
Corner Detection by Searching Two Class
Pattern Substrings

Hermilo Sánchez-Cruz

Centro de Ciencias Básicas. Universidad Autónoma de Aguascalientes
Av. Universidad 940, Col. Universidad, CP. 20100

Aguascalientes, Aguascalientes. México. Fax: (52 449) 9 10 84 01
hsanchez@correo.uaa.mx

Abstract. A new method for corner detection is proposed. Previous ap-
proaches for detecting corners rely on computing angle functions to find
changes of curvature. Generally, those methods employ eight different
symbols to represent contour shapes. The method of this work is based
on using three symbols of a chain code to find pattern substrings, detect-
ing corners in the contour shape. The method relies on searching for the
relationship among neighbor points, finding two basic pattern contour
chain elements, requiring few computing power to obtain shape corners.

Keywords: Corner; Contour; Chain element; Freeman chain code;
Three-symbol chain code; Pattern substrings.

1 Introduction

In literature, usually the aim in obtaining corner points by computing angles of
curvature on the contours of shapes is studied. Freeman and Davis [1] proposed
to find corners by computing incremental curvature to represent contour shapes
by an eight-direction chain code. Since then, many authors have suggested to
use this code when representing contour shapes. Part of the algorithm presented
by Teh and Chin [2] consists on computing the curvature of contour points and
detecting corners by a process of nonmaxima suppression. Liu and Srinath [3]
have compared a number of corner detectors due to Medioni and Yasumoto [4],
Beus and Tiu [5], Rosenfeld and Johnston [6], Rosenfeld and Weska [7] and
Cheng and Hsu [8]. All those authors represented samples of shapes through a
sequence of eight direction changes from 0-7, known as the Freeman Chain Code
[9]. We propose here to use a method of only three relative direction changes
(Fig. 1a). Techniques due to Freeman chain codes in finding corner detection are
based on eight different directions (see Fig. 1b).

An advantage in using three symbols is its low storage power, as can be seen
by the recent work duo to Sánchez-Cruz & Rodŕıguez-Dagnino [10]. They found
that coding with three symbols is sufficient to represent binary shapes saving
storage efficiently. However, recently Yong Kui Liu & Boruk Zalik[11], found
efficient storage properties in using the eight directions of Freeman chain code.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 354–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Corner Detection by Searching Two Class Pattern Substrings 355

Fig. 1. Two chain codes: (a) Three-symbol, (b) Freeman chain code

However, the number of symbols of Fig. 1a. constitute an advantage in finding
a small set of pattern substrings.

For each orthogonal change direction code, chain segments are divided in three
parts (given in Fig. 1a.): a reference segment (in Fig. 1a. appears as horizontal
segment in each code), a basis segment (perpendicular to reference segment) and
a segment indicating a direction change with regard to reference segment.

The meaning of the three symbols (see Ref[12] for 3D case), given by the set
C = {0,1,2}, is as follows: the element 0 represents the direction change which
means to go straight through the contiguous straight line segments following
the direction of the last segment; the 1 indicates a direction change upward
with regard to the reference segment; and 2 means to “go back” with regard to
the direction of the reference segment. Under certain constrictions, when this
particular symbol appears in a contour shape, could easily indicate an existing
corner. In Section 2 definitions concerning to this article are presented, seeking
the problem as a pattern substring search to obtain corners. In Section 3 some
rules to detect corner points are proposed; in Section 4 experimental proving
of postulated rules are applied on some binary shapes; and in Section 5 some
conclusions are given.

2 Definitions Related to Pattern Chain Substrings

Our proposal method considers to find a specific set of pattern substrings of
length l, trying to find all those substrings in a chain code that mach with those
patterns. Let us consider, for example l = 9 as the length of the substring. Which
substrings are all composed of 9 symbols and which of them are considered corner
chains? In fact, there are substrings composed of 9 symbols, of course, not all
are considered corner chains due to its low curvature or because the region they
are associated in the contour shape is not “well behaved”, as we explain at once.

Let P denote the complete chain code associated to the shape contour, given
by the string of symbols pi of eq(1).

P = p1p2 · · · pn, (1)

and P the contour discrete perimeter, given by the number of symbols of the
chain code.

356 H. Sánchez-Cruz

Consider a substring template of l symbols: C ∈ P , given by eq(2).

C = a1a2 · · · al, l � P, (2)

as a contour chain element, or simply: chain element, this is, a small piece of
contour from the whole shape contour.

Let us consider m = l/2 the middle point of a substring of size l, so that am,
the pivot, be the center of the substring. It is possible to associate a pair of line
segments to any chain element. They can be drown up from to the opposite end
points, producing an angle ϕ. We define a well behaved chain element when an
angle has been subtended by a pair of associated line segments such that the
chain does not form loops. In Figure 2 are presented some examples of chain
elements. In Figure 2(a), (b) and (d) angles defined by midpoints denoted by a
small circle, are well behaved, but that presented by Figure 2(c) is not.

Fig. 2. It is associated a pair of line segments to each of the substring from their middle
points

Once well behaved condition is accepted, the angle ϕ between the two well
behaved line segments can be computed, and a threshold is fixed to propose a
chain corner.

We define a neighborhood of radii r, when considering a piece of the complete
string; this region is composed of a small number of symbols in comparing with
the whole contour chain code, r symbols on one hand of a particular pivot
symbol, and r symbols on the other side of the pivot symbol. An example of
neighborhood of radii 5 is: 00000(1+2)10011. This is, a chain element having
00000 in its left first part, 10011 in the right second part, and 1 or 2 (1+2, to
abreviate) as a pivot symbol.

To save calculation of corner-angles or curvature changes directly, instead we
give a family of substrings and whose angle subtended by well behaved line
segments represents a high curvature. Well behaved substrings should not be
considered a corner chain when their corner chains associated angles are so much
obtuse. Quantitatively, how acute or how obtuse has to be an associated angle
to consider a chain element as a corner?

To find pattern substrings, our experimets make us to consider an angle ϕ
associated to a chain corner if ϕ = [0◦, ±126◦] (or ϕ = [0, π ± π

3] in radians).

Corner Detection by Searching Two Class Pattern Substrings 357

Fig. 3. A well behaved substring and its associated angle

For example, in Fig. 3 a chain element 110110011 is shown, covering the
chain from bottom to up, with an associated angle ϕ = 165.35, the chain is not
considered a corner.

Another definition we need is a well behaved contour shape, this is, a contour
shape having been smoothed in such a manner that there is no noise or local
defects.

3 Rules for Detecting Chain Corners

Part of the study made to find a simple pattern of substrings that represent
corners, is to analyse the whole universe of a small vicinity of shape contours, the
chain elements. At the begining, to search these patterns, we did our experiments
within a vicinity of nine segments in chain elements, giving good results in finding
chain corners.

Fig. 4. Eight samples of substrings composed of eleven segments

358 H. Sánchez-Cruz

Fig. 5. Part (1 600) of the 6 432 chain elements in the range [0o, ±126o]

We are focused on finding a group of pattern substrings or pattern chain el-
ements considered as chain corners. Eleven chain segments are considered for
our study, nine of them are labeled with symbols, representing ortogonal di-
rection changes. The first two are called reference segment and basis segment,
respectively. There are a huge number of combinations given by nine symbols
(11 segments) in a grid of 10 × 10. Fig. 4 shows only eight samples.

Even more, fixing the reference segment of the chain, there are 39 combinations
duo to the other nine chain directions.

There are many possible combinations of chain elements. From this set, we
are interested on finding chain elements that have no loops. Looking for these
chain elements there are 11 025.

Computing the associated angle to each of these elements, there are 6 432
chain elementes in the range of [0◦, ±126◦]. See Fig. 5.

By analizing the different chain sets mentioned, we have observed that pat-
tern substrings representing corners, or even, line elements can be obtained.
Parameters we have to take into account are the next:

l: states for the size of substring.
q: represents “many” times a symbol is repeated in a substring. This quantity

depends on resolution of binary object. By many we define that the number of
symbols is greater than the quantity: l/4, so q ∈ [l/4, l].

A way to obtain a complete set of templates considered chains corners, is to
search all the substrings arrays composed of l symbols from the set C = {0,1,2},
calculate the angle associated to each substring and apply the threshold to see

Corner Detection by Searching Two Class Pattern Substrings 359

Fig. 6. Examples of chain elements, covering the contour on clockwise sense, of kind
S2. The grid is part of the inner shape.

if it is a chain corner. But we propose a small enough set of template substrings
to find the evident chain corners from an arbitrary set of 2D shapes.

As we have computed, from the 6 432 chain elements, there are 4 334 (more
than two third parts of the set) chain elements with symbol ‘2’ near the pivot,
with associated angles in the range 0◦ ± 126◦, whereas only 614 (sligthly more
than a third part) from the range ±18◦, that can be considered as a rect lines
set (1 547 chain elements). So, to simplify the pattern of chain elements that
correspond to chain corners, lets consider only the case where the contour of the
image is also a well behaved contour, and consider only those chains that better
fit to a pair of associated segments. In this case we are talking about pattern
strings of discrete chain corners, postulated by next regular expressions:

S1 = (0 + 1 + 2)l/2(2)(0 + 1 + 2)l/2

S2 = (0q + 1)l/2(1)(0 + 1q)l/2 + (0 + 1q)l/2(1)(0q + 1)l/2+

(0q + 1)l/2(1)(0q + 1)l/2 (3)

where q represents many symbols. For example, pattern S1 means the pivot is a
‘2’ symbol, independently of the symbols on both sides; whereas S2 means that
substring has many zeros or ones behind the middle symbol and many zeros or
ones in the second part of the substring, or many zeros on both sides of a one
pivot. Our proposed method relies on looking for these pattern substrings on
any contour shape.

We consider shapes represented by resolution cells, each having a value 0 or
1. Contour shape is covered in the clockwise sense. For the implementation of
an algorithm to encode this shape we have to visit the ones that represent the
contour shape, i.e., the ones of the boundary. Using the three code symbols we
follow the contour of the shape counter clockwise, and we give one of the three
relative chain codes according to each orthogonal change direction. A manner
to fix every orthogonal change is by defining a 3 × 3 window, then we choose
a starting one as the core of the window, and we analyze its neighborhood by
finding directed vectors on the boundary of the shape. Hence, we calculate the
changes and produce the code. This procedure continues until visiting all ones of
the boundary. The object is confined to a minimum rectangle that is visited line
by line, from left to right and from top to bottom. The first cell resolution, of

360 H. Sánchez-Cruz

the object to be visited, is that which appears at the leftmost and highest part
of the occupied region. Fig. 6 shows examples of representing part of contour
shape by giving the three symbols of the orthogonal directions given in Figure
1a. When we start to go over the contour the first two discrete segments do not
represent a direction change with regard to reference segment. When one ends
to go over the contour, it is possible to give chain elements at starting point and
contiguous direction change because of last reference segments visited. Given
this representation, we can reconstruct the original image by interpreting the
code of every symbol in terms of the direction changes that can follow. Finally,
the pattern substrings, S1 and S2 are parsing the resulting chain string of the
complete contour.

4 Proving the Postulated Rules

Consider the set of three shapes S = {Plant, Hammer, Circles, Tigger }.
Consider the Plant shape object and its corresponding chain code (Fig. 7), 34

chain corners were found in its contour shape. Some of them are so closed, in
such a manner that their corresponding pivots are in the neighborhood of each
other, in this case we could define only one corner. In Table 1 is listed each of the
chain elements and the corresponding class pattern given by eq(3) of the Plant
shape contour.

(a)
12110000001101101111011011001100110110011000000012101010111111111110111111110111111011110111111011111
10102000000000000000000211101101101101101111110111111011111111011011202100110011001111001100110110110
11011011020001100000021000110110011001101111111111111110110101011011111100110110120001100000000000000
00000000002100001100000020000210001111000111011010101101101011111000110011011000110110110001101100111
10010110111100000000000000000000000021001100000000000110000000000000000000000000000211002101011111101
1000011000110110011001101100101111011001101100110110001
11100011000101001100110111111011010111001011111011110111002000000000000000000000000000110011000011110
01101101200001100011000110011001100110111101111011111101111101011011100002002100011000000000000000000
00000002100000000102011010110101011110111111001111000011001100000000000020211011110111111110101111011
11011111120011000000000000001100000110000000

(b)

Fig. 7. Plant shape and its corresponding 3-symbol chain code: (a) the shape; (b) its
chain code

Corner Detection by Searching Two Class Pattern Substrings 361

Table 1. Chain elements encountered from the Fig. 7 that belong to one of the two
classes of chain patterns postulated. Corners 6,30 and 33 are split by two closed chain
corners.

Num Chain Class Num Chain Class
corner element pattern corner element pattern

1 00001211000 S1 19 00000210011 S1

2 00000110110 S2 20 00000211002 S1

3 00001210101 S1 21 21100210101 S1

4 11010200000 S1 22 00110110010 S2

5 00000211101 S1 23 00110110001 S2

6a 11011202100 S1 24 10001111000 S2

6b 01120210011 S1 25 11000101001 S2

7 10110200011 S1 26 01001100110 S2

8 00000210001 S1 27 11100200000 S1

9 10001101100 S2 28 01101200001 S1

10 01101200011 S1 29 10001100110 S2

11 00000210000 S1 30a 10000200210 S1

12 00000200002 S1 30b 00200210001 S1

13 00000200002 S1 31 00000210000 S1

14 10001111000 S2 32 00010201101 S2

15 00011110001 S2 33a 00000202110 S1

16 10001100110 S2 33b 00020211011 S1

17 00110110001 S2 34 11111200110 S1

18 10001101100 S2

Fig. 8. Sample shapes, (a)Hammer, (b)Circles and (b)Tigger shapes and their corre-
sponding corner points

362 H. Sánchez-Cruz

Figure 8 shows the results of applying the method proposed to search chain
corners on the sample objects.

5 Conclusions

With this method we have found shape corners including where shape is appar-
ently circular, like happening with figure constructed by intersecting circles. We
used three symbols to represent binary shapes, implying to save time and mem-
ory storage to manage this kind of objects. We found patter substrings to obtain
most important shape corners in contour shapes preventing to compute angles
and curvatures. The method, also, is suitable to find corners on regular shapes,
like Hammer, or on irregular shapes, like Tigger. We have presented a new re-
search topic, in avoiding computing explicitly angles and curvatures. A universal
and simplified set of pattern substrings, comparing with other chain codes in lit-
erature is suggested to be investigated. As future work most be studied if this
method is invariant under scale and rotation transforms.

Acknowledgments

We would like to thank PROMEP program and CONACyT council for their
support in finishing this work.

References

1. Freeman, H. and Davis, L. S.: A Corner-Finding Algorithm for Chain-Coded
Curves. IEEE Trans. Comput. 26: (1977) 297-303.

2. Teh, C-H. and Chin, R.T.: On the Detection of Dominant Points on Digital Curves.
IEEE Trans of Pattern Anal and Mach Int. 11 (8) (1989) 859-872.

3. Liu, H-C; Srinath, M.D.: Corner Detection From Chain-code. Pattern Recognition.
23 (1/2) (1990) 51-68.

4. Medioni, G.; Yasumoto, Y.: Corner detection and curve representation using cubic
B-Splines. Comput. Vision Graphics Image Process. 39: (1987) 267-278.

5. Beus, H.L.; Tiu, S.S. H.: An improved corner detection algorithm based on chain-
coded plane curves. Pattern Recognition. 20 (1987) 291-296.

6. Rosenfeld, A.; Johnston, E.: Angle detection on digital curves. IEEE Trans Com-
put. 22: (1973) 875-878.

7. Rosenfeld, A.; Weszka, J.S: An improved method of angle detection on diginal
curves. IEEE Trans. Comput. 24: (1975) 940-941.

8. Cheng, F.; Hsu, W.: Parallel algorithm for corner finding on digital curves. Pattern
Recognition Lett. 8: (1988) 47-53.

9. Freeman, H.: On the Encoding of Arbitrary Geometric Configurations, IRE Trans.
on Electr. Comp. 10 (2) (1961) 260-268.

10. Sánchez-Cruz, H.; Rodŕıguez-Dagnino, R. M.: Compressing bi-level images by
means of a 3-bit chain code. Optical Engineering. SPIE. 44 (9) (2005) pp 1-8.
097004.

11. Liu, Yong K.; Zalik, B.: An efficient chain code with Huffman coding. Pattern
Recognition 38 (4) (2005) 553-557.

12. Bribiesca, E.: A chain code for representing 3D curves. Pattern Recognition.
33(5)(2000),755-765.

	Introduction
	Definitions Related to Pattern Chain Substrings
	Rules for Detecting Chain Corners
	Proving the Postulated Rules
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

