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Abstract. Feature selection and dimensionality reduction are crucial research
fields in pattern recognition. This work presents the application of a novel tech-
nique on dimensionality reduction to deal with multispectral images. A distance
based on mutual information is used to construct a hierarchical clustering struc-
ture with the multispectral bands. Moreover, a criterion function is used to choose
automatically the number of final clusters. Experimental results show that the
method provides a very suitable subset of multispectral bands for pixel classifi-
cation purposes.

1 Introduction

Works in multispectral imaging are producing many emerging applications in several
disciplines. Multi or hyperspectral sensors acquire information from a range of wave-
lengths in the spectrum and, unquestionably, they have produced an important improve-
ment of the results obtained from just one or three bands in some demanding application
fields, like remote sensing, medical imaging, product quality inspection, fine arts, etc.
The work we present here is not focused on a specific field and could be applied to any
kind of multispectral images. However, due to the lines of work that we follow, we are
strongly interested in SAR images as well as in fruit quality inspection tasks.

Obviously, from the point of view of pixel classification tasks, a very desirable step
when we have a large amount of input spectral information is a process to reduce this
initial information without losing classification accuracy in a significant way. This re-
duction could be done in two different ways: feature extraction [9,7] or feature selection
[2]. In feature extraction we would obtain a new and reduced data set representing the
transformed initial information, whereas in feature selection we would have a subset
of relevant data from the original information. In this work we will focus on feature
selection rather than feature extraction due to the fact that in feature extraction the to-
tal amount of information is needed to obtain the new set of input bands. On the other
hand, selecting the relevant range of wavelengths in the spectrum, where the process
obtains better results, allows the acquisition step to deal with a reduced set and makes
the analysis simpler.

In multispectral applications, the question is how to select the correct bands from the
multispectral range to characterise the problem. In this case, regarding to feature selec-
tion for pixel classification, this question could be addressed using information theory
and, more concretely, by measures based on the mutual information concept [11].

In recent years, clustering techniques are becoming more popular, being hierarchi-
cal clustering one of the most used approaches. Important advances have been made
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in different fields as segmentation [1] [10], text classification [3] or even in semanti-
cally meaningful grouping [12]. A comprehensive analysis of these methods can be
also found in [4]. In our work, we take advantage of this representation because it is a
very intuitive way to group the input data in order to progressively reduce the amount
of information.

The methodology of the algorithm presented in this work can be summarised as fol-
lows. A similarity space is defined among image bands, where a dissimilarity measure
is defined based on the mutual information between a pair of bands. From the initial set
of bands that form a multispectral image, the process starts with a hierarchical cluster-
ing in the defined dissimilarity space. In order to progressively construct a hierarchical
family of derived clusters the method uses a linkage strategy with an inter-cluster dis-
tance as the objective function to optimise. The number of final clusters is calculated
automatically by means of a functional. The maximum values in this function indicate
which number of clusters is suitable in order to form an accurate partition. Finally, for
each of the final clusters, a band representing the cluster is chosen, providing the final
bands selected, which are considered the most relevant.

2 Band Selection Algorithm

In this section the dimensionality reduction algorithm is introduced. To this end, the
method proposed tries to identify the subset of bands that are as much independent as
possible among them. It is known that independence between bands [9] is one of the key
issues to obtain relevant subsets of bands for classification purposes. As we will show in
the experimental results, the resulting bands obtained by means of our method produce
very satisfactory classification rates with respect to other feature selection approaches.

To find the subset of K bands that are as much independent as possible among them,
our approach defines a dissimilarity space based on mutual information between bands.
In this dissimilarity space, a clustering process is performed. As a result of the cluster-
ing, bands are grouped according to the amount of information they share. Therefore,
all the bands in the same cluster are highly dependent among them. In a final stage, a
band representing each cluster is chosen, in such a way that the band selected will be
the band that share as much information with respect to the other bands in the cluster.
Eventually, the K selected bands from the final K clusters will have a significant de-
gree of independence, and therefore, will provide an adequate reduced representation
that will provide satisfactory classification results.

2.1 Mutual Information-Based Distance

Let us calculate mutual information from entropy measures according to the well-
known expression I(X, Y ) = H(X) + H(Y ) − H(X, Y ), where H(X), H(Y ) are
the entropies of random vectors X , Y respectively and H(X, Y ) is the joint entropy.
I is an absolute measure of common information between two sources, however, as
we can infer from the previous equation, I by itself would not be a suitable distance
measure. The reason is that it can be low because the X , Y variables present a weak
relation (such as it should be desirable) or because the entropies are small (in such case,
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the variables contribute with few information). Thus, it is convenient to obtain a proper
measure so that it works independently from the marginal entropies and also measures
the statistical dependence as a distance.

Let us consider a set of n bands X1, ..., Xn from a multispectral image and let us sup-
pose that each band represents a random variable. From this input data, we shall employ
a measure of similarity between any two random images, NI(Xi, Xj) = 2·I(Xi,Xj)

H(Xi)+H(Xj) ,
which is a normalised measure of I . This measure is used to calculate distance DNI =(
1 − √

NI(Xi, Xj)
)2

. Both DNI and NI had been proposed in [5].

2.2 Hierarchical Clustering

The hierarchical structures are commonly represented by a tree diagram or dendrogram
with a nested set of partitions. In this representation, called hierarchical clustering, the
sequence of disjoint partitions is obtained using only the information contained in a
distance matrix. This matrix of dissimilarities calculates the distance DNI for each pair
of groups and is used to decide how to link nested clusters in consecutive levels of the
hierarchy.

There are several linkage strategies that we can use as the rule to decide how the
distance matrix has to be updated [6]. Different linkage strategies create different tree
structures. The algorithm here proposed uses an agglomerative strategy, that is, it starts
with n initial clusters and, at each step, merges the two most similar groups to form
a new cluster. Thus, the number of groups is reduced 1 by 1 until there is just one
cluster. Our hierarchical clustering algorithm is based on a Ward’s linkage method [13].
Ward’s linkage method has the property of producing minimum variance partitions.
Thus, this method is also called minimum variance method because it pursues to form
each possible group in a manner that would minimise the loss associated with each
grouping (internal cohesion). To this end, the hierarchical grouping merges the pair of
clusters that minimise the increment in the square error of the whole partition. The error
used to this calculation is the intra-cluster dispersion. In addition to several studies that
conclude that this method outperforms other hierarchical clustering methods [6], the
process helps us to form groups with not much variance in their level of independence,
that is, clusters with similar DNI distances will be joined together.

2.3 Fully Automated K-Assessment

Most of the applications that imply a band selection process suffer from a lack of an
automatic−K−selection, that is, the final number K of selected bands is not chosen
automatically. This drawback is usually solved by a manual introduction of the K value
or by determining a threshold value in order to control the progression of certain func-
tional [4]. Therefore, a method with an automatic−K−selection would be desirable
in order to finish correctly the hierarchical process and make the method completely
unsupervised.

In this paper, we introduce a functional that automatically calculates how many clus-
ters would be desirable as a final subset, that is, the K number. In our work, we have
compared this result with the classification rates for each number of final clusters in
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order to check the validity of the K taken. Thus, a valid K number would be a value
from which the classification accuracy does not improve or even become worse.

The developed functional will begin in the stage where each band, from the N start-
ing bands, is a single cluster and will finish in the stage with only two clusters. Let us
suppose certain stage where the bands are grouped in n clusters (where n ≤ N ) form-
ing a partition C = {c0, c1, ..., cn}, that is, a set of clusters. Let us also suppose that
we have a cluster of bands ci and C̄i = {c0, c1, ..., cn} is the complementary subset of
clusters where ci /∈ C̄i, C ≡ {ci} ∪ C̄i.

Let us define I(ci) as the average of the internal distances1 among the bands bi

belonging to ci. We shall also define E(ci) as the average of the external distances
between the bands belonging to ci and the bands in C̄i. Thus,

I(ci) =
1

‖ci‖2

∑
bi∈ci

∑
bj∈ci

DNI(bi, bj) E(ci) =
1

‖Ci‖ · ‖C̄i‖
∑
bi∈ci

∑
bj∈C̄i

DNI(bi, bj)

Note that I(ci) calculates an intra-cluster average difference whereas E(ci) calcu-
lates the inter-cluster average difference. Both of them use mutual information among
bands (as described in 2.1) and are related to a particular cluster ci. Hence, we will
define PI(C) and PE(C) as the global average measures among all the clusters in a
particular partition C as follows:

PI(C) =
1

‖C‖
∑
ci∈C

I(ci) PE(C) =
1

‖C‖
∑
ci∈C

E(ci)

In an ideal partition, we would hope the inter-cluster value PE(C) to be very large,
and the intra-cluster value PI(C) to be very small. Thus, left side of figure 1 plots
the function PE(C) − PI(C) against the number of clusters in C. As we can see,
the maximum difference between PE(C) and PI(C) is obtained when each band is
considered as an independent cluster. Since our aim is a band reduction, this measure is
not enough by itself. Hence, we plot the linear function that ranges from 0 to PE(C0)−
PI(C0) where C0 is the initial partition when each band is considered as a single cluster.
This linear behaviour would be the graph we will expect if all steps in the clustering
process would provide the same variation in the values of PE(C) and PI(C).

Taking into account the two described functions, we shall consider the resulting func-
tional from the difference between the first one, which could be considered as the real
behaviour, and the second one, which could be considered as the expected linear behav-
iour. The maximum value in this K functional is considered the better K value for
the final number of clusters. For some application, other local peaks around the max-
imum of the K functional could also be taken into account. Plotting the functional
values for each number of clusters (Fig. 1 on the right) we can see that the graph draws
an increasing function from right (where each band is an independent cluster) to left
(where several bands are grouped in a few clusters) until a maximum value which is the
selected K number. In short, the functional equation has the following form:

K func(C) = (PE(C) − PI(C)) − ‖C‖PE(C0) − PI(C0)
‖C0‖

1 It is important to point out that when we talk about distance we are referring to DNI .
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Fig. 1. Left picture shows real and expected linear graphs for NIR database. Resulting
K functional is plotted on the right.

2.4 Choosing the Cluster Representatives

After the distance matrix is initialised, the algorithm looks for the two most similar
clusters that will have the minimum distance value in the matrix. These two clusters are
merged into one and the matrix is updated using Ward’s linkage method. Of course, the
rows/columns corresponding to the merged clusters are deleted and a row/column for
the new cluster is added.

The described process is repeated until the stage with just one band. After that, by
means of the previous described functional, the algorithm selects the K number of final
clusters. The resulting mutually exclusive groups represent groups of highly correlated
bands, and bands from two different clusters will have low correlation. Thus, let us
consider now the resulting cluster ci with n bands. The weight of each band i ∈ ci

is calculated as Wi = 1
n

∑
j∈ci,j �=i

1
ε+D(i,j)2 where ε is a very small value to avoid

singular values, and function D(i, j) returns the distance value between bands i,j. The
representative band from each group is selected as the band with the highest W of the
cluster. A low value of Wi means that the band i has an average large distance with
respect to the other bands in the cluster, that is, in this case, the band i will have an
average low correlation with respect to the other bands in the cluster. In a reverse way,
a high value of Wi means that band i has, in average, a high correlation with respect to
the other bands in the cluster. Thus, choosing the band in the cluster with the highest
average correlation (mutual information) with respect to the other bands in the cluster,
what we are doing is choosing the band that better predicts the information content
of the other bands, since the more mutual information two random variables have, the
more can predict one of the variable about the other one.

As a result of the algorithm, K bands will be selected that represent K clusters.
These K bands will be significantly separated in the dissimilarity space defined, thus,
having a low correlation and, therefore, having a high degree of independence among
them.

3 Results

To test the proposed approach, several multispectral images from different databases
are used in the experimental results:
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1. Multispectral images of oranges obtained by an imaging spectrograph (RetigaEx,
Opto-knowledge Systems Inc., Canada). This database has two groups, VIS col-
lection (400-720 nm in the visible) and NIR collection (650-1050 nm in the near
infrared). In both cases, the camera has a spectral resolution of 10 nm. The database
includes several kinds of orange defects. It has eight classes, obtaining 1463346 la-
belled pixels from VIS and 1491888 labelled pixels from NIR.

2. The 92AV 3C source of data corresponds to a spectral image (145 X 145 pixels,
220 bands, 17 classes) acquired with the AVIRIS data set and collected in June
1992 over the Indian Pine Test site in Northwestern Indiana2.

3. DAISEX ′99 project provides useful aerial images about the study of the variabil-
ity in the reflectance of different natural surfaces. This source of data corresponds to
a spectral image (700 X 670 pixels, 6 classes) acquired with the 128-bands HyMap
spectrometer during the DAISEX-99 campaign (http:/io.uv.es/projects/daisex/).

In addition to the previous description, images in Fig. 2 show some instances of the
database collections used. These images are presented as RGB compositions.

Fig. 2. Examples of RGB composition. First for an orange image in the Visible spectrum, second
for HyMap spectrometer and third for AVIRIS (92AV3C)

On 92AV 3C and DAISEX ′99 databases, because of the labelled ”background”,
which corresponds to pixels with an undetermined class, we can divide each database
into two groups, one with background and another without background.

Since we perform the Ward’s linkage method using a distance based on Mutual
Infor-mation, we shall name hereafter WaLuMI to our proposed algorithm. It has
been tested with these six databases described, that is, the VIS and NIR collections
from the database of oranges, 92AV 3C database with and without background and
DAISEX ′99 database with and without background.

In order to assess the performance of the method, a Nearest Neighbour (NN) clas-
sifier was used to classify pixels into the different classes. The performance of the NN
classifier was considered as the validation criterion to compare the significance of the
subsets of selected image bands obtained by the proposed approach.

To analyse the accuracy of the ranking of bands obtained by the proposed approach,
two supervised filter feature selection methods were also tested. Thus, the band selec-
tion process was considered as a supervised feature selection approach, in this case

2 http:/dynamo.ecn.purdue.edu /∼biehl/MultiSpec
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using the labelled data set for the feature selection process. The main motivation about
comparing the proposed method with supervised approaches is that the labelled data
contains information about the distribution of classes existing in the hyperspectral data,
and they allow the search for relevant feature subsets. By comparing the performance
with those approaches, we can measure the capability to obtain subsets of relevant fea-
tures (image bands) by the introduced algorithm without a prior knowledge of the class
distributions in the multispectral image, allowing the labelling of data.

The first method is the well-known ReliefF algorithm [8] based on pattern distances.
This algorithm initialises every feature weight to zero and then iterates m times looking
for a set of feature weights that optimises a criterion function.

The second technique is related to divergence measures between classes. One of the
best-known distance measures used for feature selection in multi-class problems is the
average Jeffries-Matusita (JM) distance [2].

In terms of class separability, the higher is the JM distance between two classes,
the more separability between them. To obtain suboptimal subsets of features, we have
applied a search strategy based on a Sequential Forward Selection applying this distance
((SFS)JMdistance). This technique starts from an empty feature subset and adding
one feature at a time, reaching a feature subset with the desired cardinality.

3.1 Performance Evaluation Including Background Pixels

During the image labelling process, there are always pixels in an image that are not as-
signed to any class of interest, mainly because they are pixels that either do not clearly
belong to some of the predefined classes or they are assigned to a complementary class.
The pixels that have not been assigned to any class are labelled as “background” class.
In this subsection, we include the background information in the databases for its eval-
uation.

In order to increase the statistical significance of the results, the experimental results
shown in this section about the classification rates correspond to the average classifica-
tion accuracy obtained by the NN classifier over five random partitions. The samples in
each partition were randomly assigned to the training and test set with equal sizes as
follows: VIS = 43902 pixels, NIR = 44758 pixels, HyMap = 37520 pixels, 92AV3C =
2102 pixels.

On the other hand, given the huge size of the data sets and the trouble in compu-
tational cost to apply the supervised approaches, particularly in the case of VIS, NIR
and HyMap, the following independent partitions with respect to the data sets were ran-
domly extracted maintaining the prior probability of the classes: VIS = 87805 pixels,
NIR = 89516 pixels, HyMap = 93804 pixels and 92AV3C = 10512 pixels. Using these
databases, the supervised approaches and the proposed method were applied in order to
obtain a ranking of relevance of the features, that is, of bands.

Figures 3, 4 (left) and 5 (left) represent in their top row the classification rates with
respect to the subset of N bands selected by each method for each database. In all cases,
we show the performance of the NN classifier with respect to the number of features
obtained by WaLuMI , (SFS)JMdistance and ReliefF . Note that the proposed
method obtained better performance with respect to the rest of methods in all databases.
It is worthwhile mentioning that the WaLuMI approach has a good behaviour in all
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cases when choosing the smaller sets of bands (one to ten), where the decision is more
critical.

ReliefF performs poorer with respect to the other approaches except with HyMap
image, where the performance of (SFS)JMdistance is worse.

Therefore, regarding to the band selection problem, where there exists high correla-
tion among different features (image bands), the principle of looking for non-correlated
bands from the different regions of the spectrum, by reducing the mutual information
in the ensemble of image bands, has proven to be an effective approach to obtain sub-
sets of selected image bands that also provide satisfactory results from the classification
accuracy point of view.

3.2 Performance Evaluation Without Background Pixels

The hyperspectral data assigned to the “background class” are usually very scattered
and overlapped with other classes, and this fact damages the classification accuracy.
Moreover, the elimination of this information supposes a supervised knowledge to de-
tect those regions of the image.

These regions are very difficult to detect with precision from unsupervised informa-
tion. Therefore, the goal of this experiment is analysing the advantages that suppose
the knowledge of the class distribution without the noise that the background class can
introduce. In this case, we will focus on HyMap and 92AV3C hyperspectral data, where
the background information is much more undefined.

In the case of HyMap, we added the background class to the training set and valida-
tion set: training = 26190 pixels and validation = 65479 pixels. The test set contains all
classes except the background class. The total number of test samples is 327336 pixels.
Thus, the experiment classifies the test using the ranking of relevance of the features
obtained by the validation set with the proposed method and the supervised methods
used in the comparison.

The image 92AV3C only contains 10366 instances without the background class.
Therefore, we apply a holdout partition, where the training and the validation set have
the same size with 5181 pixels and the rest of pixels represent the test set = 5185 pixels.

Figures 4 and 5 represent, in their right side of the top row, similar classification
results than the previous subsection, but without “background class”. The best perfor-
mance is obtained by WaLuMI , even better in the first bands where the decision is
more critical.

3.3 Selection of the K Final Clusters

For the experiments shown in previous subsections, we also present the values of the
K functional described in section 2.3. Figures 3, 4 and 5 show the results3 of this
automatic − K − selection process in their bottom rows. We can realise how the
maxima of the functional approximately fit with K values which provide satisfactory
classification rates. Of course, we could make this comparison each time we carry out a

3 Note that, in order to achieve a clearly graph, figures only show the 30 last partitions in V IS
and NIR databases and the 50 last partitions in HyMap and 92AV 3C databases.
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Fig. 3. Automatic−K − selection (x-axe) in V IS/NIR databases. Top row shows the classi-
fication rates. Bottom row shows the corresponding K functional. Left column shows the results
for V IS multispectral image. Right column shows the results for NIR multispectral image.

Fig. 4. Automatic − K − selection (x-axe) in HyMap database. Top row shows the classifi-
cation rates. Bottom row shows the corresponding K functional. Left column shows the results
for HyMap multispectral image. Right column shows the same results, but this time the image is
considered without “background class”.
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Fig. 5. Automatic − K − selection (x-axe) in 92AV3C database. Top row shows the classifi-
cation rates. Bottom row shows the corresponding K functional. Left column shows the results
for 92AV3C multispectral image. Right column shows the same results, but this time the image
is considered without “background class”.

band reduction, that is, testing the classification rates for each possible number of final
clusters. The problem is the high computational/temporal cost it involves. So, in order
to avoid this expensive process, we provide an automated method that selects as good
partitions as we would choose manually according to classification rates but without
having to run the classification experiments.

Figures 3 and 4 show in their bottom row the K functional values for the oranges
and HyMap databases respectively. In both databases a good number of clusters has
been selected according to the classification accuracy graph. On the other hand, figure
5 does not achieve as good results as would be desirable because the selected K is a
little bit away from the values that we manually would have chosen. However, taking
into account that this image starts from 220 clusters (image bands), the K selected is a
reasonable band reduction.

4 Conclusions

An unsupervised approach to select image bands in multispectral images based on mu-
tual information measures has been introduced. The method uses a clustering process to
group bands correlated among them, and selecting a subset of bands with a high degree
of independence in a completely unsupervised way.

The results obtained from the point of view of pixel classification in multispectral
images provide experimental evidence about the importance that independence among
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bands plays in the problem of classification. The method here presented is computa-
tionally affordable, avoiding the problem of labelling, and providing very satisfactory
classification results with respect to other well known supervised feature selection cri-
teria. In addition, an automatic−K− selection process contributes to achieve a fully
unsupervised algorithm that improves our previous work.
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