
 

Maximin Initialization for Cluster Analysis 

 In this note we introduce, analyze and demonstrate a new initialization procedure, 
called the maximin initialization (MMI) algorithm, which is applicable to any 
clustering method that requires an initial guess for a partition of the data.  The core of 
the proposed initialization strategy appeared as one part of the progressive sampling 
scheme used in the eNERF (extended non-Euclidean relational fuzzy c-means) 
algorithm of Bezdek et al. [1] for clustering large relational data sets. MMI is also 
used in the sVAT (scalable visual assessment of tendency) scheme of Hathaway et al. 
[2], which produces image displays of large unlabeled data sets.  However, neither of 
these papers discussed the use of MMI in the present context as a standalone tool for 
initialization of clustering algorithms. In a nutshell, MMI systematically identifies 
objects that are distributed throughout the data, and uses the identified objects to 
inexpensively generate an initial partition of the entire data set.  We will prove that 
the MMI partition is exact if the data set consists of compact and separated clusters in 
the sense of Dunn [3].  

{o1,…, on} into c self-similar subsets based on available data and some well-defined 
measure of (cluster) similarity. When each object in O is represented by a (column) 
vector x in   

! 

"s , the set X = {x1,…,xn} ⊂   

! 

"s  is called an object data representation of 
O.  The kth component of the ith feature vector (xki) is the value of the kth feature (e.g., 
height, weight, length, etc.) of the ith object.  It is in this data space that practitioners 
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Clustering  or  cluster  analysis  is  the  problem  of  partitioning  a set  of objects O = 

sometimes seek geometrical descriptors (often called prototypes) of the clusters.  
Alternatively, when each pair of objects in O is represented by a relationship, then we 
have relational data.  The most common case of relational data is when we have (an 
n×n matrix of) dissimilarity data, say D = [dij] , where dij is the pair wise dissimilarity 
(usually a distance) dis(oi,oj) between objects oi and oj, for 1 ≤  i, j ≤ n.  More 
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generally, the relational data can be a matrix of similarities based on a variety of 
measures (Borg and Lingoes [4];  Kendall and Gibbons [5]). 

partition of the data is the family of c-means models. There are hard (Ball and Hall 
[6]), fuzzy (Bezdek [7]) and possibilistic (Krishnapuram and Keller [8]) c-means 
models and algorithms for object data (HCM, FCM, PCM), and corresponding duals 
of each of these for relational data (Hathaway et al., [9]).  The new initialization 
procedure can be used with all versions of c-means. We use only HCM and FCM in 
this note, so clustering is done on object data. 

matrix U.  The sets of (nondegenerate)  fuzzy and hard c-partitions of n objects are 
denoted by Mfcn and Mhcn: 

 

! 

Mhcn = U " Mfcn | uik " {0,1}{ } ; and 

 

! 

Mhcn = U"Mfcn |uik "{0,1}{ } .  
 

The element uik of a partition matrix U represents the degree or extent to which object 
ok (or datum xk) belongs to cluster i.  The crucial difference between the two sets in 
(1) is that fuzzy partitions, which were first used by Ruspini [10], allow memberships 
in [0,1], so that (partial) membership of a datum can be shared between clusters, while 
hard partitions require  membership values to be 0 or 1, so each datum is 
unequivocally placed into one and only one of the c clusters. 

member of the family of functionals 
 

! 

Jm (U,V) = uik
m

k=1

n

"
i=1

c

" dik
2 , 

 

where:   

! 

d
ik

2
= [d(x

k
, v

i
)]2 is the distance from xk to vi in any inner product induced 

norm,
  

! 

n = X , m ∈ [1, +∞ ) is a user- defined fuzzification  constant, c is the number 
of clusters assumed, U is in Mfcn (m > 1) or Mhcn (m = 1), V = [v1,…,vc] is a matrix 

One  of  the  better-known families of clustering models that must be initialized by a 

A partitioning of the data (or objects) into c clusters is represented by a c⋅n partition 

The  hard  and  fuzzy c-means algorithms  arise  by  (approximately)  minimizing  a 

 

whose columns are c prototypes in   

! 

"s , and d(vi, xk) measures the distance between 
data point xk and prototype vi in any inner product induced norm metric. Zeroing the 
Lagrangian of Jm results in the following first order necessary conditions (m = 1 for 
HCM, m > 1 for FCM): 
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The iteration can be initialized using either a partition U or matrix of prototypes V. 
For example, for either algorithm, a current U is used to update the prior set of 
prototypes V = [v1,...,vc], which are in turn used to calculate a new partition U, and 
then successive estimates (of either set of variables) are compared to a termination 
threshold. The theory of this alternating optimization (AO) procedure is given in 
Bezdek and Hathaway [11]. Many authors have considered the sensitivity of AO to its 
initialization. Bezdek et al. [12] contains an extensive discussion of this issue for the 
c-means algorithms. Our current contribution to this ongoing body of research is a 
new initialization scheme that has some theoretical substance - viz., the MMI 
algorithms produces an initial guess for U that is exact when X (or D) contains c 
compact, separated clusters in the sense of Dunn [3]. In the experiments conducted in 
Section 3, initialization is always done using an MMI partition U ∈ Mhcn. 

2 The Maximin Initialization Algorithm 

The core of MMI involves selecting c distinguished objects  

! 

om1
,om2

,...,omc
 that are 

distributed throughout the set of objects O = {o1,...,on}, relative to the available 
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measure of dissimilarity between pairs of objects in O.  If a relational dissimilarity

 

matrix D is available, then this is used directly to measure dissimilarity of pairs of

 

objects. When using object data set X = {x1,...,xn} ⊂   

! 

"s , we pick a metric d(⋅ , ⋅ ) on

 

  

! 

"s #"s  and use d(xj, xk) as a measure of dissimilarity between oj and ok.  The first

 

distinguished object selected is simply
1
m
o = o1. The second chosen (

2
m
o ) is the

 

object in O most dissimilar to 
1
m
o .  All subsequent choices of distinguished objects 

involve picking the object with the largest minimum dissimilarity to all of the 
previously selected objects.  This selection of distinguished objects is formally 
described in Step 1 of the statement of the MMI.  The second step of the algorithm 
computes the (hard) partition that corresponds to grouping each object into the same 
class as its nearest distinguished object.  For the case of object data, this amounts to 
doing (2b) with vi = 

i
m
x , for i = 1,...,c.  The MMI algorithm follows. 

MMI: Maximin Initialization Algorithm 

 Choose The number of clusters c, 1 < c < n; and,   

! 

"s #"s  if the available data are 
object data  X, an inner product induced metric d(⋅ , ⋅ ) on. 

 
Input Object data X = {x1,...,xn} ⊂   or dissimilarity data D =  [dij]  ⊂    

! 

" n#n . 

(6)

(7)

:

:   

! 

"s
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Step 1 Select the indices m1, ..., mc of the c distinguished objects. 
Select m1 = 1 (Remark: this is the "object seed";m1 = 1 is arbitrary)  
 (If the data are X, calculate dissimilarities { d1,k }, k = 1 to n.) 
Initialize the minimum distance array 

! 

"
1

= ["1
1
,...," n

1
] = [d1,1, ..., d1,n] 

For t = 2,…, c: 
 Update t [min{ 1,m

1t
1 1t

d,
!

!
" }, ...,min{ n,m

1t
n 1t

d,
!

!
" }] 

 Select mt ∈ }{maxarg t
j

nj1

!
""

 

 (If the data are X, calculate dissimilarities 

! 

{dmt ,k } , k = 1 to n.) 
Next t 

Step 2 Cluster each object in {o1, ..., on} with its nearest distinguished object. 
 Clear the initialization matrix array  U = [uik] ⊂    

! 

"cn : uik = 0 ∀ i,k 
 For k = 1,..., n:   
  Select i ∈ }d{minarg k,m

cj1
j

!!

and then set uik = 1 

 Next k  
Output  A crisp c×n initialization partition U in Mhcn 
 
If initialization (of the c-means algorithms)  by a set of c prototypes rather than by a 
partition is desired, then it is only necessary to execute Step 1 and terminate with vi = 

i
m
x ,  for i = 1,...,c. The name maximin initialization follows by noticing that the loop 
in Step 1 can be "unrolled" to show that mt is selected as an index in {1,...,c} that 
maximizes the minimum of the distances to the previously selected distinguished 
objects; i.e., mt is a solution of 

 

  

! 

argmax{min{dm1, j,dm2, j,K,dm t"1, j
1# j# n

}}

 Any tie breaking strategy can be used if arg max of Step 1 or arg min of Step 2 does 
not specify a unique index.  The crisp clusters found at Step 2 of MMI are produced 
by labeling each of the (n-c) remaining objects with the nearest prototype (1-np) rule. 
Seen in this light, Step 2 of MMI is just a crisp 1-np classifier for the objects in the 
data that are not selected in Step 1. Finally, notice that MMI requires the user to 
specify a value for c, the number of clusters that a subsequent clustering algorithm 
will seek in the data. MMI produces its initialization for any 1 < c < n, and does not 
offer an uninformed user any means for inferring a "best" choice for this important 
parameter. This important problem - the cluster validity problem - is addressed, for 
example, by the sVAT algorithm of Hathaway et al. [2]. In this note we simply pick 
and use (the "correct") value of c for various examples to illustrate how MMI then 
finds a good initialization for subsequent clustering. In practice, the data should be 
submitted to an algorithm such as sVAT before using MMI, so that initialization is 
done at a reasonable value of c. 

cheaper for relational data D than for object data X.  For object data, Step 1 requires 
MMI  has about  the same computational  cost  as one  iteration of  HCM, and  is a bit 

(8)

δ

:

 Maximin Initialization for Cluster Analysis 17 



calculation of cn distances in   

! 

"s , which is O(scn). Then MMI performs [(c-1)n] min 
operations involving 2 elements each, and (c-1) max operations involving n elements 
each.  In Step 2, we must do n min operations involving c elements each, which is 
exactly the cost of performing (2b) one time. Overall then, MMI is O(scn) for object 
data.  For relational data, we don't have to calculate the cn distances in   

! 

"s  because 
the dissimilarities are already available as elements of the input data set D. Thus, 
MMI is O(cn) when its input is relational data set D. 

initialization is exact.  To formalize this, we recall the notion of compact and 
separated clusters defined by Dunn [3].  For a set of objects O = {o1,...,oN} with 
corresponding relational dissimilarity data D, we say that a partitioning O(1), O(2), ..., 
O(c) of O is compact and separated (CS) relative to D if each of the possible intra-
cluster distances is strictly less than each of the possible inter-cluster ones.  When the 
data has this property, we say simply that "O can be partitioned into c CS clusters". 
The main result (Theorem 1) is that if the data consists of c CS clusters, and MMI is 
applied to it with c as the specified number of distinguished objects, then the initial 
partition produced by MMI will correctly partition O into these c CS clusters.  Based 
on this property - perfect initialization in the compact and separated case - we expect 
MMI to provide good initializations in most (non-CS) cases.  We will investigate this 
expectation empirically in Section 3. 

 
Theorem 1  Suppose that the set of objects O = {o1,...,oN}, represented by either an 
object data set X (with metric d(⋅ , ⋅ ) on   

! 

"s ) or a relational dissimilarity matrix D, 
can be partitioned into c ≥ 1 CS clusters.  Then the crisp MMI c-partition of X (or D) 
partitions O into its c CS clusters.  
 
Proof.   We denote the dissimilarity between objects oj and ok by djk = dis(oj,ok), 
understanding that djk either comes directly from the matrix D if relational data is 
available or is calculated as djk = d(xk,xj) if object data is available.  Also, we denote 
the c CS clusters of O = {o1,...,on} by O(1), O(2), ..., O(c), and when convenient, we 
indicate the cluster of a datum or object by a superscript in parentheses; e.g., )2(

7o  
indicates that the seventh object is in the second CS cluster. First we prove that Step 1 
of MMI selects exactly one distinguished object from each of the c CS clusters.  The 
result is trivially true for c = 1.  Now, suppose we can partition On ={o1,...,on} into c ≥ 
2 CS clusters O(1), O(2), ..., O(c).  Since the clusters are compact and separated, it is true 
that for 1 ≤ i ≠ h ≤ c and applicable k, p, j, we have 

We first select object o1, and without loss of generality,  assume that it belongs to O(1).  
Then the initial search array 1 is defined (either using elements of D or d(⋅ , ⋅ ) on 
corresponding object vectors) as 1 = [dis(o1,o1),  ... , dis(o1,on)]  =  [d11,...,d1n] . Then 
applying (9) with i = 1, we see that the maximum element in 1 (and therefore the 
choice of the second distinguished feature) must correspond to an object in O(2), ..., 

The main theoretical result for MMI is that if the clusters are well separated,  then the 

.

(9)

δ
δ

δ

! 

dkp = dis(ok
(i),op

(i)) < dis(ok
(i),o j

(h)) = dkj .
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exactly one distinguished object for c = 2, and we now continue for the case of c ≥ 3.  
Suppose the max occurs in the second entry of 1 so that the next object selected is o2; 
and further suppose that o2 belongs to CS cluster O(2).  The updated search array 2 is: 

           

! 

"
2

= [min{"1
1
,d21},…,min{" n

1
,d2n}] . 

Suppose that a maximum entry is found in the third component of  2 and that o3 is 
the third object selected (m3 = 3).  We will prove that o3 cannot belong to O(1) or O(2) 
by contradiction. So, assume that o3 does belong to either O(1) or O(2), say O(1).  
Selection of o3 implies that, for all j = 1 to n: 

 

min{ 1

3
! , d23}  = min{dis(o1, o3), dis(o2, o3)} ≥  min{dis(o1, oj), dis(o2, oj)} 

O(c) (but not in O(1)).  This completes the proof that each CS cluster is represented by 

But (10) implies that, for j = 1 to n: 

dis(o1, o3)  ≥  min{dis(o1, oj),dis(o2, oj)} 
 
Now, let j ≥ 4 be any index such that oj is in neither O(1) nor O(2).  (At least one such j 
exists since c ≥ 3 and for k = 1, 2, 3 we have ok ∈ O(1) ∪ O(2).)    Without loss of 
generality we suppose that j = 4 satisfies (7) with o4 ∈ O(3), and that  dis(o1,o4) ≤ 
dis(o2,o4)).  Then (11) gives dis(o1,o3)  ≥  dis(o1,o4) ,where o1 ∈ O(1), o3 ∈ O(1), and o4 
∈ O(3); but this contradicts (9) for i = k = 1, p = h = 3, and j = 4.  Thus, the third object 
chosen cannot be in a previously represented cluster. We can now repeat this 
argument for the 4th, 5th, …, up to the cth choice.   This establishes our claim that each 
CS cluster is represented by (i.e., contains) exactly one of the distinguished objects 

c21 mmm o,...,o,o . Finally, since Step 1 of MMI has selected one distinguished object 
from each of the c CS clusters, (5) implies that for i = 1,...,c, each object in cluster O(i) 
is grouped with object 

im
o in Step 2.  Thus, our construction produces a crisp c-

partition of O = {o1,...,on} into its c compact and separated clusters.  
Theorem 1 guarantees that MMI produces an initial crisp c-partition corresponding to 
c compact and separated clusters whenever c CS clusters exist in the data. We assert 
that this provides an excellent initialization for (any) partitioning algorithm that 
initializes at U in Mhcn. Indeed, when X (or D) has c CS clusters, the MMI c-partition 
of it is part of a necessary pair for J1 at (3, m=1) - i.e., it is part of an HCM solution.    
The experiments we present in the next section investigate whether MMI also 
produces useful initializations when the clusters are not w1ell separated. 

3 Numerical Examples  

In this section we test the MMI algorithm with HCM and FCM.  The data sets we 
choose are samples drawn from mixtures of  c = 4 normal distributions in either   

! 

"2  
or   

! 

"10 . Thus, the data sets used for each figure and simulation in this section 
nominally have c = 4 clusters (or components); and all are of size n = 1000.  The 

   

 

 

(10)

(11)

δ
δ

δ
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parameter we use to control the amount of overlap between the four clusters is the 
(common) variance  σ2 of the component normals.  We call the two types of data sets 
used DIAGONAL data and SQUARE data,  terms chosen to (roughly) refer to the 
arrangement of clusters. The DIAGONAL data sets are samples from a  mixture 
distribution of 4 normal distributions with cluster centers arranged along a diagonal 
line.  The specific component parameters in the case of s = 2 (i.e., X ⊂   

! 

"2) are: 

mixing proportions :  α1 = 0.15, α2 = 0.25, α3 = 0.25 and α4 = 0.35; 

means :  1 = [0 0]T, 2 = [3 3]T, 3 = [6 6]T and 4 = [9 9]T; and 

covariance matrices  : Σ1 = Σ2 = Σ3 = Σ4 = σ2 I2×2 
 
where I2×2 is the 2x2 identity matrix and the positive number σ2 is varied according to 
the experiment.  The SQUARE data distribution is so named because the clusters 
form the corners of a square configuration, and its component parameters are given by 
(12), (14), and: 

 
means : 1 = [0 0]T, 2 = [6 0]T, 3 = [0 6]T and 4 = [6 6]T. 
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(c) σ2 = 1.0                                                (d) σ2 = 2.0 

(a) σ2 = 0.2       (b) σ2 = 0.5 

Fig. 1. + o Typical DIAGONAL data; means ( ) and MMI selected data ( )  
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Figures 1 and 2 are scatter plots of typical samples from the two dimensional mixtures 
in   

! 

"2 (n = 1000) for various values of σ2.  The symbol () represents the c= 4 MMI-
selected  distinguished objects (i.e., object data in this case). 

  

Fig. 2. + o

throughout the data sets in the figures and are clearly present in all four clusters in  the 
more separated cases such as those of Figures 1(a) and 2(a).  The 2-dimensional 
simulations that are reported in this section use data sets distributed like those in the 
figures.  Also performed are simulations using 10-dimensional data sets whose first 
two coordinates are distributed like those in the figures while the 3rd through 10th 
coordinates are normally distributed with mean 0.  Specifically, the mean parameters 
for the 10-dimensional versions of the DIAGONAL and SQUARE data are: 

 
 1 =[0 0 0 0 0 0 0 0 0 0]T; 2 =[3 3 0 0 0 0 0 0 0 0]T ;  (DIAGONAL)   

     3 =[6 6 0 0 0 0 0 0 0 0]T; 4 =[9 9 0 0 0 0 0 0 0 0]T . 

1 =[0 0 0 0 0 0 0 0 0 0]T; 2 =[6 0 0 0 0 0 0 0 0 0]T ; (SQUARE)   

3 =[0 6 0 0 0 0 0 0 0 0]T; 4 =[6 6 0 0 0 0 0 0 0 0] . 

 Typical SQUARE data; means ( ) and MMI selected data ( ) 

As expected, thedistinguished data (o) selected by the MMI algorithm are distributed 
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dimensions in this way allows us to examine the effect of dimensionality without 
making the clustering problem substantially easier (or harder) since the separation 
between components is essentially unchanged and depends only on the first 2 
coordinates. 

initializer of HCM and FCM. We want to compare HCM (and FCM) results obtained 
using MMI initialization to those obtained using the true class labels as the point of 
initialization.  Toward this end, the true labels are tabulated and represented as a crisp 
c×n partition (in this case 4×1000) during the generation of each normal mixture data 
set.  We chose this structuring of the tests because we want to know whether or not 
the MMI works well compared to an "optimal" initialization (i.e., the true labels);  not 
merely whether or not it compares relatively well to some other existing  initialization 
scheme.    

corresponds to the difference between HCM and FCM partitions of the input data 
obtained from starting the iteration through equations (4)-(5) or (6)-(7) using the MMI 
and true initializations.  We denote the terminal fuzzy partitions obtained using FCM 
with the two initializations as 

  

! 

U
MMI

FCM  and FCM

TRUE
U ; and we similarly denote the HCM 

results by 
  

! 

U
MMI

HCM and HCM

TRUE
U .  We define DIF(h) and DIF (f) to measure the 

percentage difference between the crisp (h) or fuzzy (f) clusters obtained using the 
two initializations.  For example, if  45 of n = 1000 data are grouped by HCM into 
different clusters using the two initializations, then DIF(h) = 4.5%.  The percentage 
can be computed in the crisp case as: 

 

! 

DIF(h) = 50* (uTRUE
HCM )ij" (uMIA

HCM)ij
j=1

n

#
i=1

c

# n  . 

 
To define the analog of DIF(h) for FCM, we must "harden" the terminal fuzzy 
partitions obtained by starting FCM at the MMI and True partitions. This amounts to 
replacing the maximum entry in each column of U by a 1, and replacing all (c – 1) 
other entries with 0's (this is just Bayes rule when U is a partition of posterior 
probabilities).  We denote the hardening of a partition U by H(U) and define DIF(f) 
for the FCM results as: 

 

! 

DIF(f) = 50* (H(uTRUE
FCM ))ij" (H(uMIA

FCM))ij
j=1

n

#
i=1

c

# n  .  

  
Next, we describe the simulations and the types of entries that appear in Tables 1 and 
2.  All experiments were done using MATLAB on a PC, with m = 2 in equations (3), 
(6) and (7) for FCM.  The iterations for HCM and FCM were terminated as soon as 

The component covariance matrices for the 10-dimensional distributions all equal  σ2 
I10×10, and the mixing proportions in (12) are unchanged.  Extension from 2 to 10 

the maximum change in the (cn) membership values for successive U iterates became 
less than or equal to 0.00001.  Table 1 gives the results for the DIAGONAL data and 
Table 2 contains the SQUARE data results.  Each row of the two tables corresponds 
to samples from a mixture specified by the component variance σ2 and dimension s.  

The  purpose of  our simulations  is to  investigate the  effectiveness of  MMI as  an 

The  measurement  recorded  in  Tables  1  and 2  is  referred  to as  DIF( ),   which 

(18)

(19)
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The other component parameters are given in the appropriate parts of equations (12-
17).  For each row, 1000 samples each of size n = 1000 were generated.  For each 
sample, both HCM (results in columns 2-4) and FCM (results in columns 5-7) were 
initialized using both the true component labels and the MMI initialization.  Columns 
2 and 5 give the percentage of the 1000 trials for which DIF() = 0; i.e., the percent 
of trials for which the terminal c-means partitions (hardened in the case of FCM) 
produced by the MMI initializations are exactly the same as those produced by 
initialization with the true class labels.  Columns 3 and 6 give the average DIF() 
over the 1000 trials, while columns 4 and 7 give the worst DIF() that occurred for 
any single trial.   

 
Table 1. 

  DIF(h) for HCM DIF(f) for FCM 

 
s 

 
σ2 

% Trials 
where 

DIF(h) = 0 

Ave. 
DIF(h) 

Worst 
DIF(h) 

% Trials 
where 

DIF(f) = 0 

Ave. 
DIF(f) 

Worst 
DIF(f) 

2 0.2  99.9% 0.0% 0.1% 100% 0% 0% 

2 0.5  94.5% 0.3% 35.3% 100% 0% 0% 

2 1.0  69.4% 0.1% 39.4% 100% 0% 0% 

2 2.0  42.1% 0.8% 45.4% 99.5% 0.0% 0.1% 

10 0.2  99.9% 0.0% 33.5% 100% 0% 0% 

10 0.5  89.8% 0.7% 34.5% 100% 0% 0% 

10 1.0  43.6% 1.8% 42.7% 99.4% 0.0% 0.1% 

10 2.0  13.5% 3.1% 49.4% 99.7% 0.0% 0.8% 
 

algorithmic labels may or may not correspond to the "true" labels of the input data. 
Thus, algorithmic cluster 1 might correspond to input cluster 2, and so on. To solve 
this correspondence problem in the actual computation of DIF(), all permutations of 
the rows of one of the partitions are considered, so that the recorded DIF() is based 
on the permutation that gives the smallest possible value of (18).  This ensures that 
the calculated disagreement between partitions actually measures a difference in the 
grouping of the data among clusters, and not simply a difference in the (arbitrary) 
numerical label assigned to each cluster by HCM or FCM.  For c = 4, this amounts to 
trying 4! = 24 different permutations.  This factorial growth in the calculation of DIF 
is one reason we limited our experiments to the modest value of c = 4. An entry of 0% 
in either table means exactly 0%, while an entry of 0.0% indicates a rounded positive 
number.  

  
for FCM than it does for HCM. This is not surprising, since it is well known that 
initialization sensitivity is more of a problem for the hard c-means algorithm (Bezdek 
et al., [12]).  The performance of MMI with FCM is consistently good throughout the 

All  clustering  algorithms  assign  numerical   labels   to   their   clusters,   and   these 

A strong implication of the values in Tables 1 and 2 is that MMI works much better 

1000 tr ials for  DIAGONAL data : n = 1000 

 Maximin Initialization for Cluster Analysis 23 



Table 2. 

  DIF(h) for HCM DIF(f) for FCM 

 
s 

 
σ2 

% Trials 
where 

DIF(h) = 0 

Ave. 
DIF(h) 

Worst 
DIF(h) 

% Trials 
where 

DIF(f) = 0 

Ave. 
DIF(f) 

Worst 
DIF(f) 

2 0.2  100% 0% 0% 100% 0% 0% 

2 0.5  100% 0% 0% 100% 0% 0% 

2 1.0  94.2% 0.0% 0.2% 100% 0% 0% 

2 2.0  64.0% 0.1% 0.7% 99.7% 0.0% 0.1% 

10 0.2  100% 0% 0% 100% 0% 0% 

10 0.5  99.8% 0.0% 0.1% 100% 0% 0% 

10 1.0  88.9% 0.6% 37.9% 98.8% 0.2% 20.5% 

10 2.0  32.8% 1.5% 36.5% 96.4% 0.2% 22.3% 
 

high probability, MMI initialization produces the same FCM result as initialization at 
the true class labels.  The average DIF(f) values in both tables show that the average 
differences between the MMI and true label results are very small: zero for all choices 
of σ2 except at σ 2 =1.0 and 2.0 for the 10 dimensional data, and just 0.2% for these 
two cases.   

MMI initialization of HCM worked adequately for very well  separated  problems
 (σ  2 = 0.2), but even in this case there was a Worst DIF(h) value of 33.5% for s = 10 

dimensions in Table 1.  As σ 2 increases, the cluster separation decreases, and it 
becomes more and more difficult to obtain the same HCM result using the MMI 
initialization as that obtained by HCM using the true class labels for initialization.  
For example, in the worst HCM case, (σ 2 = 2.0 and s = 10 in Table 1), agreement was 
reached only 135 times in 1000 trials. This is not so much an indictment of MMI 
initialization as it is an indication that there are a large number of local trap states for 
minima of J1 when the data have so much overlap.  Even so, the average values of 
DIF(h) for HCM never got worse than 3.1% for either data set.   

consistently high percentage of cases for which DIF(f) = 0 indicates that with a very 

The scatter plots of the data in Figures 1 and 2 visually suggest that the SQUARE 
data clusters are better separated than the DIAGONAL ones, and should therefore be 
easier for both HCM and FCM.  Comparing the tables we see that our intuition is 
correct for HCM; MMI did significantly better for the SQUARE data than for 
DIAGONAL.  But very surprisingly, the MMI-FCM combination did not have a 
significantly easier time with the SQUARE data, and in fact, it was this case that 
produced the only real problems for FCM (Worst DIF(f) values of 20.5% and 22.3%).  
Finally, we point out that increasing the data space dimensionality from 2 to 10 
caused some increase in difficulty, typically more for HCM than FCM. 

experiments, although the 10-dimensional cases of the SQUARE data with highest 
overlap (σ2 = 1.0 and 2.0) resulted in several values of DIF(f) above 20%.  The 

 1000 tr ials for  SQUARE data : n = 1000 
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4 Discussion  

 
The maximin initialization (MMI) algorithm was stated, analyzed and then 
demonstrated, using samples drawn from a variety of 4 component normal mixtures in 
two and ten dimensions.  The computational cost of executing MMI is essentially 
equal to a single iteration of HCM or FCM in the case of object data (O(scn)), and 
even less in the case of relational data (O(cn)). Theorem 1 guarantees that the MMI c-
partition corresponds to a compact and separated partitioning of the data whenever 
such a partitioning exists. MMI identifies c distinguished data (or objects) distributed 
throughout the data space, and then uses them as "seed" prototypes to build a 1-np 
partition of the remaining unlabeled data.  Our simulations suggest that for a moderate 
number of clusters, FCM combines particularly well with MMI initialization to 
produce clustering results comparable to those obtainable when FCM is initialized 
with the "true" cluster labels. 

the inexpensive computational cost, we believe that MMI is a useful tool for 
generating initializations for FCM, and to a lesser extent, for HCM.  Since HCM is 
notoriously sensitive to initialization, it is probably wise to initialize it from several 
starting points to make sure a "good" set of clusters is found. MMI can be used to 
generate multiple, different starting points.  How? Just choose an "object seed" other 
than 1 for m1 in Step 1 of MMI, and then change 1 accordingly. This change to MMI 
can be used over and over, to produce as many different initializations as desired. 

may create some problems for the MMI scheme, although this has yet to be tested.  
Perhaps a trimmed maximin selection, in the spirit of the more robust trimmed mean 
estimator of centrality, might offer an advantage in the case of data contaminated with 
outliers.  Recently, much effort has been expended to "kernelize" classification and 
clustering methods.  Can kernelized distances be introduced here in a way that causes 
the selection of better performing distinguished data (or objects)?  Two other related 
clustering approaches that benefit from good initializations  are the possibilistic 
c-means (PCM) algorithm and normal-mixture-based clustering using the expectation-
maximization (EM) algorithm (McLachlan and Peel [13]).  The EM approach  is 
known to be somewhat sensitive to initialization and PCM produces coincident 
clusters from some initializations.  MMI should stabilize this aspect of both 
algorithms, but this supposition has yet to be tested. 
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