 1), (2, 0, 0)} BB
3 = {(1, 1,−1), (2, 0, 0)}

BF
3 = {(1, 0,−1), (2, 0, 0)}

BZ
3

1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}BZ
3

4 = {(0, 1, 0), (0, 1, 1), (1, 1, 1)}
BZ

3

2 = {(1, 0, 0), (1, 0, 1), (1, 1, 1)}BZ
3

5 = {(0, 0, 1), (0, 1, 1), (1, 1, 1)}
BZ

3

3 = {(0, 1, 0), (1, 1, 0), (1, 1, 1)}BZ
3

6 = {(0, 0, 1), (1, 0, 1), (1, 1, 1)}

4.3 Minimal Configuration of Scanning Masks

Theorem 1. Let the set αi, 1 ≤ i ≤ L such that αi �= αk if i �= k and αi ∈
{1, 2, . . . , L} for all i be given. For any neighbourhood sequence B, any image IG

such that all image border points are in the background, and any points y ∈ X
and x ∈ X ∩ Dξ

G
(y) such that d(x,y) = d(x, X ; B) there is a shortest path

between x and y such that

ωj ∈ BG

α1
if 0 = k0 < j ≤ k1 (7)

ωj ∈ BG

α2
if k1 < j ≤ k2 (8)

...
ωj ∈ BG

αL
if kL−1 < j ≤ kL (9)

for some ki:s.

Proof. The theorem follows directly from Lemma 2 for Z
2, F, and B. Since the

only 2-neighbour ((1, 1), (2, 0, 0), and (2, 0, 0), respectively) is in all the BG
i :s, it

is enough to order the 1-neighbours such that (7)-(9) are fulfilled. Compare with
Example 2.

For Z
3, things are a bit more complicated. We argue by contradiction. Let

P be any shortest B-path (of length n) with ΓG-sector steps between x and y.
Construct the new path P ′ as follows:

There is obviously a maximal value of k1 such that ωj ∈ BZ
3

α1
for all 0 < j ≤ k1.

Lemma 2 is used to find the ωj :s. In the same way, maximal values of k2, . . . , k6

and the ωj :s for j ≤ k6 are found.
Assume that k6 �= n (i.e. that k6 < n). Since (1, 1, 1) is in all BZ

3

i :s, ωk6+1

corresponds either to a 1-neighbour or a 2-neighbour.
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Case i ωk6+1 corresponds to a 1-neighbour.
We consider ωk6+1 = (1, 0, 0) – the proofs for (0, 1, 0) and (0, 0, 1) are similar.
Let a and b be the values such that ωj ∈ BZ

3

1 if ka−1 < j ≤ ka and ωj ∈ BZ
3

2

if kb−1 < j ≤ kb. We assume b > a (the proof for a > b is similar).
Since (1, 1, 1) is in all BZ

3

i :s, neither ωka+1 nor ωkb+1 corresponds to 3-
neighbours.

By Lemma 2, neither ωka+1 nor ωkb+1 corresponds to 1-neighbours: If, say
ωka+1 corresponds to a 1-neighbour, then we could use Lemma 2 to swap ωka+1

and ωk6+1 contradicting that ka is maximal.
Thus both ωka+1 and ωkb+1 correspond to 2-neighbours. It follows that ωj �=

(1, 1, 0) for j > ka and ωj �= (1, 0, 1) for j > kb. (Otherwise we could use
Lemma 2 to swap any such occurence of (1, 1, 0) or (1, 0, 1) with ωka+1 or ωkb+1

contradicting that ka and kb are maximal.)
Thus, ωkb+1 = (0, 1, 1). But then we could use Lemma 2 to set ωkb+1 to

(1, 0, 1) and ωk6+1 to (0, 1, 0) contradicting that kb is maximal.
Case ii ωk6+1 corresponds to a 2-neighbour.
We consider ωk6+1 = (1, 1, 0) (the proofs for (1, 0, 1) and (0, 1, 1) are similar).
Let now a and b be the values such that ωj ∈ BZ

3

1 if ka−1 < j ≤ ka and
ωj ∈ BZ

3

3 if kb−1 < j ≤ kb. We assume b > a – the proof for a > b is similar.
Since (1, 1, 1) is in all BZ

3

i :s, neither ωka+1 nor ωkb+1 corresponds to 3-
neighbours.

By Lemma 2, neither ωka+1 nor ωkb+1 corresponds to 2-neighbours: If, say
ωka+1 corresponds to a 2-neighbour, then we could use Lemma 2 to swap ωka+1

and ωk6+1 contradicting that ka is maximal.
Thus both ωka+1 and ωkb+1 correspond to 1-neighbours. It follows that ωj �=

(1, 0, 0) for j > ka and ωj �= (0, 1, 0) for j > kb. (Otherwise we could use
Lemma 2 to swap any such occurence of (1, 0, 0) or (0, 1, 0) with ωka+1 or ωkb+1

contradicting that ka and kb are maximal.)
Thus, ωkb+1 = (0, 0, 1). But then we could use Lemma 2 to set ωkb+1 to

(0, 1, 0) and ωk6+1 to (1, 0, 1) contradicting that kb is maximal.
Now we can conclude that, since all possible ωk6+1:s lead to contradictions,

k6 = n and the proof is finished. �

We can now conclude that since the order of the BG
i :s is arbitrary, Algorithm 1

will propagate the correct distance value from y ∈ X to each point in DG(y) if
each BG

i :s is included in at least one mask in the algorithm. By symmetry, it
follows that if all configurations symmetric to the BG

i :s are included in at least
one mask in the algorithm, distance values will be propagated from y to any
object grid point in IG. We get the following condition:

Condition 1. If each configuration symmetric to the configurations shown in
Figure 1 is included in at least one mask supporting the scan orders used in
Algorithm 1, then Algorithm 1 will produce correct distance maps.

Sets of masks in the different grids fulfilling Condition 1 are shown in Figure 3.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Fig. 3. The masks above (colour-coded as in Figure 1) can be used to get correct results
from Algorithm 1. (a)–(c) Z

2, (d)–(g) Z
3, (h)–(k) F, and (l)–(o) B. Note that, for Z

3,
F, and B, any mask can be obtained by rotating any other mask in the same grid.

5 Discussion and Conclusion

The unfolded cube graph was introduced in [11] to guarantee that local distances
are allowed to propagate in all possible directions. It was designed for Euclidean
DTs and shows the directions supported by a mask. The unfolded cube graphs
for a set of masks must fill the whole cube (direction space) to produce correct
Euclidean DTs. It is easy to produce a set of masks such that the unfolded cube
graph is covered but which does not produce correct distance maps for n.s.-
distances as shown in Figure 4. We have shown that distance propagation from
all directions is not sufficient for algorithms for n.s.-distances. The condition
derived in this paper is: if each configuration symmetric to the configuration in
Figure 1 is contained in at least one mask, then the algorithm produces correct
DT:s. We can notice that these configurations contain one and only one vector
of each neighbourhood kind.

Fig. 4. Using these masks and the 7+5 symmetric masks for Z
3 in Algorithm 1 will

result in insufficient propagation of distances, e.g., for neighbourhood sequences with
B = (1, 3)
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In [15], scanning masks to compute the Euclidean DT on the fcc and bcc
grids were derived using the unfolded cube graph. Surprisingly, four scans are
not sufficient for the bcc grid – five masks, i.e. scans, are needed to fill the
direction space using the unfolded cube graph. This implies that the number of
scans needed for a sequential algorithm designed for computing the Euclidean
DT might be greater than for computing n.s.-DTs.

Using the algorithms presented in this paper, applications such as skeletoniza-
tion [7] and shading of three-dimensional objects [8] become faster and easier to
use. Also, since sequential algorithms for the non-standard fcc and bcc grids are
presented, it is easy to adjust the applications to work also for the fcc and bcc
grids.
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