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Abstract. The Neural Gas (NG) is a Vector Quantization technique where a set
of prototypes self organize to represent the topology structure of the data. The
learning algorithm of the Neural Gas consists in the estimation of the prototypes
location in the feature space based in the stochastic gradient descent of an Energy
function. In this paper we show that when deviations from idealized distribution
function assumptions occur, the behavior of the Neural Gas model can be drasti-
cally affected and will not preserve the topology of the feature space as desired.
In particular, we show that the learning algorithm of the NG is sensitive to the
presence of outliers due to their influence over the adaptation step.

We incorporate a robust strategy to the learning algorithm based on
M-estimators where the influence of outlying observations are bounded. Finally
we make a comparative study of several estimators where we show the superior
performance of our proposed method over the original NG, in static data cluster-
ing tasks on both synthetic and real data sets.
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1 Introduction

The Neural Gas (NG), introduced by Martinetz et. al. [6], is a vector quantization tech-
nique that has been successfully applied in several areas as pattern recognition and data
mining (see [9]). The NG is a variant of the Kohonen Self-Organizing Map [5] where
the neighborhood relation is adaptively defined by the ranking order of the distance be-
tween the prototypes and the sample data. The NG has the advantage of being flexible
and capable of both quantizing topologically heterogeneously structured manifolds and
learning the similarity relationships among the input signals without the necessity of
specifying a network topology.

The learning algorithm for the parameter estimation of neural networks models rely
on the data. In real engineering and scientific applications, data are noisy with the pres-
ence of outlying observations. Assumptions of the underlying data generation process
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no longer holds and the model estimates are badly affected obtaining a poor perfor-
mance (see for example [1] and [8]).

In [2] and [7] the authors empirically show that the Neural Gas lacks of robustness
and they incorporated several robust strategies such as outlier resistant scheme. In this
paper we show that when deviations from idealized distribution function assumptions
occurs, the behavior of the Neural Gas model can be drastically affected and will not
preserve the topology of the feature space as desired. In particular, we show that the
learning algorithm of the NG is sensitive to the presence of outliers due to their influence
in the adaptation step. We incorporate a robust strategy to the learning algorithm based
on M-estimators where the influence of outlying observations is bounded.

The remainder of this paper is organized as follows. In the next section we briefly
introduce the Neural Gas model. In section 3 we review some concepts of Robust M-
estimator applied to the learning process. In section 4 we investigate the robustness
properties of the NG by casting the learning algorithm as a statistical estimation prob-
lem, furthermore, we introduce the M-estimators as a robust scheme for the parameter
estimation process. In section 5 we provide a comparative study of several estimators
where we show the superior performance of the robust methods over the original NG, in
static data clustering tasks on both synthetic and real data sets. Conclusions and further
work are given in section 6.

2 Neural Gas

The “Neural-Gas” (NG) model consists of an ordered set m = {m1, ...,mM} of M
prototypes, neurons or “codebooks” vectors mj ∈ M ⊆ R

d, j = 1, ..,M arranged
according to a neighborhood ranking relation between the units.

When the data vector x ∈ X ⊆ R
d is presented to the NG model, it is projected to

a neuron position by searching the best matching unit (bmu), i.e., the prototype that is
closest to the input, and it is obtained as c(x) = argminj=1..M {‖x− mj‖}, where ‖·‖
is the classical Euclidean norm. This procedure divides the manifold X into a number
of subregions Vj = {x ∈ X| ‖x − mj‖ ≤ ‖x− mi‖ ∀i}, called Voronoi polygons or
Voronoi polyhedra, where each data vector x is described by its corresponding reference
vector mj .

The neighborhood relation of the prototypes in the NG model is defined by the rank-
ing order of the distance of the codebook vectors to the given sample. When a data vec-
tor x is presented, the “neighborhood-ranking” (mi0 ,mi1 , ...,miM−1) is determined,
with mi0 being the closest to x, mi1 being second closest to x, and mik

, k = 0, ..,M−
1, being the reference vector for which there are k vectors mj with ‖x − mj‖ <
‖x − mik

‖. If kj(x,m) denotes the number k associated with each vector mj , which
depends on x and the whole set m of reference vectors, then the adaptation step for
adjusting the mj’s is given by:

mj(t+ 1) = mj(t) + αhλ(kj(x,m))(x − mj) j = 1, ..,M (1)

with both the learning parameter functionα = α(t) ∈ [0, 1] and the characteristic decay
function λ = λ(t) are monotonically decreasing functions with respect to time. For
example for α the function could be linear α(t) = α0 + (αf − α0)t/tα or exponential
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α(t) = α0(αf/α0)t/tα , where α0 is the initial learning rate (< 1.0), αf is the final rate
(≈ 0.01) and tα is the maximum number of iteration steps to arrive αf . Analogously
for λ (See [10] for further details).

The neighborhood kernel hλ(kj(x,m)) is unity for kj = 0 and decays to zero for
increasing kj . In this paper we use hλ(ki(x,m)) = expki(x,m)/λ. Note that if λ → 0
then (1) is the K-means adaptations rule, whereas for λ 	= 0 not only the “winner”
(bmu) mi0 but the second closest reference vector mi1 , third closest vector mi2 , etc.,
are also updated.

Martinetz et. al. [6] showed that the dynamics of the mj’s obeys a stochastic gradient
descent on the cost function:

Eng(m, λ) =
1

2C(λ)

M∑

i=1

∫
hλ(ki(x,m))(x − mi)2dF (x) (2)

where C(λ) =
∑M

i=1 hλ(ki) =
∑M−1

k=0 hλ(k) is a normalization factor that only de-
pends on λ. F (x) is the probability distribution measure of the data generating process.

3 Robust M-Estimators for the Learning Process

The learning process of the NG can be seen as a parameter estimation process, and their
inference relies on the data [2]. When observations substantially different from the bulk
of data exist, they can influence badly the model structure bringing degradation in the
estimates. In this work we seek for a robust estimator of the NG parameters based on
M-estimators (see [4]).

Let the data set {x1, ...,xn} consists of an independent and identically distributed
(i.i.d.) sample of size n obtained from the input space X ⊆ R

d of dimension d, i.e.,
xi ∈ X . An M-estimator θ̂M

n is defined as

θ̂M
n = arg min{RLn(θ) : θ ∈ Θ} with RLn(θ) =

1
n

n∑

i=1

ρ (xi, θ)

whereΘ ⊆ R
D is the parametric space,RLn(θ) is a functional cost and ρ : X×Θ → R

is the function that we will name it robust when it introduces a bound to the influ-
ence of outliers data during the training process. By assuming that the function ρ is
differentiable with respect the parameter θ = (θ1, ..., θD), we obtain the score func-
tion ψ(x, θ) = (ψ1, ..., ψD)′ whose components are the partial derivatives ψj(x, θ) =
∂ρ(xi,θ)

∂θj
, j = 1..D. Then the M-estimator can be defined implicitly as the solution of

the vector equations 1
n

∑n
i=1 ψj (xi, θ) = 0, j = 1..D. Table 1 shows the Least Square

(LS), Huber (H) and Tukey’s biweight (B) methods as examples of M-estimators. Please
refer to [4] for further examples of robust functions.

We consider estimators T which are functionals of the distribution functions, i.e.,
T = T (F ), and estimators that are Fisher consistent T (F ) = θ. The influence function
(IF) of the functional T at the distribution function F = F (x) is defined as

IF (x;T, F ) = lim
t→0

T ((1 − t)F + tΔx) − T (F )
t
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where (1− t)F + tΔx is the t-contaminated model of the distribution F (x), where Δx

is the probability measure which puts mass 1 at the point x. The influence function is
a local measure introduced by Hampel [4] that describes the effect of an infinitesimal
contamination at the point x on the estimate.

Table 1. Examples of M-estimators

Name ρ(x) ψ(x)

Least
square

x2/2 x

Huber
�
x2/2 |x| ≤ κ
κ |x| − κ2/2 |x| > κ

�
x |x| ≤ κ
κ sign(x) |x| > κ

Tukey’s
biweight

�
κ2(1 − [1 − x2/κ2]3)/ |x| ≤ κ
κ2/6 |x| > κ

�
x[1 − x2/κ2]2 |x| ≤ κ
0 |x| > κ

An important summary value based on the IF is the gross error sensitivity that mea-
sure the worst (approximate) influence which a small amount of contamination of fixed
sized can have on the value of estimator. The gross error sensitivity of the estimator T
at the distribution F is defined as γ(T, F ) := sup

x
{‖IF (x, T, F )‖}. It is a desirable

feature that γ(T, F ) be finite and in such case we say that T is B-Robust at F .

4 Robustness Analysis of the Learning Algorithm

Let the data set {x1, ...,xn}, xi ∈ X ⊆ R
d, consists of an independent and identically

distributed (i.i.d) sample of size n with common probability distribution F (x). The cost
function of equation (2) is generalized to the following form:

Eng(m, λ) =
1

C(λ)

M∑

i=1

∫

χ

hλ(ki(x,m))ρ(x −mi)dF (x) (3)

=
1

C(λ)

∫

χ

M∑

i=1

hλ(ki(x,m))ρ(x −mi)dF (x)

=
1

C(λ)

∫

χ

η(x,m)dF (x)

where the second equation is obtained by interchanging the integral with the summand.
Let the function η : X ×M −→ R be defined as η(x,m) =

∑M
i=1 hλ(ki(x,m))ρ(x−

mi) and ρ : X ×M −→ R is the function of the M-estimator functional cost (see table
1 for examples).

An M-estimator is defined as the value m̂ = {m̂1, ..., m̂M} such that

m̂ = arg min
m

{Eng(m, λ)}
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Assuming that ρ is differentiable whose derivative is given by ψ(r) = ∂ρ(r)
∂r then

ϕj(x,m) =
∂η(x,m)
∂mj

= -hλ(kj(x,m))ψ(x − mj) +Rj j = 1, ...,M

with Rj =
∑M

i=1 h
′
λ(kj(x,m))ρ(x − mj)

∂ki(x,m)
∂mj

. Martinez et al. [6] demonstrated

that
∫
RjdF (x) = 0 for each j = 1, ..,M . An M-estimator m̂ can be defined implicitly

by the solution of the vector equation ϕj(x,m) = 0, ∀j = 1, ...,M .
The influence function IFj(x,m, F ) associated to the M-estimator m̂j is given by

the following equation:

IFj(x,m, F ) = hλ(kj(x,m))ψ(x − mj)H−1 ∀j = 1, ...,M

where H = -
∫

∂
∂m [ϕj(x,m)]m̂ dF (x). Note that if the classical Least Square estima-

tor is used, then the gross error sensitivity is γ(m̂LS, F ) = ∞, this reflect the fact that,
for any samples size, even a single outlier can carry the estimates over all bounds (if it
is far enough).

4.1 Robust Learning Algorithm

The updating rule (1) employed in the original NG algorithm lacks of robustness as was
shown in the previous section. The gross error sensitivity is infinity implying that the
learning step is biased toward the location of the outlying observations. To overcome
this problem the following updating rule that obeys a stochastic gradient descent on the
cost function (3) is used instead:

mj(t+ 1) = mj(t) + αhλ(kj(x,m))ψ(x − mj) j = 1, ...,M (4)

where the ψ(·) function diminish the influence of the outliers (see table 1 for exam-
ples). Unfortunately, the learning rule of equation (4) is not invariant with respect to
scale, which is often a nuisance parameter. To overcome this problem we can standard-
ized each data sample xi = (x1, ..., xd)′ as Ŝ−1/2

j (x − mj), where Ŝj is the robust
estimation of the covariance matrix of the difference x−mj of all the data that belong

to the Voronoi polygon Vj , and Ŝ−1/2
j =

√
Ŝ−1

j is the square root of the inverse of the
covariance matrix. Now we can redefine the robust learning rule as follows

mj(t+ 1) = mj(t) + αhλ(kj(x,m))ψ
(
Ŝ
−1/2
j (x − mj)

)
j = 1, ..,M (5)

One could compute m and Ŝ simultaneously as M-estimators of location and scale
respectively. However, simulations have shown the superiority of M-estimators with
scale estimated iteratively during the learning process by the scaled version of the me-
dian of the absolute deviations from the median (sMAD):

sMAD(x1, ..xn) =
1

Φ−1(3
4 )
median

l=1..n

{∣∣∣∣xl −median
k=1..n

(xk))
∣∣∣∣

}



564 C. Saavedra et al.

where Φ−1(p) is the inverse of the standard Gaussian cumulative distribution function
at the probability p. The constant 1

Φ−1( 3
4 )

≈ 1.483 is needed to make the sMAD scale

estimator Fisher consistent when the data behave as Gaussian distribution. We apply
the sMAD function for each dimension component of the sample {(xi − mj)}n

i=1 and
for each prototype j = 1..M .

The robust M-estimators of the learning update rule have initialization problems. To
overcome this situation the constant κ of the ψ(·) function is considered as a function
of time and the standard deviation, i.e., κ = κ(t)σ, where κ(t) monotonically decreases
with time. In this paper we use a linear decreasing function κ(t) = κ0 +(κf −κ0)t/tf ,
where κ0 is the initial value (bigger than 6); and κf is the final value (between 3 and 6)
and tf is the maximum number of iteration steps to arrive κf .

5 Simulation Results

In this section we provide a comparative study of the Least Square (LS), Huber (H)
and Biweight (B) M-estimators applied to the learning process of the NG, in static data
clustering tasks on both synthetic and real data sets, the latter were obtain from the UCI
benchmark [3].

In the experiments, all the dimensions of the training data set were scaled to interval
[−1, 1], and the test data set were scaled using the same scale applied to the training
data set. The test data set will not necessarily fall in the same interval. The number of
epochs utilized for all experiments is tf = 500 and the α and λ decay in exponential
form with values: α0 = 0.9, αf = 0.05, λ0 = M/3, λf = 0.01, κH

0 = 30, κB
0 = 40

and κf = 3.

5.1 Performance Evaluation of the NG

In the experiments we use the following metrics to evaluate the performance of the NG
model. The Classification Accuracy (CA) is the right classification percentage

CA =
1
n

n∑

i=1

I(xi,mc(xi)) · 100% (6)

where we label the neuron mj with the class that has the majority in its Voronoi polygon
Vj . I(xi,mc(xi)) takes the value of one if the label of the data xi is equal to the label
of its best matching unit mc(xi), and takes the value of zero in the other case.

The Mean Square Quantization Error is given by

MSQE =
1
n

n∑

i=1

∥∥xi,mc(xi)

∥∥2
(7)

The Mean Distance from the Neurons to the closest cluster Center measures the av-
erage Euclidean distance between the neurons mj and its closest cluster center μ(mj):

MDNC =
1
M

M∑

j=1

‖mj − μ(mj)‖2 (8)
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Finally, the Numbers of clusters Center in the Voronoi polygon is given by

NC =
∑

mj∈M
|τj − 1| (9)

where τj correspond to the number of clusters center that are inside the Voronoi polygon
Vj . A desirable feature is that each neuron model no more and no less than one cluster
center.

5.2 Experiment #1: Computer Generated Data

The synthetic experiments were constructed by generating a square grid of twenty five
cluster drawn from two-dimensional Gaussian distributions Xl ∼ N (μl, Σl), l =
1, ..., L = 25, where μl is the mean vector of the cluster l and Σl = Σ is its co-
variance matrix. A total of 2500 samples for the training and the same quantity for the
test were generated, where each cluster has an expected size of 100 samples.

Fig. 1. Topology adaptation of the NG. Comparative results of the NG model to the synthetic
data with 15% of outliers for the Least Square (left), Huber (middle) and Biweight (right) esti-
mators.

The observational process is obtained by adding additive outliers: Zl = Xl + Vl Ul,
where Vl is zero-one process with P (Vl 	= 0) = ε, 0 < ε � 1 and Ul has distribution
N (0, ΣU ) with |ΣU | 
 |Σ|. The generating process was affected with ε = 5%, 10%,
15% and 20% of outliers with ΣU = 27Σ.

Figure 1 shows the adaptation of the NG to the data with 15% of outliers for the three
estimators: Least Square (left), Huber (middle) and Biweight (right). The LS estimator
was badly affected by locating five prototypes far from the square grid. Nevertheless,
the robust estimators (Huber and Biweight) were much less affected and their respective
neurons were located inside the grid of 25 clusters, with each neuron close to the some
of the clusters center. The robust estimators diminished the influence of the outlying
observations and they had a better topology preservation than the LS-estimator.

Table 2 shows the summary results of the performance evaluation of the NG with
the three estimators.The LS estimator obtained the lowestMSQE evaluated in the data
with outlier for all the experiments (columns E1 and E2), this result was expected
because the LS-estimator minimizes the cost function (3) while the robust estimators
minimize the cost function (3). However, if we compute the MSQE in the data with-
out outliers (columnsE3 and E4), the robust estimators outperforms the LS-estimator.
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The CA1 and CA2 show the classification accuracy of the training and test set re-
spectively, as was expected, the robust estimators obtained better performance than the
LS-estimator when the percentage of outliers are increased. The columnNC computed
with equation (9) show how the robust estimators remains stable with an increasing
percentage of outliers, while the LS-estimator got worse. Finally, the last column show
that the robust estimators outperforms the LS-estimator, meaning that the former locate
the prototypes closer to the clusters center. Note that the last two columns measures the
quality of the topology preservation of the square grid.

Table 2. Summary results of the performance evaluation of the NG model with 25 prototypes with
the LS, H and B estimators used in the training process. The second column is the percentage of
outliers in the data. From the columns E1 toE4 are the value of Mean Square Quantization Error
(7), column E1 and E2 correspond to the error evaluation of training and test set respectively by
considering the outliers, while columns E3 and E4 are the error evaluation of training and test
data sets without considering the outliers. The columnsAC1 andAC2 are the value of the Classi-
fication Accuracy (6) of the training and test sets respectively by considering the outliers. Finally
the column NC and MDNC are the values obtained with equations (9) and (8) respectively.

Estimators % Outliers E1 E2 E3 E4 CA1(%) CA2(%) NC MDNC

LS 5 0.0039 0.0045 0.0009 0.0009 88.7 88.0 3.8 0.0171
H 5 0.0063 0.0066 0.0012 0.0013 86.9 85.5 4.8 0.0004
B 5 0.0064 0.0067 0.0016 0.0016 82.5 81.6 6.8 0.0005
LS 10 0.0054 0.0065 0.0013 0.0013 78.4 77.1 7.6 0.0263
H 10 0.0102 0.0112 0.0011 0.0012 82.4 81.0 5.2 0.0004
B 10 0.0103 0.0113 0.0015 0.0016 80.4 79.1 6.0 0.0005
LS 15 0.0056 0.0069 0.0016 0.0017 69.2 66.4 11.4 0.0388
H 15 0.0134 0.0141 0.0010 0.0011 76.4 75.9 6.0 0.0003
B 15 0.0134 0.0141 0.0013 0.0013 76.7 76.0 5.2 0.0004
LS 20 0.0065 0.0072 0.0019 0.0019 62.5 59.6 13.6 0.0432
H 20 0.0171 0.0170 0.0010 0.0010 74.7 73.9 5.0 0.0003
B 20 0.0175 0.0174 0.0013 0.0014 72.5 71.9 6.2 0.0002

5.3 Experiment #2: Real Data Sets

In the second experiment we test the algorithm with four real datasets obtained from
the UCI Machine Learning repository [3]. The Wine recognition, Glass Identification,
Cancer and Pima Indians Diabetes data sets were selected.

Figure 2 displays the Mean Square Quantization Error of the M-estimators computed
for all the data sets. Similarly to the previous section, the LS-estimator obtained better
performance in this metric with respect to the robust estimators. Nevertheless, we can
not assure the topology preservation of the LS-estimator as the robust estimators, if the
real data are contaminated.

Figure 3 shows the Classification Accuracy of the NG modelling all the real data
sets. In the Cancer data set (upper-left) the best performance were obtained with a low
number of neurons, while in the other experiments better performance were obtained
with increasing number of prototypes. When the number of the prototypes are less than
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Fig. 2. MSQE performance evaluation for the Real data sets. Neural Gas modelling the Cancer
(Upper-Left), Pima Indians Diabetes (Upper-Right), Glass Identification (Bottom-Right) and the
Wine Recognition (Bottom-Left) data sets respectively.

Fig. 3. Classification Accuray for the Real data sets. Neural Gas modelling the Cancer (Upper-
Left), Pima Indians Diabetes (Upper-Right), Glass Identification (Bottom-Right) and the Wine
Recognition (Bottom-Left) data sets respectively.

the number of classes the performance of the NG model for all the estimator was very
poor (the Cancer, the Pima Indians Diabetes, the Glass Identification and the Wine
Recognition data sets were composed of 2, 2, 8, 3 classes respectively). Only in the
Wine Recognition data set one of the estimators (biweight) outperforms the others,
while in the other cases we can not see the superiority of any of the estimators.
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6 Concluding Remarks

In this paper we analyzed the robustness properties of the learning process of the Neural
Gas model based on the M-estimator robust theory. We have demonstrated that the
classical Neural Gas learning algorithm lacks of robustness and with small amount of
contamination the codebooks are biased towards the outliers. We have introduced robust
M-estimator to diminish the influence of outlying observations and making the learning
process more stable.

In the synthetic experiment the robust estimators outperforms the LS-estimator in
the topology preservation. However, we empirically showed that the MSQE was not a
good performance metric of the adaptation quality under contaminated data.

In the real data experiments, all the estimators showed similar performance in the
classification accuracy. But we were not able to assure the topology preservation for the
LS-estimator as in the robust estimator case. It is of great importance find algorithms
to determine the learning parameters and the ordering properties. Finally, due to the
similar behavior in real data sets of all algorithms is better to use a robust function
learning to explore the data because it works with or without presence of outliers.

Further studies are needed to extend the results to other class of estimators (L, M and
R estimators) as well as other self organizing models. Furthermore, index that measures
the quality of topology preservation are needed instead of the MSQE.
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