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Abstract. There is presently no unified methodology that allows the evaluation 
of supervised and non-supervised classification algorithms. Supervised prob-
lems are evaluated through Quality Functions that require a previously known 
solution for the problem, while non-supervised problems are evaluated through 
several Structural Indexes that do not evaluate the classification algorithm by 
using the same pattern similarity criteria embedded in the classification algo-
rithm. In both cases, a lot of useful information remains hidden or is not consid-
ered by the evaluation method, such as the quality of the supervision sample or 
the structural change generated by the classification algorithm on the sample. 
This paper proposes a unified methodology to evaluate classification problems 
of both kinds, that offers the possibility of making comparative evaluations and 
yields a larger amount of information to the evaluator about the quality of the 
initial sample, when it exists, and regarding the change produced by the classi-
fication algorithm.  

1   Introduction 

When one works in pattern recognition, whether in field applications or in research, it 
is a common need to evaluate the result of a classification algorithm [1-4]. On many 
occasions the objective of such evaluation is, either to study the behavior of the classi-
fication algorithm used, or to establish the appropriateness of applying such algorithm 
to the type of problem being evaluated. Classification problems may be shown in 
three different ways [5] known as supervised problems, partially-supervised problems 
and non-supervised problems. Unfortunately, nowadays there is no methodology that 
allows us to evaluate, under the same criteria, the action of an algorithm in any of the 
forms of a problem.  

A classification problem is informally called supervised when there is previous 
knowledge (called supervision sample or learning information) on the classes or cate-
gories into which it is possible to classify the objects or patterns being studied. 

A classification problem is considered non-supervised when such previous knowl-
edge does not exist. In that case, the problem starts with a universe of patterns without 
structure that must be classified. Finally, the other form that a classification problem 
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can adopt is an intermediate state between supervised and non-supervised problems. 
A classification problem is considered partially-supervised when the previous knowl-
edge regarding the nature of its solution is partial. 

2   Traditional Evaluation Methods 

In order to evaluate supervised problems, the classification algorithm is applied to a 
test sample and its result is compared with a previously known solution considered as 
valid [3,4].  This comparison is made by means of a Quality Function that generates a 
score, which is typically a real number, that synthesizes the evaluation of the problem 
and thus measures the performance of the classification algorithm. 

In many cases, simple quality functions, such as the following, are applied: Let A 
be a supervised classification algorithm and let ( )AΦ  be the quality function that 

evaluates it and which expression is 1( ) ( )A x x y zΦ = + + , where x is the number of 

patterns correctly classified by the algorithm, y is the number of patterns incorrectly 
classified, z is the number of abstentions. Other times, much more detailed quality 

functions are applied, such as ( ) ( )2 1 1

1 k k k

ij ij s si i s
A E A

n
α β

= = =
Φ = +∑ ∑ ∑ , where: n is 

the total number of patterns in the control sample, k is the number of classes in the 
problem, ijα is the amount of objects that belong to class i, mistakenly classified in 

class j, ijE is the specific weighting of the mistake counted in ijα , sβ  is the amount 

of objects that belong to class i in which the algorithms refrained from classifying, 
and sA is the specific weight of the error counted in sβ . 

Of course, the decision regarding the quality function to be used in the evaluation 
of a specific problem depends largely on the conditions and semantics of the problem, 
so there is an infinite amount of possible quality functions. Regardless of how com-
plex the selected quality function may be, the result of the evaluation is always ex-
pressed with only one number, which hides the details and the specific reasons for the 
assigned classification.  

In the case of non-supervised problems, there is no explicit formula to evaluate the 
quality of the classification algorithm. However, opposite to what happens in the 
supervised case, the idea of measuring the quality of the resulting covering in terms of 
its structural conditions [6] is quite common. The structural aspects evaluated in a 
covering are several, but commonly aspects considered include the compacting of 
clusters, the separation between clusters, the max and min degree of membership of 
each cluster, etc. (See [7,8] ). 

Several indexes have been proposed to evaluate partitions and coverings.  Three of 
the more widely used are the Partition Coefficient and the Entropy index proposed by 
Bezdek [9], and the Xie-Beni index[6].  Let us examine each one of them. 

For a non-supervised classification problem, with n patterns and with  k being  
the pre-determined number of classes to be formed,  Bezdek defines the  partition 

coefficient (PC) in [9] as ( ) nPC
n

i

k

j ij∑ ∑= =
=

1 1
μ , with jiμ  being the membership 

of pattern i to class j. Under the same assumptions, Bezdek also defines the partition 



676 S. Godoy-Calderón, J. Fco. Martínez-Trinidad, and M. Lazo Cortés 

entropy (PE) as ( )( )1 1
log

n k

ij iji j
PE nμ μ

= =
=∑ ∑ . The main disadvantage of 

these indexes, as Bezdek himself states in [9] is that they evaluate each class by con-
sidering exclusively the degrees of membership assigned to the patterns and not their 
(geometric) structure or the structure of the whole covering. X. L. Xie and G. Beni 
proposed an index that evaluated two structural aspects: the Compactation and the 
Separation of the classes [6]. For them, an optimum partition is that which has a 
strong compacting and a noticeable separation between clusters. Therefore, they pro-

posed the compacting measure as ∑∑
= =

−=Ψ
k

i

n

j
ijij vx

1 1

2
 μ with iv  being the centroid 

of each class. The second factor then represents the Euclidean norm of the difference 
between each object and the corresponding centroid in each class. The separation 

between classes, is calculated as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Ξ

≠

2
min ki

ki

vvn . Lastly, the Xie-Beni (XB) 

index is formed as the quotient of these two quantities, i.e., ΞΨ=XB . 

Like in the case of supervised problems, all of these structural indexes limit their 
evaluation to only one number which, in this case, represents the quality of the struc-
turing in the solution covering generated by the classification algorithm. 

Most authors do not even consider partially-supervised problems as a different 
category of problems [10].  These problems are treated as supervised in what regards 
the evaluation of the classification algorithms. Therefore, in the rest of this paper, no 
explicit reference will be made to partially-supervised problems and the same condi-
tions of  supervised problems will be assumed for them. 

3   Advantages and Disadvantages of Traditional Evaluation 
     Methods 

The most evident advantage of evaluating supervised problems through quality func-
tions is the flexibility of the latter.  The researcher can build a quality function as 
thorough as the problem requires, and one that can encompass situations of very dif-
ferent kind, such as abstentions of the classifying algorithm or a different weighing 
for each type of error made in assigning memberships. In return for this, the way of 
evaluating supervised problems has some evident disadvantages.  The first and most 
noticeable one is the need for having a previously known solution for the problem 
being evaluated, and its consideration as “the correct solution to the problem”.  This 
requirement makes it impossible to evaluate problems for which such a solution is not 
available, and even more: the consideration of such solution as the correct one may 
cause important biases in the evaluation of the algorithm. There are two main reasons 
for these biases in the evaluation: first, the quality of the supervision sample used for 
the evaluated classification algorithm.  Second: the quality of the structure induced on 
the solution covering by the evaluated algorithm is not measured. 

Not evaluating the quality of the supervision sample used for a supervised problem 
seriously limits the ability to judge the action of the classifying algorithm. It is not 
hard to imagine that a very well built sample (with the more representative patterns of 
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each class) may induce the generation of the same solution even by less precise algo-
rithms, while a poorly built sample (with patterns not very representative of each 
class) may induce errors or abstentions in the algorithms based on the similarity of 
patterns.  The criteria through which a solution can be selected and considered as 
correct, are not clear. Should the methodology include any type of measurement of 
the structure of the solution covering generated by the classification algorithm, the 
evaluation would not depend so much on the quality of the supervision sample. None-
theless, the quality function is limited to comparing the membership to each of the 
classes assigned by the classifying algorithm to each pattern. Lastly, notice that most 
of the classification algorithms (both for supervised and for non-supervised problems) 
are based on measuring the similarity between two patterns.  The criterion or set of 
criteria through which the similarity is measured is called  Pattern Analogy Function 
and it is evident that in spite of the fact that this function is the most important ele-
ment for the algorithm, it is in no way considered by the evaluation methodology for 
supervised problems. In summary, the following disadvantages may be noticed: 

1. The quality of the supervision sample is not measured. 
2. The structural quality of the solution covering is not measured. 
3. The pattern analogy function is not involved in the evaluation. 

The way to evaluate non-supervised problems has very different characteristics.  
The evaluation is made based on the quality of the structure of the solution instead of 
comparing  with a previously known solution is by far the most evident advantage of 
this method.  Unlike what happens with supervised problems, no elements, such as 
the magnitude of the membership assigned to each pattern or the number of absten-
tions in which the algorithm incurs are considered (although non-supervised classifi-
cation algorithms almost never have the possibility of abstaining from classifying any 
pattern).  In general, the elements considered to make the evaluation are precisely 
those which are not considered in supervised problems. These evaluation methods are 
radically different in both cases, but the diverse conditions of each type of problem do 
not allow the indiscriminate use of the respective methods.  Nevertheless, in both 
cases the evaluation of the algorithm is reduced in its expression to only one number 
which generally hides more information than the one it gives, because it does not 
allow an analysis of the specific situation of a pattern or category. Therefore, the list 
of deficiencies of classical methods may be completed as follows: 

4. The evaluation is synthesized in only one number which does not allow alter-
native interpretation. 

5. The evaluation methods are not unified for all types of problems.  

This leads us to ask the following question: Is it possible to devise an evaluation 
methodology that can overcome the deficiencies found in the present methods and 
produces unified criteria to evaluate classification algorithms applied to any type of 
problem? 

4   The Main Definitions and Proposed Methodology 

Before presenting the methodology proposed by the authors for the solution of the 
question mentioned above, we now introduce the three most important theoretical 
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concepts on which the design and methodology are based. These concepts are: the 
Covering, the Classification Problem  and the  Classification Algorithm.  For a more 
detailed description see [10]. 

Let Ω  be a known universe of objects under study and let Ω⊆O . 

Definition 1. A Covering of O  is a tuple ( )fO ,C,Q,,,, cπδℜ  where O , ℜ  and Q 

(called structural sets) are respectively sets of objects, descriptive features for the 
objects and classes. Components δ  and π  (called structural relations) are, respec-
tively, description and membership functional relations. The first one describes the 
objects of O  in terms of the features in ℜ  and the second one assigns to each oi 
object a membership to each of the Cj classes.  Last, Cc and f are respectively a set of 
comparison criteria and the pattern analogy function (see [10]). 

According to the definition given above, the special types of coverings shown in  
the following table may be characterized. 

Table 1. Types of Coverings. 

Covering   Conditions 

Total Every object belongs to a class 

Partial There is an object that does not belong to any class 
Blind No object belongs to any class 

Strict All classes are not empty 

Flexible There is an empty class 

Definition 2. A classification problem is a tuple of the form ( )Θ,0Z where Z0 is an 

initial cover. 
Following definition 2 a problem is supervised if and only if its initial covering is 

strict; partially supervised if and only if its initial covering is flexible and non-
supervised if and only if its initial covering is blind. 

Definition 3. A classification algorithm is an algorithm of the form ( ) 1ZPA =  such 

that, as a parameter, it receives a classification problem (in any of its forms) and de-
livers a total final covering which is the solution to this problem. 

When the design of this evaluation methodology was made, two general objectives 
were established: 1) to generate a unified methodology for all types of classification 
problems, and  2) to keep the advantages of each classical method, but to overcome 
their disadvantages. According to the definitions of the previous section, the method-
ology designed to evaluate classification algorithms is based on the structural com-
parison between the initial covering of a problem and the final covering generated as 
a solution by the classifying algorithm.  Such a comparison can always be made, even 
in cases in which one of the two compared coverings is a blind covering (as in the 
case of an initial covering in non-supervised problems).  The comparison of all types 
of properties in the covering that involve the membership of patterns to classes and 
the similarity between them, in accordance with the analogy function between pat-
terns is considered as a structural comparison.  
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The proposed evaluation methodology obviously starts with the application of the 
classifying algorithm to the problem being solved. From that moment on, the evalua-
tion process is developed in the following three stages: 

Stage 1 (Structural Analysis of the coverings) During this stage the initial and final 
coverings of the problem are analyzed separately, calculating for each of them the 
same set of structural properties. These properties are discussed in detail in a later 
section. The analysis takes place at three levels for each covering: 

Level of the Objects: The structural properties are calculated for each object, mak-
ing reference to each class in the covering. 

Level of the Classes: The values corresponding to each of the structural properties 
in the patterns that form the support of each class are accumulated and averaged. 

Level of the Covering: The indexes for the structural properties for the covering 
under study are calculated. 

Stage 2 (Comparison between Coverings) The difference in the value of each one 
of the structural properties calculated for each covering during the previous stage is 
calculated. The calculated set of differences is called Difference Tuple and it is the 
score assigned to the classifying algorithm. This tuple expresses the structural change 
generated by the classifying algorithm in the initial covering of the problem. 

Stage 3 (Interpretation of the Score) Once we have the partial results of each of the 
previous stages, particularly those corresponding to the three levels of structural 
analysis of the coverings, the researcher interprets the obtained score. 

Unlike classical methods, the one proposed here refrains from reducing the evalua-
tion process to only one final score that hides the details involved in the evaluation 
process.  The partial results obtained in each stage are valuable sources of information 
for the researcher, where he can study particular situations regarding the problem 
being solved. Another distinctive characteristic of this methodology is the fact that it 
is useful independently of the quantity and selection of the structural properties calcu-
lated during the first stage. Sometimes the researcher may be interested in using a 
specific set of structural properties, according to the characteristics of the problem 
under study. For this reason, the methodology described above was introduced with-
out any reference to the specific properties used in the analysis of coverings. In this 
sense, the set of structural properties that have been used and are described in the next 
section are shown for the sole purpose of clarifying all of the elements involved in the 
methodology.  Nonetheless, the researcher is free to use the set of properties that he 
deems to be more adequate for his particular study. 

5   Application Details 

For the structural analysis stage, only four properties, considered as determining fac-
tors in the structure of a covering, are calculated: 

The Tipicity (T) of an oi object, with regard to a jC class, understood as the degree 

to which the object is representative of such class and it is calculated as follows: 

( ) ( ) ( ) ( )jjssiji CSopCooofCoT ∑= ,,, π  
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where f(oi,os) is the similarity between the objects (calculated by the pattern analogy 
function), ( )js Co ,π  is the membership of the oi object to the jC  class, ( )  jSop C  is 

the cardinality of support of the jC  class. 

The Contrast (C) of an oi object with regard to a jC  class, understood as the de-

gree to which the object is representative of all of the other classes in the covering is 
defined as: 

( ) ( ) 1,, −=∑ ≠
kCoTCoC

CjCs siji  

where T(oi,Cs) is the tipicity of the oi object, in the jC class, and k is the total number 

of classes in the covering. 
The  Discrimination Error ( ε ) of an oi object with regard to a jC  class, under-

stood as the degree of confusion of the object in the covering is defined as: 

( ) ( )∑ ≠
=

CjCs jsiji CoCo ,, πε  

where ( )jsi Co ,π  is the degree of membership  of oi to the intersection of the jC  and 

sC classes. 

The Characterization Error ( γ ) of an oi object with regard to a jC  class,  under-

stood as the difference between the belonging of the object to the class and its Tipicity 
in this same class is defined as: 

( ) ( ) ( )jijiji CoTCoCo ,,, −= πγ  

During the analysis at the level of the classes, each of these structural properties is 
averaged in the analyzed class. During the analysis at the level of the covering, the 
structural indexes corresponding to each property are calculated.  In every case, the 
index is calculated as one minus the corresponding property averaged  in the whole 
covering. 

Striving to give this methodology the same flexibility shown by the quality func-
tions in supervised problems, a special technique for the structural analysis of the 
coverings during the first stage was developed.  This technique consists of adding to 
each covering an additional class which represents the complementing set for the rest 
of the classes in the covering and then calculating all the structural properties, also 
regarding this class.  In the initial covering of a problem all of the patterns that are not 
classified will be considered to have maximum membership to the complementing 
class.  This technique allows the proposed analysis to account for the abstentions 
incurred by the classification algorithm although, evidently, without achieving the 
same degree of flexibility achieved by the quality functions. 

6   Experimental  Results 

In order to test the designed methodology, we used the famous IrisData set consisting 
of 150 Iris flowers, described by 4 features (length and width of petals and sepals, all 
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measures in centimeters) and grouped in 3 classes called  Iris Setosa, Iris Versicolor 
and Iris Virginica (See [11]).   This data set was used to evaluate two different algo-
rithms: a (supervised) simple voting algorithm and the (non-supervised) Fuzzy C-
Means algorithm. Two experiments were performed with the supervised algorithm, 
one of them with a very well built training sample and the other one with a badly built 
one. In the non-supervised case the algorithm was simply applied to the whole Iris-
Data set to study the solution covering generated.  In every experiment, the action of 
the classification algorithm was evaluated with the traditional methods as well as with 
the proposed methodology, and both evaluations were compared. 

Table 2. Training samples for the supervised experiments 

Well-built sample:
Iris Setosa Iris Versicolor Iris Virginica

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

27 5 3.4 1.6 0.4 84 6.0 2.7 5.1 1.6 117 6.5 3.0 5.5 1.8
8 5 3.4 1.5 0.2 56 5.7 2.8 4.5 1.3 148 6.5 3.0 5.2 2.0
24 5.1 3.3 1.7 0.5 64 6.1 2.9 4.7 1.4 104 6.3 2.9 5.6 1.8
29 5.2 3.4 1.4 0.2 74 6.1 2.8 4.7 1.2 138 6.4 3.1 5.5 1.8
40 5.1 3.4 1.5 0.2 79 6.0 2.9 4.5 1.5 105 6.5 3.0 5.8 1.8

Badly-built sample:
Iris Setosa Iris Versicolor Iris Virginica

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

16 5.7 4.4 1.5 0.4 94 5 2.3 3.3 1 107 4.9 2.5 4.5 1.7
42 4.5 2.3 1.3 0.3 58 4.9 2.4 3.3 1 110 7.2 3.6 6.1 2.5
15 5.8 4 1.2 0.2 51 7 3.2 4.7 1.4 114 5.7 2.5 5 2
82 5.5 2.4 3.7 1 22 5.1 3.7 1.5 0.4 25 4.8 3.4 1.9 0.2
121 6.9 3.2 5.7 2.3 113 6.8 3 5.5 2.1 80 5.7 2.6 3.5 1  

In the supervised experiments, both training samples consisted of five objects rep-
resenting each class.  For the well-built case the five objects with more intra-class 
similarity were selected and for the badly-built case, each class was represented by 
the three less intra-similar objects and two more objects randomly selected from the 
other two classes.  Both samples are shown in table 2. 

Table 3. Traditional evaluation for the two supervised experiments 

 
1( )AΦ  

2 ( )AΦ  
Case 1  well-formed sample  0.793  0.854 
Case 2  badly-formed sample  0.760  0.837 

The two quality functions 
1( )AΦ  and 

2 ( )AΦ  introduced in section 2 were used for 

the traditional evaluation of these supervised experiments.  When the rest of the ob-
jects not contained in the training sample were submitted for classification, the super-
vised algorithm produced, for each experiment, the results shown in table 3. 
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Notoriously, in both cases, the traditional evaluation showed very similar results 
for the well-built and the badly-built samples. This can only be explained due to the 
restrictive nature of evaluation methodology using quality functions.  This traditional 
evaluation method measures only the degree of matching between the results obtained 
by the algorithm and the results contained in the previously known solution. All other 
aspects of the evaluation are not taken into account, including the quality of the test 
sample.      

In contrast, the unified methodology proposed herein measures the structural qual-
ity of both the initial and final coverings on the problem. As stated in section 4, this 
unified methodology unfolds over three stages.  During stage #1 both coverings (ini-
tial and final) are analyzed separately and the four structural properties introduced in 
section 5 are calculated for each one (tipicity, contrast, discrimination and characteri-
zation).  Since the analysis of each covering takes place at three levels (objects, 
classes and covering), this stage produces very large tables of intermediate results. 
These tables are not included in this paper for space reasons.  During stage #2, the 
analysis of both coverings is compared and the Difference Tuples depicted in table 4 
are produced. 

Table 4. Unified methodology results for the supervised experiments 

Case 1 (well-built sample):                                  Case 2  (badly-built sample): 

T C ε  γ   T C ε  γ  

-0.213 -0.016 -0.299 -0.114  -0.038 -0.196 -0.411 +0.342 

Finally, during stage #3 the difference tuples are interpreted. The interpretation of 
these results indicates that by establishing the quality of the initial sample given to the 
algorithm, the unified methodology manages to evaluate both cases in a notoriously 
different way.  The above results show the structural change produced by the algo-
rithm between the initial and final coverings of each experiment. Interpreting each 
index of the above table the following observations may be stated: 

1. The Tipicity index (T) was reduced reduced much more in the well-built case 
than in the badly-built one.  This means that in the first case the quality of the 
training sample was so high that the algorithm did not manage to group the rest 
of the objects with the same representativity in each class.  By contrast, in the 
second case the quality of the sample was low enough that the algorithm kept 
almost the same covering quality while classifying the rest of the objects. 

2. The Contrast index (C) had the expected opposite behavior of the tipicity in-
dex, meaning that classified objects kept to be equally representative to all 
classes in the first case but not in the second one. 

3. The Discrimination index ( ε ) reduction in the second case nearly doubled that 
of the first case.  This means that, after applying the classification algorithm in 
the second case,  the resulting covering has more overlapping in its member-
ships than the first case.  This is an expected result if one considers the quality 
of the respective samples and the behavior of the tipicity and contrast indexes. 



 Proposal for a Unified Methodology for Evaluating Supervised and Non-supervised 683 

4. The Characterization index ( γ ) shows the most dramatic change by reducing 

its value in the first case and growing considerably in the second case.  This is 
also the most unexpected and significant result of this evaluation. In the first 
case the slight reduction is explained because of the high quality of the training 
sample.  In the second case, the classification algorithm behaves very consis-
tently with the low inter-class similarity of the objects contained in the sample, 
so by classifying the rest of the objects it reduces the average difference be-
tween the membership and the tipicity of all objects. 

These arguments lead to the following conclusion: the supervised algorithm used 
in this experiments is highly sensitive to the quality of the initial sample, especially to 
the inter-class similarity of the objects.  The proposed evaluation methodology allows 
the researcher to consider different structural aspects that the traditional evaluation 
methods hide when synthesizing to only one number.  This evaluation takes into ac-
count both, the structure of the initial and final coverings in the problem, and the 
change induced by the classification algorithm separately. 

In order to traditionally evaluate the non-supervised experiment, the PE and XB 
indexes were used yielding the results shown in table 5. 

Table 5. Traditional evaluation for the non-supervised experiment 

 PE  XB  
non-supervised experiment 0.157 0.395 

The low partition entropy is a good score for the classification algorithm and it 
means that the final covering has a very clear structure. Nevertheless the middle-range 
magnitude of the XB  index indicates an unbalanced ratio between compactation and 
separation among classes. So these indexes are not very consistent with each other. 

For this experiment, the proposed methodology overcomes the inconsistency of 
the structural indexes and their inability to evaluate by using the same pattern analogy 
function used by the classification algorithm. Again, the unified methodology unfolds 
over its three stages and once more the tables containing intermediate results for stage 
#1 are not shown.  Stage #2 (comparison between coverings) yields the difference 
tuple shown in table 6. 

Table 6. Unified methodology results for the non-supervised experiment 

T C ε  γ  

+0.421 +0.421 +0.883 +0.815 

During stage #3 the interpretation of each index in the same way as it was done in 
the supervised experiments, leads to the following observations: 

1. In contrast with the supervised experiments, the change in all indexes has a 
positive magnitude. This is to be expected since the initial covering was blind 
and so it had no structure. 
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2. The growth in tipicity and contrast is exactly the same.  Also the growth in dis-
crimination and characterization is very similar and notoriously high.  

3. Tipicity and contrast are consistent with each other, and they mean that the 
classification algorithm produces an increase in the tipicity of all classes al-
most in 42%. 

4. Discrimination and characterization are also consistent with each other and 
they indicate that the algorithm produces 80% more distinguishable objects 
with 80% more consistency between their tipicity and their membership in 
each class. 

5. The pattern analogy function used by the algorithm is also used in the calcula-
tion of each of the four indexes. 

In summary, this experiment shows that the consistency of interpretation among 
the four structural indexes is far superior to that of other structural indexes used in 
traditional evaluation methods, and that each calculation uses the same pattern anal-
ogy function employed by the classification algorithm. So, the methodology proposed 
herein showed that it fulfills its design objectives and at the same time, it gives more 
information and flexibility to the researcher.  

7   Conclusions 

Comparison between the initial and final coverings of a problem allow the evaluation 
of the behavior of the classifying algorithm independently from other circumstantial 
factors in the problem, such as the quality of the control sample in the case of super-
vised problems.  Thanks to the definitions previously established, such comparison is 
a common element between supervised and non-supervised problems and unifies the 
evaluation methodology. 

The specification of what is meant by structural properties allows us to include in 
the analysis of the coverings both, the basic elements considered by the quality func-
tions (membership assigned to each pattern in each class), and those considered by 
most of the structural indexes with which non-supervised problems are evaluated.  At 
the same time, the main disadvantages of classic methodologies are avoided.  Notori-
ously, the discussed methodology neither requires a previously known solution to the 
problem, nor evaluates the algorithm by considering such solution as a reference 
point.  

The flexibility of the discussed methodology may be seen in two main aspects: 
first, the possibility of changeing the set of structural properties to be used during the 
analysis of the coverings, and second, the possibility of accounting for the abstentions 
of the classifying algorithm by using the complementing class technique. 
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