
A Probabilistic Approach to Build 2D Line

Based Maps from Laser Scans in Indoor
Environments

Leonardo Romero and Carlos Lara

Michoacana University
Morelia, Mich., Mexico

lromero@umich.mx, calara@lsc.fie.umich.mx

Abstract. In this work we consider a mobile robot with a laser range
finder. Our goal is to find the best set of lines from the sequence of
points given by a laser scan. We propose a probabilistic method to deal
with noisy laser scans, in which the noise is not properly modeled using
a Gaussian Distribution. An experimental comparison with a very well
known method (SMSM), using a mobile robot simulator and a real mobile
robot, shows the robustness of the new method. The new method is also
fast enough to be used in real time.

1 Introduction

This paper focuses on methods to resolve the problem of fitting a set of lines to
a sequence of points. Specifically, the sequence of points are acquired by using
a laser range finder mounted on a mobile robot. The set of lines can be used in
complex activities such as Localization and Mapping in indoor environments.

Localization is a key activity for mobile robots which consists of determining
the robot’s position in its environment. Localization can be done by matching
the newest sensed data against information in a priori map. There are two com-
mon matching techniques that have been used in mobile robotics: point–based
matching and feature–based matching.

In the feature–based matching approach it is necessary to learn features from
the environment. Features are recognizable structures of elements in the envi-
ronment [12]. The simplest feature is a line or a line segment. A Line Based Map
(LM) is a set of lines which represent the robot’s environment. Owing to indoor
environments are usually rich in planar surfaces, LMs are the natural way to
represent them. In addition, LMs are more compact and more accurate than
point–based maps.

For extracting a LM from a laser scan, many algorithms have been proposed,
but all of them have their shortcomings. Forsyth [6] identifies three principal
difficulties in this process: 1) find the best number of lines, 2) determine which
points belong to which line, and 3) estimate the line parameters given the points
that belong to a line. Furthermore, if the robot navigates within a high cluttered
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environment, a lot of points do not belong to any line, and the process becomes
more difficult.

This paper introduces a new approach called WSAC–GE, Window SAmpling
Consensus with Global Evaluation. The algorithm begins with an empty map,
and successively proposes a new map by adding or removing lines from the previ-
ous map. The current map is selected from two maps: the proposed new map or
the previous map, according to which map is best evaluated by a global function.
Problems associated with outliers (atypical data) are handled by a probabilistic
search and different segments of the same line are identified easily. Other meth-
ods have difficulties with outliers or report many disconnected segments when
in fact they belong to the same line.

This paper is organized as follows: Section 2 describes how a laser acquires
information from the environment. Section 3 describes related works, and it
focuses on the most used algorithms to extract lines. Section 4 describes the
proposed method. Section 5 compares the performance of WSAC–GE against a
good and well known method called SMSM (Split–Merge–Split–Merge). Finally,
section 6 explains the advantages of the proposed method.

2 Data Acquisition

In a single measurement, a laser range finder calculates the distance to the
object in a given orientation. Usually, each measurement is expressed in the
form (ri, αi); where ri is the distance from the sensor to the detected object at
direction αi. A laser scan performs n consecutive measurements from the envi-
ronment changing the orientation in Δα. Also, the laser scan can be expressed
in its equivalent cartesian form P = {(xi, yi) |i = 1 . . . n}.

3 Related Works

Toobtain a LM froma 2D laser scanmany algorithmshave been proposed.Two ap-
proaches, Line Tracking (LT) [4] and Iterative End-Point Fit (IEPF) [4] represent
the classical way to solve the problem. These two algorithms take advantage of the
sequentiality of the laser scan. The principal drawbackofLT and IEPF is their poor
performance when the laser scan is noisy. On other hand they are extremely fast.
The Hough Transform Algorithm (HT) [8] is another common alternative used to
generate line Maps . This technique has a good performance even when there are
outliers. However, the principal drawbacks are associated with the discretization,
its slow speed and that it ignores the uncertainty for estimating the line parame-
ters. Finally, the well known Expectation-Maximization algorithm (EM) [3] is a
technique used in several kind of problems with missed data. But it requires to
know in advance how many line models exist in the environment. In [7] this dif-
ficult is solved by incrementally adding and removing models. Due to the SMSM
algorithm has been widely used with good results [11], we compare the proposed
method against SMSM. The next section describes the SMSM algorithm and sec-
tion 3.2 focuses in methods commonly used to manage atypical data.
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Fig. 1. Iterative End Point Fit

Algorithm 1. IEPF Algorithm
Input: The laser scan P = (p1, p2, . . . , pn) and a threshold t
Output: The map of lines M
1. Initialize the set of sequences L ← {P} andM← {}.
2. While L �= {} do

(a) Move an element of L to S
(b) Calculate the line Θ joining the first and last point of S.
(c) Detect the point pj with maximum distance e⊥max to the line Θ
(d) If e⊥max > t then Put S0 = (pk|k = 1 . . . j − 1) and S1 = (pk|k = j . . . nj)

into L
(e) If e⊥max ≤ t then Fit a line Θ∗ to all the points in S and put Θ∗ intoM.

3. Merge collinear segments in M.

3.1 The SMSM Algorithm

The Split–Merge Split–Merge algorithm (SMSM)[17] is based in the IEPF al-
gorithm. The IEPF algorithm [4] is described by the algorithm 1. and it is
illustrated graphically in the figure 1.The SMSM algorithm is an extended and
more robust version of the IEPF algorithm. At the beginning it finds clusters
applying a breakpoint detector [1]. The idea behind this step is to detect and
eliminate outliers, because they are not going to be included into any cluster.
Then it merges two consecutive clusters if their distance (the distance between
the final point of the first cluster and the first point of the second cluster) is
less than a predefined threshold. In the second phase, SMSM applies the IEPF
algorithm to all clusters. Finally it combines collinear segments.

3.2 Robust Regression

The goal of regression is to describe data using a model. Unfortunately, in the
data set often exists a kind of data called outliers that makes the regression a
hard problem. An outlier is a single observation far away from the rest of the
data. Two techniques are frequently used to obtain a model from data conta-
mined with outliers: The Random Sample Consensus Algorithm (RANSAC) [5]
and the M–Estimators [9].
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Algorithm 2. RANSAC Algorithm
Input: The laser scan P = (p1, p2, . . . , pn), a threshold t and a maximum number of
iterations m
Output: Θ∗ (the best line given P)

1. j ← 0, n∗ ← 0.
2. While j < m do

(a) j ← j + 1
(b) Select randomly two points from P and compute the line Θ , that joins them
(c) Count the number of inliers, n, from P given Θ and t
(d) if n > n∗ then n∗ ← n, Θ∗ ← Θ

3. Reestimate Θ∗ using all the inliers.

The Random Sample Consensus algorithm consists in to iteratively propose
new random models, and to evaluate each model proposed. After a number of
tries, RANSAC selects the best evaluated model to represent the data. The ver-
sion of RANSAC applied to the problem of fitting a line is described in the
Algorithm 2.. The RANSAC algorithm has the advantage of estimating para-
meters of a model with accuracy even when outliers are present in the data
set. Frequently RANSAC is a better choice than other algorithms due it can be
better adapted to complex data analysis situations [10]. One of the problems of
RANSAC is deciding the threshold t for considering a point as an inlier. If t is
set too high then the model estimation can be very poor.

Algorithm 3. A generalized RANSAC Algorithm which uses a M–Estimator
Input: Tha laser scan P = (p1, p2, . . . , pn) a weight function g and a maximum
number of iterations m
Output: Θ∗ (the best fit line given P )

1. j ← 0, n∗ ← 0.
2. While j < m do

(a) j ← j + 1
(b) Select randomly two points from P and compute the line Θ , that joins them
(c) Calculate n =

�n
i=1 g (ei). Where ei is the distance from the point pi to the

line Θ
(d) if n > n∗ then n∗ ← nj , Θ∗ ← Θ

3. Reestimate Θ∗.

In the other hand, M–Estimators reject outliers by weighting each point using
a so called weight function. Under certain circumstances, M-estimators can be
vulnerable to high-leverage observations [2]. Many authors [13,16,15] proposed
the combination of the RANSAC and M–Estimator methods to improve the
performance. As an example, the algorithm 3. shows a RANSAC algorithm where
the count of inliers in the algorithm 2. is replaced using a weighting function g.
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4 Proposed Method: WSAC-GE

Suppose that there is an evaluation function H (M,P) which returns a real value
related with the correspondence of the map M (a set of lines) given the laser
scan P (a sequence of points). Using H it is possible to decide if the map M′

is better than M, for a given laser scan P , if H (M′,P) > H (M,P). It is the
basic idea under the WSAC-GE algorithm. The algorithm 4. proposes a new
mapM′ from the previous oneM and then it decides which one is better. The
line addition and line deletion mechanisms provide ways to obtainM′ fromM.

Algorithm 4. WSAC–GE
Input: The laser scan P = (p1, p2, . . . , pn) and a maximum number of iterations m
Output: A line based map M
1. Let M← {} and i← 0
2. While i < m do

(a) i← i + 1
(b) Line addition

i. Select randomly a window w of consecutive points in P
ii. From the point in w, fit a line Θ
iii. Propose a new map M′ ←M∪ {Θ},
iv. If H (M′, P ) > H (M, P ) thenM←M′ and i← 0.

(c) Line Deletion
i. Select randomly a line Θj ∈M,
ii. Propose a new map M′ ←M− {Θj},
iii. If H (M′, P ) > H (M, P ) thenM←M′ and i← 0.

3. Associate points with lines and refine the final lines.

4.1 Line Addition Mechanism

The first mechanism, line addition, generates a new map M′ by adding a new
line Θj to M, where j = |M| + 1. The line’s parameters Θ are obtained by
fitting a line into a small quantity of points w called a window.

Given the line Θj the algorithm calculates the weighted–error cij , from each
point pi to line Θj , using:

cij = g(e⊥ij)

Where eij is the orthogonal distance of the point pi to the line Θj and the
function g (x) is the Beaton-Tukey function [14] (an M-Estimator):

g(e) =
{

[1− (e/k)2]2 if |e| < k inliers
0 elsewhere outliers

To improve the results we propose to penalize points which belong to small seg-
ments. Recalling that the weighted function g(·) is evaluated with 0 for |e⊥ij | > k
and then it is possible to get a set of inliers S. With the ordered set S and using
a breakpoint detector [1] it is possible to find the segments of Θ . A Breakpoint
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finds the segments of a line by finding the discontinuities of a ordered set of points.
Finally, the algorithm penalizes every point pi which belong to small–length seg-
ments by doing: cij ← k (cij),.where 0 ≤ k < 1 is a penalization constant.

4.2 Line Remotion Mechanism

The objective of the line–remotion mechanism is to remove small-length seg-
ments supported by points which belongs to larger segments. This mechanism
randomly selects a line Θ from the map M and generates a new maps by re-
moving Θ , as showed in the algorithm 4..

4.3 The Global–Evaluation

Let M = {Θ1, . . . ,Θl} be a map with l lines. Table 1 shows a matrix represen-
tation of M, each cell has the weighted error cij . The i–th column represents
the point pi ∈ P and the j–th row represents the line Θj ∈M.

Table 1. Weighted–Errors cij

p1 p2 . . . pn

Θ1 c11 c21 · · · cn1

...
...

. . .
...

Θl c1l c2l · · · cnl

s1 s2 · · · sn

Where si in Table 1 is computed by

si =
{

s′i if s′i > u
1 elsewhere

and s′i is the maximum value of the i-th column (cij , j = 1, · · · , l) and u is a
threshold. Using si, a normalized weight hj of the j–th line is given by

hj =
n∑

i=1

cij

si
(1)

A high value for hj denotes a line with a high support given the set of points.
Finally the function H is given by

H(M,P) =
l∑

j=1

h2
j (2)

4.4 Associating Points with Lines

If After m tries the algorithm can not find a better map, then it finishes. The
result is the best map Ṁ. WSAC–GE associates the point pi to its the closest
line by selecting the maximum value of the i–th column in the table 1.
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5 Experimental Tests

We perform two tests: the first one is based on simulated data of a laser range
finder mounted on a mobile robot in a structured environment and in the second
one we use our mobile robot equipped with a LMS209-S02 laser.
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Fig. 2. Synthetic Environment

5.1 Test Using Synthetic Data

The computer–simulated environment has 12 walls, as shown in figure 2. The
aim of this experiment is to evaluate the robustness of the proposed method
against the popular SMSM method. In the experiment the robot follows the
path ABCDEFGHIJKLM getting a total of 300 synthetic laser scans.

The parameters of the laser are Δα = 0.5◦, maximum distance 32m and
the number of lectures n = 361. Also, 20 percent of the measures distances
were contaminated by spurious noise simulated by adding a uniform random
value between 0 and the maximum distance. The remaining measures were only
contaminated with a Gaussian random noise with σr = 0.03m.

For this test we use a laptop HP Pavilion with Celeron processor, 1.1 GHz
with 256 Mb and we use the C language to program the algorithms. The table 2
summarizes the results in the simulated environment. As it is shown, WSAC–GE
is getting favorable results both in the parameters of the line (|Δr| and |Δα|)
and in the assertivity. The assertivity a is given by a = (100) · ns

nn
where ns is

the number of lines that match with lines in the simulated environment, and nn

is the total of lines extracted.
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Table 2. Test Results for 300 simulated cases

Maximum time |Δσr| |Δα| lines Assertivity
Algorithm [ms] [mm] [◦] nn %

SMSM 29.5 6.37 0.2670 1557 87.4
WSAC–GE 94.5 4.12 0.1323 1620 94.8

door

(a) Ideal LM

Θ4

Θ3

g1

g2

(b) SMSM

breakpoints

(c) WSAC–GE

Fig. 3. Results on real environment
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5.2 Test Using Real Data

Figure 3 shows the results of SMSM and WSAC-GE methods in a real environ-
ment. The figure 3(a) shows the ideal map for this sample. As shown in the figure
3(b) the SMSM algorithm does not associate some points with lines (groups g1

and g2). In other cases, SMSM merges segments which do not represent the same
object, lines Θ3 and Θ4 obtained does not represent precisely the environment.
As shown in the figure 3(c) WSAC–GE finds lines more precise than SMSM and
the asociation between points and lines is better.

6 Conclusions

We propose a robust method to find multiple lines in a laser scan, avoiding prob-
lems due to noisy data (outliers). Outliers typically does not follow a Gaussian
Probability Distribution and in most cases do not have known probability dis-
tributions. While simple and fast algorithms work fine with Gaussian noise, the
presence of outliers increase the complexity of the problem. The new method
merges local and global strategies to solve the problem of outliers. We use a
M-Estimator within a RANSAC method to find a line from a short sequence of
points of the laser scan (the local strategy), then the line is evaluated and re-
fined using the whole set of points (the global strategy), discarding those points
belonging to very small segments. Once a line segment is found, the process
continues looking for more lines. The key idea of this approach is to use a global
evaluation function to add or remove lines from the map. The global evaluation
function have higher values when more points are assigned to lines, when points
belongs to single lines and when lines have more points. The proposed method
is fast enough to be used in real time and it is able to find better results than
the SMSM method, a very well known method reported in the literature as a
very good and fast algorithm. Given its probabilistic nature WSAC–GE is able
to deal with noise (outliers) with unknown probability distributions.
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