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Abstract. In this paper we propose some methods to build a kernel ma-
trix for classification purposes using Support Vector Machines (SVMs) by
fusing Gaussian kernels. The proposed techniques have been successfully
evaluated on artificial and real data sets. The new methods outperform
the best individual kernel under consideration and they can be used as
an alternative to the parameter selection problem in Gaussian kernel
methods.

1 Introduction

It is well known that the choice of kernel parameters is often critical for the good
performance of Support Vector Machines (SVMs). Nevertheless, to find optimal
values in terms of generalization performance for the kernel parameters is an open
and hard to solve question. An a priori kernel selection for SVM is a difficult task
[1]. The Gaussian kernel (or radial basis function (RBF) kernel) function is one
of the most popular classical SVM kernels. The effect of RBF kernels parameter
within a SVM framework has been studied from a theoretical point of view [5].
Several practical proposals to choose the RBF kernel parameter have been made
[I4[7I3I13]. However, there is not a simple and unique technique to select the
best set of parameters to build a kernel matrix. Our proposal is based on the
fusion of the different RBF kernel matrices that arise with the use of a range
of values for the unkown parameters. Fusing kernels provides a solution that
minimizes the effect of a bad parameter choice. An intuitive and usual approach
to build this fusion is to consider linear combinations of the matrices. This is the
proposal in [6], which is based on the solution of a semi-definite programming
problem to calculate the coefficients of the linear combination. Nevertheless,
the solution of this kind of optimization problem is computationally very
expensive [16].

In this paper we propose several methods to build a kernel matrix from a col-
lection of RBF kernels generated from different values of the unkown parameters
in the RBF kernel function. The functions involved in the proposed methods take
advantage of class conditional probabilities and nearest neighbour techniques.

The paper is organized as follows. The general framework for the methods is
presented in Section 2l The proposed methods are described in Section Bl The
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experimental setup and results on artificial and real data sets are described in
Section [l Section [Bl concludes.

2 General Framework

Consider the general expression of the RBF kernel function:

2
Kaiyg) = eap (17 010 )
where o > 0 is the kernel parameter, and x; and x; are data points in the
sample. The kernel parameter controls the flexibility of the kernel. Small values
of o gradually reduce the kernel to the identity matrix. On the other hand, large
values of ¢ imply that the kernel matrix become close to a constant function.
Notice that the RBF kernel matrix defines a similarity measure. As already
mentioned, our proposal is based on the generation of a collection of kernel
matrices using a wide range of values for the unkown RBF kernel parameter.
Once the collection has been built, we will fuse the matrices in order to build a
unique kernel.

In order to fuse the kernel matrices we make use of the concept of functional
fusion of matrices. This concept is based on the one introduced originally in [10].
Let K1, Ko, ...K)s be a set of M normalized input RBF kernel matrices defined
from () on a data set X, and denote by K* the desired output combination.
Let y denote the label vector, where for simplicity y; € {—1,+1} (the extension
to the multiclass case is straightforward).

Consider the following (functional) weighted sum:

M
m=1
where W, = [wm(z;, x;)] is a matrix whose elements are nonlinear functions

W (x4, z;), and ‘®’ denotes the element by element product between matrices
(Hadamard product). Notice that if wy,(z;,z;) = pm, where g, ,m=1,...M
are constants, then the method reduces to calculate a simple linear combination

of matrices:
M
= Z o K, - (3)
m=1

Several methods have been suggested to learn the coefficients p,, of the linear
combination [216]. Thus, the formulation used in these papers is a particular case
of the formula we propose. For instance, if we take p,, = 1\14’ the average of the
input matrices is obtained.

Regarding our proposals, consider the (i, j) element of the matrix K* in (2]):

(i, x5) Z W (24, 25) K (25, 25) (4)
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This is the general formula of our approximation. In this way, we will generate
a particular weight for each pair of elements under consideration.

An aspect that has to be treated before describing the methods is the fact
that the kernel matrix arising from the combination has to be a positive semi-
definite matrix. Since this can not be guaranteed in advance, we make use of some
of the several solutions that have been proposed to solve this difficulty [12]. For
instance, consider the spectral decomposition K* = QAQT, where A is a diagonal
matrix containing (in decreasing order) the eigenvalues of K*, and @ is the
matrix of the corresponding eigenvectors. Assume that A has at least p positive
eigenvalues. We can consider a p-dimensional representation by taking the first
p columns of Q: QPAPQZI;. We will refer to this technique as ‘Positive Eigenvalue
Transformation’. A computationally cheaper solution is to consider the definition
of a new kernel matrix as K*2. Notice that, in this case, the new kernel matrix is:
QA?QT. We call this method ‘Square Eigenvalue Transformation’. In practice,
there seems not to be a universally best method to solve this problem [I1].

3 Some Specific Proposals

The next section describes a common feature to the methods we will propose:
The use of conditional class probabilities in order to build the weights wy, (z;, z;)
introduced in the previous section.

3.1 Conditional Class Probabilities

Consider the pair (z;,y;) and an unlabelled observation x;. Given the observed
value z;, define P(y;|z;) as the probability of z; being in class y;. If x; and
x; belong to the same class this probability should be high. Unfortunately, this
probability is unknown and has to be estimated. In our proposals, we will esti-
mate it by:

Plyile;) =", (5)

n

where n;; is the number of the n-nearest neighbours of z; belonging to class y;.
Notice that each kernel matrix induces a different type of neighborhood. In fact,
there is an explicit relation between a kernel matrix and a distance matrix. For
instance, consider a matrix K of inner products in an Euclidean space F (a
kernel). Then D? = veT + ev? — 2K is a matrix of square Euclidean distances
in F [], where v is a vector made up of the diagonal elements of K. Hence,
it is advisable to estimate this probability for each representation, that is, for
the matrix K, we will estimate the conditional probabilities P, (y;|z;) using
the induced distances matrix D2,. We will need the average of this conditional
probabilities over the kernel matrices:

P(yilz;) + P(y;lz:)

) 7 ©)

ﬁ(mia .I‘j) =

where P(y;|z;) = 3, qu\@/le P (yilz).
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To estimate the conditional class probabilities, the appropriate size of the
neighbourhood has to be determined. We propose a dynamic and automatic
method: given two points x; and z;, we look for the first common neighbour.
For each data point (z; and z;), the size k of the neighbourhood will be de-
termined by the number of neighbours nearer than the common neighbour.
To be more specific, let R(z;,n) = {n-nearest neighbours of x;}, then k =
argmin, { R(x;,n) N R(xj,n) # 0}. Obviously, the size k of the neighbourhood
depends on the particular pair of points under consideration.

At this point, we have the tools to implement some particular proposals of com-
bination methods.

3.2 The ‘MaxMin’ Method

The ‘MaxMin’ method (first used in [I0]) produces a functional fusion of two
kernel matrices, namely, the maximum and the minimum of the ordered sequence
of similarities, being zero the weight assigned to the rest of the similarities.
Consider the ordered sequence:

in Ky (zi, ;) = Kpy(wi,zj) < ... <K iy Tj) = K (zi, zj),
1§r51n1£M (z x]) [1](JE x]) [M] (z x]) 1§1na§XM (z x])
where the subscript [-] denotes the position induced by the order. This method
builds each element of K* using the formula:

K™z, ;) = p(xi, x5) Kiagy (2, v5) + (1 = p@s, 5)) Ky (i, 25) - (7)

If z; and z; belong to the same class then the conditional class probabilities
p(zi, ;) will be high and the method guarantees that K*(x;,x;) will be large.
On the other hand, if x; and x; belong to different classes the conditional class
probabilities p(x;, z;) will be low and the method will produce a value close to
the minimum of the similarities. In the following, this method will be refered as
MaxMin.

3.3 The Percentile-In Method

Next we propose a method whose assignment of positive weights wy, (x;, z;) is
based on the order induced by the similarities. The method builds each element
of K* using the following formulae:

K* (w4, 25) = K{p(a;,2,)M] » (8)

where the subscript [-] denotes the upper rounding of the argument.

We denote this method by ‘Percentile-in’ method [I0] . If the class proba-
bility p(x;, ;) is high, we can expect a high kernel between z; and x; and the
method will guarantee a high K*(z;,x;). If the class probability p(z;, x;) is low,
K*(x;,2;) will be also low.



Fusion of Gaussian Kernels Within Support Vector Classification 949

3.4 The Percentile-Out Method

As in the previous method, the last proposed technique is based on the order
induced by the similarities. However, in this case two similarities are considered.
Each element of the K* matrix is built as follows:

. 1
K (zi,5) = (K[Pwmm +K[P<yj|m>MW) ’ )

where the subscript [-] denotes the upper rounding of the argument. We denote
this method by ‘Percentile-out’ method [10] .

If the conditional class probabilities P(y;|z;) and P(y;|z;) are high, we can
expect a high kernel between z; and x; and both methods will guarantee a high
K*(z;, ;). If the conditional class probabilities P(y;|x;) and P(y;|z;) are both
low, K*(z;,z;) will be also low.

4 Experiments

To test the performance of the proposed methods, a SVM (with the upper bound
on the dual variables fixed to 1) has been trained on several real data sets using
the output matrix K* constructed.

In order to classify a non-labelled data point x, K*(z,%) has to be evaluated.
We calculate two different values for K*(z,4), the first one assumming x belongs
to class +1 and the second assumming x belongs to class —1. For each assump-
tion, we compute the distance between z and the SVM hyperplane and assign x
to the class corresponding to the largest distance from the hyperplane.

Since our technique is based on the calculation of the nearest neighbours, we
have compared the proposed methods with the k-Nearest Neighbour classifica-
tion (k-NN, using the optimal value k = lpifi, where [ is the sample size and p
is the data dimension [I5]). In order to evaluate the improvement provided by
our proposals, we have carried out a Wilcoxon signed-rank test (see for instance
[8]). This nonparametric test is used to compare the median of the results for
different runs of each method. So, the null hypothesis of the test is that our
methods do not improve the individual kernels.

4.1 Two Areas with Different Scattering Matrices

This data set, shown in Figure[I] is made up of 400 points in IR?. Visually there
are two areas of points (80% of the sample is in area A; and 20% is in area
As). Each area A; corresponds to a circle with radio o;. Here o1 = 10~ 205, with
o2 = 1. The first group center is (0,1) and the second group center is (1,1).
Nevertheless, the areas do not coincide with the classes {—1,+1} that are to be
learned. Half of the points in each class belongs to aread A;, and the other half
to area A,. Within each area, the classes are linearly separable. Therefore the
only way to built a classifier for this data set is to take into account the area
each point belongs to. We use 50% of the data for training and 50% for testing.
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Fig. 1. Two areas with different scattering matrices. The first area center is (0,1) and
the second area center is (1, 1). The areas do not coincide with the classes {—1,+1}.

Let {K1,...,K5} be a set of five RBF kernels with parameters ¢ =0.5,

2.5, 5, 7.5 and 10 respectively. We normalize the kernel matrices: K(z,z) =
K(z,z)

VE (@.2)\/K(y)
use the Square Figenvalue Transformation technique described in Section

Table [ shows the performance of our proposals for this data set. The results
have been averaged over 10 runs. Given the geometry of the data, it is clear that
is not possible to choose a unique best o for the whole data set. As o grows, the
test error increases for the data contained in area A;, and decreases within area
As. The LC method seems to work fairly. Nevertheless, the MaxMin method
achieves the best results on classification. Regarding the Wilcoxon signed-rank
test for the comparison of our methods with the LC technique, the p-value is
smaller than 0.001 for the MaxMin method.

. In order to get a positive semi-definite kernel matrix K*, we

4.2 Cancer Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [9]. The data set consists of 683 obser-
vations with 9 features each. Let {K7,..., K12} be a set of RBF kernels with
parameters ¢ =0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 respectively. We
use the Positive Eigenvalue Transformation to solve the problem of building a
positive semi-definite matrix.

Table [2 shows the performance of the proposed methods when combining all
these kernel matrices. Again, the results have been averaged over 10 runs. The
MaxMin method, the Percentile-in method, and the Percentile-out method im-
prove the best RBF kernel under consideration (test errors of 2.8% for the three
methods vs. 3.1%). The results provided by all the combination methods are
not degraded by the inclusion of kernels with a bad generalization performance.
Our methods clearly outperform the SVM classifier using an RBF kernel with
o = \/d/2, where d is the data dimension (see [I4] for details). Regarding the
Wilcoxon signed-rank test for the comparison of our methods with the SVM tech-
nique, the p-values are smaller than 0.05 for the MaxMin and the Percentile-out
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Table 1. Percentage of missclassified data and percentage of support vectors for the
two different scattering data set: A; stands for the less scaterring group, A2 stands for
the most dispersive one

Train Test Support

Error Error Vectors
Method Total A; As Total A; A, Total A1 A
RBF,_¢5 2.1 26 0.0 13.5 4.151.0 39.625.1 97.5
RBF,-25 48 6.0 0.0 135 6.541.5 62.253.4 975
RBF,_5 6.6 82 0.0 14.010.129.5 82.879.2 97.0
RBF,_75 16.0 19.9 0.5 22.222.620.5 94.6 94.2 96.0
RBF,_1o 30.738.2 0.5 37.344.110.0 94.295.4 89.5
MaxMin 03 04 0.0 49 0921.0 27.7 9.6 100.0

Percentile-in 4.2 51 0.5 9.0 3.132.,5 35.920.1 99.0
Percentile-out 0.7 0.9 0.0 7.7 1.134.0 29.011.4 99.5
k-NN 14.5 3.558.5 15.5 3.563.5 _ = —
LC 1.6 2.0 0.0 8.1 2.529.5 46.6 33.2 100.0

Table 2. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the cancer data using a battery of RBF kernels.
Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors
Best RBF 3 (0.3) 0.979 0.976 3.1 (1.6) 0.976 0.966 13.6 (1.3)
Worst RBF 0.0 (0.0) 1.000 1.000 24.7 (2.3) 1.000 0.627 74.0 (2.4)
MaxMin 1(0.1) 0.999 0.998 2.8 (1.6) 0.963 0.975 14.2 (1.5)
Percentile-in 2 0 (0.4) 0.982 0.979 8 (2.8) 0.975 0.969 7.8 (0.7)
Percentile-out () 2 (0.1) 0.999 0.997 8 (1.7) 0.964 0.975 19.2 (4.5)
k-NN 7 (0.5) 0.961 0.980 3.4 (1.5) 0.949 0.974 — (—)
LC 0 (0.0) 1.000 1.000 2 (1.6) 0.976 0.964 41.5 (4.4)
SVM 1(0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)

methods, and smaller than 0.1 for the Percentile-in method. Again, the improve-
ment obtained by the use of our proposals is statistically significant.

5 Conclusions

In this paper, we have proposed some methods for the fusion of RBF kernels in
order to improve their classification ability. The proposed techniques are specially
usefull when does not exist an overall and unique best RBF kernel. The suggested
kernel fusion methods compare favorably to the single use of one of the RBF
kernels involved in the combination. Further research will focus on the theoretical
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properties of the methods. In particular, the methods shown in this paper do not
take full advantage of the concept of the functional weighted sum described in
[@): we think that there is room for improvement and more sophisticated ways for
the calculus of the weights for the particular case of RBF kernel matrices may be
designed. There are two natural extensions of this work. Firstly, the application
of this methodology to kernels not defining a similarity (for instance, polynomial
kernels). In this case, care has to be taken when transforming the kernel into
a similarity. A second extension would be the generalization for the fusion of
different types of kernels. In this case, the normalization of the kernels has to be
carefully studied.
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