
J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 511 – 518, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Search Method of Time Sensitive Frequent Itemsets
in Data Streams

Tae-Su Park1, Ju-Hong Lee2, Sang-Ho Park1, Bumghi Choi2 , and Deok-Hwan Kim3

1,2 Dept. of Computer Science & Information Engineering, Inha University, Incheon, Korea
{taesu, parksangho}@datamining.inha.ac.kr,

{juhong, neural}@inha.ac.kr
3 Dept. of Electronics Engineering, Inha University

deokhwan@inha.ac.kr

Abstract. Recently, due to technical improvements of storage devices and net-
works, the amount of data increases rapidly. In addition, it is required to find
the knowledge embedded in a data stream as fast as possible. Data stream is in-
fluenced by time. Therefore, the itemsets which were not the frequent itemsets
can become frequent itemsets. The volume of data stream is so large that it can
hardly be stored in finite memory space. Current researches do not offer appro-
priate method to find frequent itemsets in which flow of time is reflected but
provide only frequent items using total aggregation values. In this paper we
propose a novel algorithm for finding the relative frequent itemsets according to
the time in a data stream. We also propose a method to save frequent items and
sub-frequent items in order to take limited memory into account and a method
to update time variant frequent items. By applying the proposed technique, we
can improve the accuracy of searching for a change in the frequent itemsets ac-
cording to the time in a data stream. Moreover, it will be able to use the limited
memory space efficiently and store all frequent itemsets.

Keywords: Data Stream, Frequent Itemsets, Data Mining.

1 Introduction

Recently, due to technical improvements of storage devices and network develop-
ments, data continues to increase in a very short time. Huge amount of data, for ex-
ample, have been generated in many fields of applications, such as network invasion
detection, sensor network and e-commerce. Many efforts have been made to extract
valuable information from such application environments. One of the key realms of
research is to extract information from data streams through a data mining method.

A data stream is data that continues to be inputted at high speed. In data streams,
data continues to increase at high speed. So, there are two requirements for dealing
with data streams by a data mining method.

First, since it is impossible to store large increments of data in a limited space, a
new method is required to efficiently store data without losing information by using
memory space flexibly.

Second, it is imperative to generate mining results at request because data streams
generate large amounts of data in a short time period and the result of mining must be

512 T.-S. Park et al.

output immediately. This implies that the mining result must be generated by one
reading of each transaction of data streams.[3]

One of the most fundamental challenges of data streams is to find frequent itemsets
[4]. The conventional data mining method takes a lot of time and memory because it
initially reads off from static transactions to compose candidates for frequent itemsets,
and then searches for items that have values higher than the defined threshold.

In data streams, items that weren't regarded as frequent itemsets can be converted
over time. Thus, it is necessary to update actively and store the frequency of each
item. In addition, all unit items cannot be stored because of continuous inputs of too
much data in data streams, which makes it improper to apply the conventional data
mining method. Many researchers come up with new algorithms that can search for
frequent itemsets in data streams [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Frequent itemset searching methods in data streams, however, can't guarantee the
reliability of the search because they merely aggregate and search for frequent item-
sets or find them within a time, or a range, after randomly setting a certain size of
sliding window. In addition, they again aggregate the total frequent itemsets as time
goes by, which results in failure to demonstrate efficiently current changes in frequent
itemsets and overlooks frequent itemsets converted over time.

To solve these problems, this paper proposes a new mining method which searches
for frequent itemsets more efficiently, taking into account time in data streams.

This paper has 5 sections including the introduction. Section 2 describes related
works and section 3 proposes a method to search for frequent itemsets. Performance
of the proposed method is evaluated in section 4 through various experiments. Sec-
tion 5 gives the conclusion and suggestions for improvement.

2 Relate Works

Conventional data mining methods search frequent itemsets by searching max item-
sets with a support higher than the predefined minimum support, which were derived
by simple searching transactions of the database. Most of algorithms on frequent
itemsets are based on the principle of Apriori [1]. This principle states that all subset
of frequent itemsets must also be frequent itemsets. When a frequent itemset has a full
rank of n, the Apriori algorithm searches up to n+1 to generate candidate sets and
then begins to search a frequent itemset. Therefore, the Apriori algorithm requires a
big memory and a lot of time due to repetitive database searches.

On the other hand, the FP-growth using a divide-and-conquer method does not
generate candidate sets [8].

FP-growth is very efficient in mining either long or short frequent itemsets and has
a feature of expandability. It also proves to be much faster than the Apriori algorithm.
But, both methods must search data sets more than once and must re-search the whole
database every time whenever a new transaction takes place. Moreover, when a data
set continues to increase at a fast pace, performance drops due to a limited memory.

Data is being generated very quickly due to advanced storage devices and network
development. These data are called data stream. Many researchers are studying fre-
quent itemset searching methods in data streams [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

 Search Method of Time Sensitive Frequent Itemsets in Data Streams 513

The Count Sketch algorithm focuses on frequency of unit items in data streams [4],
and the Lossy Counting algorithm searches for frequent itemsets in data streams only
when a minimum support and a maximum allowable error are given [9]. These algo-
rithms only focus on finding the frequent itemsets without taking account of time.

The Moment algorithm, which can search for not only frequent itemsets in a slid-
ing window using limited available memory, but also items close to frequent itemsets.
This algorithm uses a tree structure similar to a prefix tree known as CET (Closed
Enumeration Tree) [6]. CET stores maximally frequent itemsets, frequent itemsets
and approximate frequent itemsets. Thus, it can recognize the changes in frequent
itemsets over time and search for frequent itemsets managing the memory efficiently.

The FP-stream algorithm is a revision of the FP-growth algorithm to better fit for
data streams [7]. This algorithm classifies data sets into a frequent itemset, a sub fre-
quent itemset and a non-frequent itemset by using a minimum support and maximum
allowable errors. It uses a Pattern tree and a tilted time window. Also, it accumulates
frequent itemsets up to the current point by storing them in a pattern tree and utilizing
a fixed window, a tilted time window and recognizes the latest changes in frequent
itemsets efficiently. However, unfixed frequent itemsets are difficult to search for
since it uses only fixed time slots.

3 Frequent Itemset Search in Data Streams

3.1 Searching for Relatively Frequent Itemsets

In data streams, data continues to accumulate at a fast rate. This is why the data can-
not be stored in a conventional way. Also, a data stream is affected by time, changing
the frequent itemset over time. Therefore Non-frequent itemsets can't be discarded or
overlooked. To resolve such problems effectively, we classifies data into 3 groups,
frequent itemsets, sub frequent itemsets, and non-frequent itemsets, by using a prede-
termined minimum support and maximum support error, as in the FP-stream[7] algo-
rithm. The FP-stream algorithm uses fixed time window, but our method uses unfixed
time window due to find relative frequent itemset. If the frequency is greater than the
minimum support value, it is considered a frequent itemset. When the frequency is
below the minimum support value but has a greater error than the predetermined
maximum error, it is classified as a sub frequent itemset. Data is disregarded when it
has less value than the maximum support error.

The conventional methods search frequent itemsets only by comparing the aggre-
gate values between frequent itemsets and sub frequent itemsets. Hence, time-
sensitive and relatively frequent itemsets cannot be accounted for. This implies a
necessity of a method to take account of items with a relative frequency of appearance
higher than the currently frequent itemsets, even though a value aggregated up to now
is smaller than the currently frequent itemsets. Therefore, we define the relatively
frequent itemsets as follows:

A relatively frequent itemset is defined as a set of items having a frequency smaller
than total frequency of the currently frequent itemsets but greater than current fre-
quency (not total frequency) of the currently frequent itemset, f refers to the currently
frequent itemset.

514 T.-S. Park et al.

Table 1. Elements of relative frequent itemset

Symbol Mean

N Total number of transactions

m Number of consecutive transactions
f A frequent itemset

th Time that occurs t’th transactions

tT t’th transaction

tR Relative Frequent itemset at time of t’th transactions

)(xAi Appearance function of x in i’th transactions

)(xF Frequency of item x

)(, xC tm Interval of appearance of item x with fixed m and time t’th trans-
actions

)(, xE tm Relative frequency of item x with fixed m and time t’th
transacions

)}()(),()(|{ ,, fExExFfFxR tmtmt >>= (1)

A relative frequency can be regarded as the number of consecutive transactions (m)
divided by the sum of differences among intervals of appearances. This is the starting
point of finding the relatively frequent itemsets.

)(
)(

,
, xC

m
xE

tm
tm = , 1,)(+−−= mtttm hhxC (2)

Also, a frequency is an aggregate value of appearance of a specific item in con-
tinuous transactions.

∑
=

=
N

i
i xAxF

1

)()(,
otherwise

Tx
xA i

i

∈
⎜⎜
⎝

⎛
=

0

1
)((3)

Also, the difference of each interval of appearance is meaningful in such that it can
determine the time when relatively frequent itemsets exist. It represents a time differ-

ence between its current appearance time and the previous appearance time. The ty

implies the point of time when a transaction tT containing item x happens.

We examine relative frequent itemsets based upon the abovementioned materials.
Figure 1 depicts the concept of relatively frequent itemsets. Where each x, y, z is a
frequent itemset with a value greater than the minimum support or a sub frequent
itemset with a value smaller than the minimum support but greater than the maximal

support error, and each dot on the arrow is the frequency. tT stands for transactions

up to now. Here, window size is user-defined because window size effects the result,

 Search Method of Time Sensitive Frequent Itemsets in Data Streams 515

also, the window not overlapped previous that. In the first row x, we see that the fre-
quency is 28, the highest among the three, implying a frequent itemset. The second
and third rows are sub frequent itemsets. By examining Figure 1, we see that the first
item shows high frequency in the early period but is dispersed gradually as time goes
by. The second row shows a sharp increase in frequency in the middle of the row.
Seemingly, it makes more sense to designate the second item as the frequent itemset
in this specific time period since it appears more frequently than the past, and even
more than the first item which is the currently frequent itemset. Thus, the second item
becomes the relatively frequent itemset compared to the first item in the middle part
of the time period.

Fig. 1. Concept of relative frequent itemset

The important point here is to find the time when it begins to become a relatively
frequent itemset. Therefore, this study suggests a standard for relatively frequent
itemsets as follows:

1. A relative frequency must be greater than the relative frequency of frequent
itemsets.

)()(,, xEfE tmtm < (4)

2. The appearance time of a relatively frequent itemset is the interval from the
time(a) to the time(b). a is the latest time at which the currently relative frequency is
larger than the just previous relative frequency. b is the latest time at which the cur-
rently relative frequency is less than zero.

baxExExExE bmbmamam >>≤ −− ,)()(,)()(,1,,1, (5)

That is, it is the time period when a relatively frequency of frequent itemsets be-
comes higher and the interval between each appearance has becomes very short, com-
pared to the frequent itemset. This study takes the relative frequencies only to tenths
for generalizing the numbers and easing the calculation process.

3.2 Storing Method Using the FP-Tree Algorithm

In this section, we suggest an efficient storing method using the FP-Tree algorithm of
a prefix tree structure that can maintain and manage all frequent itemsets and rela-
tively frequent itemsets within a limited memory.

516 T.-S. Park et al.

As stated earlier, a data stream is assumed to be an infinite set of data. It follows
that all data cannot be stored. Hence, the FP-Tree stores only three kinds of key rele-
vant information, items, frequency and TID, to maintain and manage frequent
itemsets and relative frequent itemsets efficiently. Here, items mean either frequent
itemsets or relatively frequent items, and frequency refers to the total number of ap-
pearance of such items. TID refers to the current transaction id, which is used to
measure the starting point of a relatively frequent itemset.

The FP-Tree algorithm has four main steps, each of which is reiterated when a new
transaction is added.

The first step is a phase where data stream transactions are searched to update the

frequency of each item. The total dataset NS is incremented by 1 when a new trans-

action occurs. The frequency and TID values are updated when items appearing in
such a new transaction happen to exist in a node of FP-Tree.

The second step is a phase where a sub frequent itemset is added. When there is no
node in the FP-Tree corresponding to the items that appear in the new transaction,
items with a value smaller than the minimum support but greater than the maximum
support error are added to the FP-Tree node as sub frequent itemsets. Those with
errors smaller than the maximum allowable error are discarded in that it has little
chance to become frequent itemsets. It results in less performing time because it uses
less memory and reduces a process to insert new nodes to the FP-Tree.

The third step is searching for the currently frequent itemset. Upon users' request,
this step outputs those items’ information, items, frequency and TID, with the greatest
total frequency up to now and a support more than the minimum support value.

The fourth step is searching for the relatively frequent itemset. When the relative
frequency of a frequent itemset becomes bigger, that is, when the intervals become
much shorter, searching items that appear relatively more frequently than the current
frequent itemset starts at this step.

This method guarantees reliability and accuracy by searching not only the currently
frequent itemset but also the relatively frequent itemset which can be easily over-
looked, moreover, it can efficiently utilize the limited memory because it holds only
three kinds of information, items, frequency and TID.

4 Test and Evaluation

Our algorithm was written in C and compiled using gcc. The stream data was gener-
ated by the IBM test data generator [1]. Generated datasets are T10.I4.D1000K and
T15.I6.1000K, where the numbers denotes the average transaction size (T), the aver-
age large itemset size (I) and the number of transactions respectively.

The experiment evaluated the accuracy and memory space of the proposed method
in comparison with Lossy Counting algorithm [9]. Jeffrey Xu Yu’s method is using
less memory than Lossy Counting algorithm[10]. James Cheng’s method runs faster
than Lossy Counting algorithm[5]. Figure 2 shows the results of this experiment.

The Lossy counting algorithm using a minimum support finds frequent itemsets
through the aggregation. Therefore if the number of transactions is small, then the
accuracy of the Lossy counting algorithm is low. On the other hand, the proposed
method finds frequent itemsets with relative frequent itemsets as time goes by.

 Search Method of Time Sensitive Frequent Itemsets in Data Streams 517

Although the number of transactions is small, the proposed method achieves better
accuracy than the Lossy counting algorithm. As the number of transactions increases,
the accuracy of both methods is getting higher because transactions include more
frequent itemsets.

(a) (b)

Fig. 2. The result of experiment according to the accuracy and memory space; a) Accuracy
according to the number of transactions, b) Memory size according to the number of transac-
tions

Fig. 2 (b) shows the memory size according to the number of transactions. Above
all, we must find the optimal minimum support value. Because too low minimum
support value leads to a wide range of permission for frequent itemsets and too high
minimum support value leads to a narrow range of permission for those. Here, mini-
mum support value sets 0.3 according to our experiments. In the proposed method,
the FP-Tree stores only three kinds of key relevant information, items, frequency and
TID, to maintain and manage frequent itemsets and relative frequent itemsets effi-
ciently. Therefore, it is clear that the proposed method uses less memory space than
the Lossy counting algorithm.

As shown above, we can see that the proposed method find the frequent itemsets
more accurately and our method is able to compute all frequent itemsets using less
memory than the Lossy Counting algorithm.

5 Conclusion

One of the most fundamental problems in data streams is how to search frequent item-
sets generated from the stream. The frequent itemsets change because the stream itself
is affected by time. Therefore Non-frequent itemsets can not be discarded. Data
streams may be defined as infinite sets of data, making it impossible to store every
item in the stream. To solve these problems, we introduced relatively frequent items
and the FP-Tree algorithm in this paper.

We classify data into 3 groups, frequent itemsets, sub frequent itemsets, and non-
frequent itemsets, by using a predetermined minimum support and maximum support
error. The suggested algorithm computes the total number of frequencies and relative

518 T.-S. Park et al.

frequencies derived from intervals between frequencies using unfixed time window. It
searches the frequent itemset and, by comparing relative frequencies of sub frequent
itemsets, the relatively frequent itemset that can be easily overlooked. The FP-Tree
tries to efficiently manage frequent itemsets and sub frequent itemsets by storing only
3 kinds of information, items, frequency and TID. The FP-Tree has four main steps,
updating the frequency of each item, adding a sub frequent itemset, searching for the
currently frequent itemset, searching for the relative frequent itemset. All these enable
us to search time-sensitive frequent itemsets, to increase reliability of the searches and
to utilize limited memory efficiently.

Acknowledgement. This work was supported by INHA university Research Grant.

References

1. R. Agrawal and R. Srikant.: Fast algorithms for mining association rules. In Proc. of the
20th Intl. Conf. on Very Large Databases (1994)

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.: Models and issues in data
stream systems. In Proc. of SIGMOD/PODS, Madison, Wisconsin, USA (2002) 1–16

3. J. Chang. and W. Lee.: Finding recent frequent itemsets adaptively over online data
Streams. In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery & Data
Mining, Washington, DC (2003) 226–235

4. M. Charikar, K. Chen, and M. Farach-Colton.: Finding frequent items in data streams. In
Procedings of the International Colloquium on Automata, Languages and Programming
(2002) 693–703

5. James Cheng, Yiping Ke, and Wilfred Ng, “Maintaining Frequent Itemsets over High-
Speed Data Streams”, PAKDD 2006

6. Y. Chi, H. Wang, P. Yu, and R. Muntz.: MOMENT: Maintaining closed frequent itemsets
over a stream sliding window. In Proc. of 4th IEEE Intl. Conf. on Data Mining, Brighton,
UK (2004) 59–66

7. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu.: Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. in H. Kargupta, A. Joshi, K. Sivakumar, and Y.
Yesha (eds.), Next Generation Data Mining, AAAI/MIT (2003)

8. J. Han, J. Pei, and Y. Yin.: Mining frequent patterns without candidate generation. In Pro-
ceedings of the SIGMOD Conference, Dallas, Texas, USA: ACM Press (2000) 1–12

9. G. Manku and R. Motwani.: Approximate frequency counts over data streams. In Proceed-
ings of 28th International Conference on Very Large Data Bases (2002) 346–357

10. Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou, “False Positive or False Nega-
tive : Mining Frequent Itemsets from High Speed Transactional Data Streams”, VLDB
2004, 204-215

11. D. Zhang, D. Gunopulos, V. J. Tsotras and B. Seeger.: Temporal Aggregation over Data
Streams using Multiple Granlarities. Proc. of 8th International Conference on Extending
Database Technology (EDBT), Prague, Czech Republic (2002)

	Introduction
	Relate Works
	Frequent Itemset Search in Data Streams
	Searching for Relatively Frequent Itemsets
	Storing Method Using the FP-Tree Algorithm

	Test and Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

