
D. Gaiti et al. (Eds.): AN 2006, LNCS 4195, pp. 268 – 284, 2006.
© IFIP International Federation for Information Processing 2006

Autonomic Communications: Exploiting Advanced and
Game Theoretical Techniques for RAT Selection and

Protocol Reconfiguration

Eleni Patouni1, Sophie Gault2, Markus Muck2, Nancy Alonistioti1,
and Konstantina Kominaki1

1 Communication Networks Laboratory, Department of Informatics & Telecommunications,
University of Athens, Athens, Greece

{elenip, nancy, kominaki}@di.uoa.gr
2 Motorola Labs, Paris, France

{sophie.gault, markus.muck}@motorola.com

Abstract. The Autonomic Communications concept emerges as one of the most
promising solutions for future heterogeneous systems networking. This notion
implies the introduction of advanced mechanisms for autonomic decision
making and self-configuration. To this end, this paper proposes an integrated
framework that facilitates autonomic features to capture the needs for RAT
selection and device reconfiguration in a Composite Radio Environment.
Specifically, a game theoretical approach targeted to the definition of
appropriate policies for distributed equipment elements is presented. Thus, the
user terminals are able to exploit context information in order to i) identify an
optimum trade-off for (multiple) Radio Access Technology (RAT) selection
and ii) adapt the protocol stack and respective protocol functionality using a
proposed component based framework for transparent protocol component
replacement. Simulation and performance results finally show that the proposed
mechanisms lead to efficient resource management, minimizing the complexity
on the network and terminal side as well as keeping the required signaling
overhead as low as possible.

Keywords: autonomic networking, cognitive networks, reconfiguration.

1 Introduction

Future beyond 3rd Generation (B3G) systems are expected to exploit the full benefits
of the diversity within the radio eco-space, composed of wide range of systems such
as cellular, fixed, wireless local area and broadcast. In this framework, it is important
to provide suitable means on the network and terminal side serving as an enabler for
this vision. Such vision is captured by the notion of autonomic communications which
provides the grounds for the deployment of advanced concepts, including a device
agnostic and protocol independent approach for an hierarchy of systems with self-
managing, self-configuring and self-governance features. Beyond the conceptual
merits of such an approach, the following key issues need to be addressed in a
practical context: i) Manage the complexity on the network and user terminal side and

 Autonomic Communications 269

provide policy communication means, ii) Minimize required signaling overhead and
iii) Provide means for the device dynamic adaptation following the decision for RAT
selection.

The first of these items typically motivates a distributed system concept as
analyzed in [1] in the context of autonomic communications where self-managing
devices with behavior controlled by policies are introduced. Furthermore, we assume
the introduction of a suitable cognitive channel which covers, besides policy related
information, future context data helping the devices to perform decisions. Item ii)
relates to the policies themselves, leading to the observation that simple, global
policies (applicable to all users) should be preferred to user specific rules in order to
assure a minimum signaling overhead. In addition item iii) is related to the
introduction of a framework incorporating the necessary mechanisms that enable the
dynamic adaptation/reconfiguration of the protocol stack.

In the context of this paper, all these principles are highlighted; the rest of this
contribution is organized as follows: Section 2 defines the general study framework
portraying the problem that is examined in this contribution. A RAT selection
analysis for a simple two-user context, based on game theoretic tools is presented in
section 3. A framework for the dynamic protocol reconfiguration over heterogeneous
RATs is analyzed in section 4. Finally, related work and conclusion remarks as well
as directions for future research are highlighted in section 5 and 6 respectively.

2 Problem Statement

In this analysis, a composite radio environment, in terms of a distributed network of
heterogeneous Radio Access Technologies (RATs), is considered, as illustrated below
(Fig. 1). A multitude of users is assumed to compete for access to one or several RATs
and one or several distinct communication channels (in terms of spectrum usage) in
parallel. An efficient operation requires suitable RAT/channel selection algorithms: in
heterogeneous and reconfigurable wireless systems, terminals and network
equipments should incorporate enhanced capabilities for adapting to the drastically
changing environment.

Towards this direction, this paper analyzes an integrated framework that facilitates
autonomic features to capture the needs for RAT selection and device reconfiguration
in a Composite Radio Environment. At first, the process of selecting a RAT targeted
to the optimum adaptation of users is addressed. Following the RAT selection, the
dynamic device adaptation to the new RAT should take place, to cope with
application and QoS requirements. For example, after a change in the RAT, an update
in a protocol component/codec may be triggered (either network initiated or device
initiated) for various reasons: i) to compensate for QoS degradation, ii) to provide a
protocol patch update to fix a software bug iii) to provide a new version of an existing
component with enhanced capabilities. In this sense, a generic framework is provided
that handles the necessary mechanisms for downloading, installation and on-the-fly
activation of missing protocol-related RAT components. The following subsections
highlight the focus and design assumptions in each of the previously mentioned
reconfiguration phases.

270 E. Patouni et al.

2.1 RAT Selection Context

The RAT selection phase addresses an efficient attribution of corresponding resources
to a specific user (different RATs such as WiMAX, WiFi (IEEE802.11a/b/g/n, etc.),
3GPP, DVB-T or DAB, different bands, etc.) in a distributed system, minimizing the
required complexity in the network and user side as well as the signaling overhead.
The focus is laid on techniques that are fully compatible with legacy technologies; the
proposed approaches are also applicable to future air-interfaces, following the trend
for the deployment of a (physical or virtual) cognitive channel as a single new
element to be exploited for finding optimum resource usage strategy. These
approaches are meant to be transparent to the physical user – any reconfiguration
process is handled automatically by the equipment devices.

In addition, each terminal/user can apply several strategies in order to get the best
service requested by the user. Multi-mode and reconfigurable terminals have the
capability to connect simultaneously to several wireless network resources and also to
reconfigure themselves in order to connect to new radio access technologies available
in a cell. Given that multi-mode and reconfigurable network equipments inherently
provide enhanced capabilities (by either dynamically adapting a specific radio access
resource, or by reconfiguring some nodes to dynamically provide higher system
capacity, depending on demands in a given area), consequently, the terminals should
automatically adapt to the new scenario.

Fig. 1. A distributed network approach in a multicell context with different Cellular Access
Points (CAPs)

Moreover, it is assumed that the system is organized in an entirely distributed way:
the network propagates “policies” (e.g., via the Cognitive Channel) which define
generic behavioral rules to be applied by any network and user equipment.
Consequently, the network/user equipment is NOT parameterized by any central
controller, but adapts autonomously (typically applying “Autonomic Networking”
principles) to the constantly changing environment. This finally leads to a distributed
optimization of the resource use. In the same example, a possible environmental

 Autonomic Communications 271

change triggering user adaptation is illustrated: a RAT terminates its services and the
remaining resources (RATs, bands, etc.) must thus be split among the active users.

The problem addressed within this paper concerns the optimum adaptation of users
to a changing context/environment using autonomic networking and policy-based
self-governance principles. A mechanism is proposed that enables users to adapt their
resource use autonomously (applying autonomic networking approaches and relying
on policy based self-management), such that a suitable compromise is found that is
near-optimum from the perspective of a specific user (“get maximum data rate, even
if I penalize other users”) and from the network perspective (“maximize total network
throughput and split resources fairly among all users”).

2.2 Protocol Reconfiguration

Following the RAT selection, the protocol reconfiguration phase is aimed to address
generic mechanisms for the deployment of transparent plug-in of protocol
components in equipments. The presented solution is aligned with a set of
assumptions regarding the design aspects of the proposed architecture and
mechanisms:

- a protocol stack is composed of discrete protocol layers. The communication
between them is established either using standard defined interfaces, i.e. Service
Access Points (SAPs) or queue-based communication schemes. This design also
facilitates the maintenance of cross layer optimization issues in the protocol stack.
In addition, this design provides the capability of specifying a protocol stack
according to application needs, QoS requirements as well as the specific RATs.

- A protocol layer is composed of protocol components. Each protocol component
may specify specific protocol functionality (i.e, if we consider a TCP protocol, a
TCP component may realize the congestion control algorithms) or a combination
of different functionalities (i.e, a TCP component that realizes both congestion
control and flow control algorithms).

The introduced framework based on the above considerations is aimed to cope with
the following protocol reconfiguration aspects: the dynamic binding of component
services into a fully fledged protocol service as well as the runtime replacement of
protocol functionality. Specifically, this solution extends the typical Manager-centric
architectures for the establishment of component bindings introducing a distributed
model. Such model apportions the above mentioned functionality to the protocol
components. The latter is based on a semantic-layer of information which describes
static characteristics of the components as well as dynamic characteristics to capture
the environment configuration.

The above analyzed mechanisms are incorporated into a generic management and
control architecture enabling dynamic protocol reconfiguration via self-configuring
protocol components (Fig. 2). In particular, the following key elements are identified:

- The Download Manager module which caters for the software download in the
system, as well as for authorization procedures and integrity checks.

- The Installation Manager, which is responsible for post-download steps as well as
the software installation to the system.

- The Decision Manager module which specifies concrete decision concerning
reconfiguration actions, based upon a set of policy rules and contextual

272 E. Patouni et al.

information. In the scope of this paper, such module is responsible for the
protocol stack configuration, in terms of specifying the different protocol layers
and components to be used, as well as for triggering a protocol stack update.

- The Autonomic Manager module, which is responsible for the overall monitoring
and control of the software operation, i.e., it instantiates the various
components/triggers the component replacement process.

 Download
Manager
Module

 Installation
Manager
Module

Protocol Stack Configuration Control Module API

 Decision
Manager
Module

Layer 1

Layer2

Layer N

.

.
Metadata Metadata

Metadata Metadata A
ut

on
om

ic

M
an

ag
er

Fig. 2. A Management and Control Architecture Enabling Self-Configuring Protocols

3 Analysis of Game Theory Based RAT Selection in a Simple
Two-User Context

Considering a simple two-user scenario, this section illustrates the application of a
game-theoretic analysis [2] in order to derive suitable policy rules directing the user
behavior. It is shown that global policies, applicable to all users, reduce the RAT
selection convergence time considerably. Moreover, a global policy assures a
minimum signaling overhead, since the user terminals are not addressed
independently as it is the case of a centralized approach. The main aspects presented
below can be extended to more complex scenarios consisting of a multitude of
heterogeneous RATs and a multitude of users at the cost of an increased complexity
for the RAT selection and search for suitable policies. This generalization, however,
is out of the scope of this paper and will be discussed in future contributions.

3.1 Scenario Definition

The following scenario is considered in this analysis: An operator controls four
IEEE802.11n Access Points (APs), each operating in a distinct 20MHz band and at a
distinct carrier frequency. There are two Mobile Terminals (MTs) communicating
over 1, 2, 3 or all of the available bands. The operator decides to switch off one AP,
and indicates this information by propagating a corresponding message to the MTs.
The MTs then need to redefine their spectrum / AP use autonomously. Each MT has
the choice among seven possible spectrum allocation strategies denoted from S1 to S7:

 Autonomic Communications 273

1) S1: use band #1; 2) S2: use band #2;
3) S3: use band #3; 4) S4: use bands #1 and #2;
5) S5: use bands #2 and #3; 6) S6: use bands #1 and #3;
7) S7: use bands #1, #2 and #3.

A simplified throughput computation model is used, assuming a throughput per band
(or channel) equal to D bit/s. When a given channel is reserved to only one MT, the
total throughput D is available for the MT. In case it is split among two MTs, the total
throughput decreases due to collisions: D’ = D*d where 0<d<1 is a kind of penalty
factor, and each MT gets a throughput of D’/2 = D*d/2 with 0<d<1. In the examples
below, we choose “d=0.9” for illustration purposes. The issue addressed is to find the
best combination of strategies for both MTs such that maximal throughput is achieved
for both.

3.2 Performance Analysis

The analysis is carried through the 2D game table presented below; the rows and the
columns correspond to the strategies of MT1 and MT2 respectively. In addition, the
table elements correspond to pairs of throughput values (MT1 throughput, MT2
throughput), obtained when MT1 and MT2 are using a given combination of
strategies.

Table 1. Overall game table (1st column: User 1 strategies, 1st line: User 2 strategies)

 S1 S2 S3 S4 S5 S6 S7

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45) (0.45, 2.45)

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2) (0.45, 2.45)

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45) (0.45, 2.45)

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45) (0.9, 1.9)

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45) (0.9, 1.9)

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9) (0.9, 1.9)

S7 (2.45, 0.45) (2.45, 0.45) (2.45, 0.45) (1.9, 0.9) (1.9, 0.9) (1.9, 0.9) (1.35, 1.35)

To give an example: in the first cell on the upper left corner, user 1 chooses
“strategy S1” and user 2 equally chooses “strategy S1”; in conclusion, both users are
sharing a single channel where collisions may occur and the throughput per user is
½*d = 0.45. After analyzing the game table, the existence of a unique Nash
equilibrium when both users choose strategy S7 (red cell) is apparent. In fact, this
forms a stable state which no user would find it interesting to deviate from. However,
it is not Pareto efficient since better couples of throughputs are obtained with other
combinations (yellow cells).

If a given user follows the simple rule of always targeting the maximal throughput,
no matter what are the consequences on the other user, he will choose strategy S7 and
reach the states corresponding to the green cells; this situation results in an operating
point which is suboptimal, in spite of being a Nash equilibrium.

For instance, suppose users play in turn, as represented with the orange arrows in
Table 1. If users are in an initial state such that both users pick up strategy S1 (the
normalized throughput they both achieve equals to 0.45) and if user 2 is the first to

274 E. Patouni et al.

play, he will try to achieve the maximal throughput and therefore chooses strategy S5
(he achieves throughput equal to 2 instead of 0.45). Then given the new strategy of
user 2, user 1 will try to maximize its throughput in turn and chooses strategy S7 (the
normalized throughput he achieves equals to 1.9 instead of 1). Finally, user 2
responds by selecting strategy S7 and the equilibrium is reached, since both users
achieve throughput equal to 1.35 and no one can improve its throughput by modifying
only its own strategy.

3.3 Derivation of Suitable Policies

The idea is to establish controlled competition so as to get the fairest split of resources
and reach the states corresponding to the yellow cells. This is achieved by the use of
simple policies propagated by the operator, e.g. “do not use strategy S7”.

The operating point search is made on the following suitable where strategy S7 has
been removed for both users. If the game is played based on this table (Table 2) and
users still follow the simple rule of always seeking for the maximal throughput (no
matter what are the consequences on the other user), the states corresponding to the
yellow cells will systematically be reached.

For example, suppose again that users play in turn, following the orange arrows
represented on Table 2. If users are in the same initial state as previously (both users
select strategy S1 and achieve normalized throughput equal to 0.45) and if user 2 is the
first to play, he will choose strategy S5 (he achieves a maximal throughput equal to 2
instead of 0.45). Then given the new strategy of user 2, user 1 will try to maximize its
throughput in turn and chooses indifferently strategy S4 or S6 to get 1.45 instead of 1.
Since the resulting throughput of user 2 is also maximized (he cannot achieve better
throughput than 1.45), this new configuration is an equilibrium, which is clearly more
efficient than the previous equilibrium where users both picked up strategy S7.

Table 2. Modified game table (1st column: User 1 strategies, 1st line: User 2 strategies)

 S1 S2 S3 S4 S5 S6

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45)

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2)

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45)

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45)

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45)

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9)

At this point it should be pointed out that the use of a very fundamental policy rule
expressing a constraint on the strategy selection (“do not use strategy S7”), makes it
possible to avoid sub-optimal Nash equilibrium.

3.4 Analysis of Impact of Policy Introduction

In the following figures, the game evolution in four different scenarios is illustrated:

• Scenario 1: users play simultaneously and do not consider policy rules;
• Scenario 2: users play simultaneously and respect the previously mentioned

policy rule;

 Autonomic Communications 275

• Scenario 3: users play in turn (i.e. one after each other) and do not consider
policy rule;

• Scenario 4: users play in turn and respect the previously mentioned policy rule.

Fig. 3. Convergence of strategies

Fig. 4. Data Rates

The first series of four graphs (Fig. 3) represents the evolution of the users’ choice
of strategy for the set of four scenarios, while the second (Fig. 4) represents the users’
throughput evolution for the same four scenarios. It should be noted that a

276 E. Patouni et al.

configuration where users play in turn converge to the equilibrium faster than when
users play simultaneously. Moreover, the curves confirm that the use of an
appropriate policy rule helps the system to converge towards an absolutely efficient
equilibrium.

4 A Framework for Dynamic Protocol Reconfiguration over
Heterogeneous RATs

This section highlights the procedure of protocol reconfiguration, describing the
proposed framework and mechanisms through a reconfiguration scenario over
heterogeneous RATs.

4.1 Protocol Reconfiguration

The section analyzes the fundamental phases of the protocol reconfiguration
procedure, Firstly, the mechanisms involved in the protocol stack bootstrap are
considered. In addition, a simple case that the decision mechanisms embedded in the
terminal dictate that a protocol reconfiguration should take place is presented. This
decision concerns the downloading, installation and on-the-fly activation of a protocol
component.

Control Signaling for Protocol Stack Bootstrap
During the protocol stack bootstrap, a configuration of the protocol stack is selected
by the autonomic decision making functionality; such configuration specifies the
protocol layers that should form the protocol stack as well as the components that
should be used within each protocol layer. Thereafter, the Decision Manager informs
the Autonomic Manager about the protocol layer configuration and the protocol
component configuration. After acknowledging the reception of this information, the
Autonomic Manager proceeds with the instantiation of the protocol components
selected for each protocol. Considering that the binding between the protocol layers
is realized via the standard defined Service Access Points (SAPs), the focus is on the
procedures related to the protocol component binding and replacement. Therefore, the
reconfiguration signalling depicted in Figure 1 illustrates only the instantiation of two
protocol components that form a protocol layer (Component TestA and Component
TestB) [16].

Semantic-Based Dynamic Binding of Protocol Components
Next, the semantic-based dynamic binding of protocol components is performed.
Specifically, the components evaluate the dynamic characteristics of their metadata
and identify the components there are composed with. Finally they establish the
bindings to the components they are composed with.

The details of this procedure are illustrated with an example; a protocol layer
comprised of two autonomic protocol components (CompA and CompB) is
considered and the dynamic binding of these components is analyzed. In this case
study a unidirectional communication pattern between the protocol components is
assumed, in the sense that CompA sends data to CompB. The XML representation for
the metadata profiles of CompA and CompB is illustrated in Fig. 5 (a) and (b)
respectively.

 Autonomic Communications 277

The metadata profiles include static characteristics specifying the component
identification (name, version, path to source code), whereas the dynamic characteristics
depict their current configuration in the system and are dynamically updated according
to the different protocol stacks stratification (dynamic characteristics include arrays for
input and output components and their static characteristics). For example, as depicted
in Fig. 5 (a), the protocol component CompA does not provide any input interface,
whereas it provides an output interface to CompB.

Based on the interpretation of the metadata profile, the component composition is
realized. During this phase at first, CompA checks the input array in its metadata,
which does not include any components. Thereafter, it checks its output array, which
includes CompB. Next, it should verify the composition between CompA and CompB
by checking that the input array in CompB metadata includes CompA. The same
procedure is applied by CompB. At this point it should be clarified that this procedure
also applies for all the protocol components regardless of the number of components
they are composed with.

 <?xml version="1.0" encoding="ISO-
8859-1" ?>

<component>
 <id> CompB</id>
 <version>Version 1</version>
 <path>/CompB</path>

 <inputs>
 <input No="1" />
 <id>CompA</id>
 <version>Version 1</version>
 <path>/CompA</path>
 </inputs>

 <outputs>
 <output No="0" />
 </outputs>

 </component>

 <?xml version="1.0"
encoding="ISO-8859-1" ?>

<component>
 <id> CompA</id>
 <version>Version 1</version>
 <path>/CompA</path>

 <inputs>
 <input No="0" />
 </inputs>

 <outputs>
 <output No="1">
 <id>CompB</id>
 <version>Version 1</version>
 <path>/CompB</path>
 </output>
 </outputs>

 </component>

 (a) (b)

Fig. 5. Metadata profiles for protocol components CompA and CompB

After the validation and verification of the composition, the component
communication establishment is realized. Specifically, each component establishes a
communication link for each component it is composed with by creating a FIFO
queue. The latter is realized with the use of a unique key. Such key is generated by a
conversion function that produces a global unique output based only on a unique
parameter, the concatenated String of the ID of the specified component and the ID of
the component it is composed with. In addition, it should be noted that with the use of
this ID, the specified component creates or accesses a FIFO queue, depending if it
already exists in the system. The composition verification and establishment
procedures are repeated for all the protocol components that are bound to the
specified component.

278 E. Patouni et al.

Control Signaling for Protocol Reconfiguration
This phase comprises the necessary steps for the protocol reconfiguration process.
Such procedure may be triggered by a change in the environment (new RAT/cellular
system, handover procedures), or the QoS requirements posed by applications or user
preferences. Next, the decision module specifies the new protocol stack
configuration. Based on contextual information about the protocol stack, it identifies
whether the specified components exist in the system. In case of missing components,
as in the scenario in Fig. 6 the Decision Manager should select the appropriate
protocol component from the repository available in the network. Thereafter, the
Autonomic Manager requests the Download Manager to perform the component
downloading. After the successful realization of this procedure, the component
installation in the system is performed by the Installation Manager. Finally, the
Decision Manager informs the Autonomic Manager about the new system
configuration.

Regarding the selection of the most appropriate protocol component from the
network, a theoretical approach is introduced. At first the interface compatibility
between the stationary and available components is checked; then the compatible
components are compared in order to select the “best”, based on the QoS it may
provide and the delay introduced for its downloading in the system.

This analysis is based on a modular system with the following formulation [8]. Let

us assume there are i protocol components, with input-output interfaces. In this
sense, compatible components have the same interfaces with the same components.
The methodology to find the compatible components is based on the Graph Theory.

Every group of compatible components belongs to a module is
. Further,

{ }321 ,, sssI =
 is the set of these modules, is

 module comprises all the compatible
components. Each module is associated with: 1) a vector of output

variables is PP
i

 ∈
, which describes the output interfaces of the protocol components.

Each module has an initial estimate
0

iP
 of its vector, which defines the output

interface of the initial protocol components connection. 2) a set of input interfaces

vectors from it’s neighbour modules is PP i

'' ∈ and iN
 which specifies the

modules with which modules belonging to I need to interact. 3) An objective

function iQ
: that is a measure of how well the output vector iP

 of the specified
module satisfies the task of the module, given its inputs from all its surrounding
modules:

() ()
ii sssss PQPPPQ =321 ,,

,

() () ()iii
iissss Pg

PqPPPQ
i λ

1
,, 321 +=

, where

iq
 is the quality of service function of each protocol component, ig

 is the delay

function of each protocol component and iλ
 depends on the number of the replaced

components.

 Autonomic Communications 279

Decision
Module

Download
Manager

Installation
Manager

Autonomic Manager Component
TestA

Component
testB

Component
testC

1: retrieve protocol s tack configuration

2: identify protocol layers

3: identify protocol components within each layer

4: pass protocol layer configuration

6: pass protocol component configuration

5: ack

7: ack

9: ack

10: instantiate protocol component

11: ack

12: checkComposition

13: bind

14: checkComposition

15: bind

16: negotiate for new configuration

17: download new component

18: downloaded successfully

19: install new protocol component

20: installed successfully

21: send new component configuration

22: replace (old Component, new Component)

23: pause

24: wait until old component is stopped

25: retrieve state

26: instantiate the new component

27: check Composition

28: bind

8: instantiate protocol component

Fig. 6. Signaling for Protocol Stack Bootstrap and Protocol Self-Configuration

The decision procedure, in terms of replacing a compatible component with the

one can be modelled as a game. Specifically, a game with
{ }321 ,, sssI =

 players is

considered; in our example the game has three players 32 1 s and , ss . Each player is

associated with a decision vector (An individual decision vector 1s
P

, 2sP
and 3sP

) and

280 E. Patouni et al.

a payoff function. During the course of the game, which is a sequence of stages and

moves, each player chooses a specific decision vector. The payoff function Q

evaluates the performance of the player based on its decision isP
 and the decisions

from the other players that influence the decision of player i. The I player game
starts; each player wants to find the decision that optimises its payoff. In particular,
a solution requires: 1) a concept of what is meant to be optimality 2) decision
making models that allow for the computation of this equilibrium. There exist no
cooperation among the players and each player makes its own decision
independently. The game theoretic integration framework is a particular solution to
the integration problem where the decision making model is defined in the context
of no cooperative games.

Dynamic Replacement of Protocol Components
After evaluating the new protocol configuration, the Autonomic Manager should
perform the replacement of the old protocol component with the new one. At first, the
Autonomic Manager pauses the functionality of the component under replacement
and retrieves its execution state (Fig. 6). Next, the Autonomic Manager instantiates the
new component and dispatches to it the retrieved state information. Based on the
acquired state information and its metadata, the new component realizes its dynamic
composition with existing software components (by accessing the FIFO queues that
correspond to existing communication links). The above analyzed on the fly
replacement process also allows the reliable operation of the software under
configuration, since it applies state management models to ensure the transparent
switching from the old to the new component.

4.2 Validation and Performance Assessment

Targeted to verify and validate the introduced framework, a proof-of-concept
prototype is implemented, concerning the dynamic binding and reconfiguration
capabilities of test protocol components. Specifically, this prototype concerns
the deployment of the following functionality: a) the Autonomic Manager, b) a
test protocol which comprises of two protocol components (CompA and CompB
presented in the example) with unidirectional communication as well as the
component metadata and c) the presented reconfiguration framework upon its
application in the test protocol.

Exploiting the mechanisms and procedures presented in the previous sections, the
implemented Autonomic Manager initiates these two protocol components; thereafter
the protocol components discover and access their metadata files and automatically
establish their bindings. In addition, a simple reconfiguration scenario was realized, in
terms of replacing CompB with another component with similar functionality
(CompC), during runtime operation of this test protocol. Following the scenario
presented in Fig. 6, the dynamic replacement of CompB was achieved; in addition the
new component incorporated itself seamlessly by taking into account the current
system composition and configuration. Furthermore the reliable operation of the test
protocol was preserved during the replacement process, in terms of achieving no
loss of protocol data or existing connections. Therefore the process of autonomic

 Autonomic Communications 281

component self-configuration (dynamic component binding and replacement) was
successfully validated under the current prototype, thus proving that the protocol
components, when reassembled, form the initially specified protocol functionality.

Furthermore, the performance assessment of the proposed system was considered
taking into account that in communication devices, the protocol stack subsystem must
meet strict performance requirements. Another aspect that should be taken into
consideration is the overhead introduced by the incorporation of autonomic features in
the new framework, in terms of performance metrics. In order to address these issues
and validate the feasibility of the autonomic approach, performance evaluation studies
were executed considering the following factors:

- the calculation of the overhead that is created for the dynamic establishment of
bindings between the protocol components, due to the introduced of autonomic
capabilities,

- the calculation of the time that is necessary for the specified protocol
reconfiguration to take place

The delay associated to the reconfiguration of the protocol was defined as the time
interval from the time instance the existing protocol component is being signalled by
the Autonomic Manager to stop its operation until the time instance the new protocol
component is successfully incorporated in the system. The time interval for the
original framework includes the following operations:

- Autonomic Manager waiting in idle state until the old component stops (so as the
old component is in a safe state at the time of replacement),

- Instantiation/initialization of the new protocol component by the Autonomic
Manager,

- Self-configuration of the new protocol component (the new protocol component
identifies and establishes its bindings with the existing protocol components on
its own)

In particular, Fig. 7 (a) illustrates the binding delay for each component within a set
of 100 samples, considering the underlying hardware capabilities (Pentium III
800MHz PC with 512MB RAM) and operating system (Debian Linux 3.0 R4). The
mean value for this binding delay is 787,46 µsec for CompA and 462,89 µsec for
CompB. The minimum value of the binding delay is found to be 505 µsec for
CompA and 415 µsec for CompB, whereas the maximum value is 2039 µsec and
694 µsec for CompA and CompB respectively (it should be noted that the delay is
greater for CompA compared to CompB, since the Autonomic Manager firstly
initiates CompA; this way CompA creates the communication queue, whereas
CompB simply accesses it).

Moreover, Fig. 7 (b) illustrates the delay that was introduced for the protocol
reconfiguration, for a set of 100 samples, considering the aforementioned experiment
setup capabilities. The mean value for this delay is 2381 µsec (the minimum and
maximum values are 2284 and 2456 µsec correspondingly).

The performance evaluation studies proved that the deployment of the proposed
framework and the introduction of autonomic capabilities in the protocol components
have minimum performance impact in the system, thus increasing its flexibility.

282 E. Patouni et al.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90

Samples

tim
e

in
 μ

se
c

CompB

CompA

2150

2200

2250

2300

2350

2400

2450

2500

1 10 19 28 37 46 55 64 73 82 91 100

samples

ti
m

e
in

 μ
se

c

Fig. 7. (a) Binding Delay for the autonomic components within a set of 100 samples, (b) Total
time for the replacement of the old component with the new one

5 Related Work

The vision for autonomic computing and communications was the basis for several
research activities in the past years in both industry and academia. These activities
spawn across the definition, design and deployment of self-* features in emerging
communication systems and devices [6]. Following the model proposed by IBM [5],
an autonomic system should at least incorporate four attributes: self-configuring, self-
healing, self-optimizing and self-protecting, known as self-CHOP features. On the
other side, additional features for autonomic communications systems are addressed
in [7], including self-awareness, self-adaptation, self-implementation and self-
description.

In addition, several work was performed in the context of deploying the above
presented self-* features. Since one of the basic capabilities addressed in autonomic
communication environments is the autonomic decision making, previous work in
policy based management was considered. In particular, the approach presented in [9]
should be mentioned, which addresses the policy management issue from a new
perspective through posing it as a problem of learning from current system behavior,
while creating new policies at runtime in response to changing requirements. A
hierarchical policy model is used to capture users and administrators’ higher level
goals into network level objectives.

Moreover, regarding the introduction dynamic configuration or autonomic capab-
ilities in software subsystems, several other approaches extend the conventional
software design. The above concept was initially applied to X-kernel, Cactus and
Appia frameworks, which deal with protocol composition based on microprotocol
objects so as to fulfill the application QoS requirements [13][14] . In addition, the
CORBA Component Model specifies components for distributed software systems,
However it is not appropriate for use in autonomic environments due to its limitations
regarding standard defined interfaces and limited extension of object functionality
[10][11]. Moreover, the Accord Programming Framework enables the development of
autonomic components, but gives limited information on the design blueprints,
pertaining to the establishment of component composition and replacement [12].

Furthermore, a different vision on protocol stack design for autonomic comm.-
unication based on the POEM model is analysed in [15]. This cross-layer
design focuses on the advantages of layering and the benefits of holistic and systematic
cross-layer optimization is at the core of this work. Finally, a Java-based protocol suite

 Autonomic Communications 283

that supports protocol subsystems is analyzed in [17]. This system introduces great
performance overhead (10:1) and does not specify the mechanisms required to achieve
on-the-fly protocol reconfiguration.

Regarding the game theoretical analysis, it should be noted that it has recently
attracted much attention in the general context of resource allocation in wireless
networks. Moreover, it can be seen as an appropriate optimization tool for a fully
distributed and scalable implementation (with a complexity transferred and shared out
on the terminal side), where traditional centralized decision becomes computationally
infeasible as the number of terminals in a cell, or the number of carriers in a
multicarrier setting grows. Game theory has been applied to many wireless network
problems, related to the physical, medium access or higher layers. In those problems,
users are generally competing for a limited resource while having a limited
knowledge of their environment, and therefore the strategic non-cooperative game
model is often used, where each player selfishly tries to maximize its own utility
regardless of the consequences its choice may have. For example, [3] deals with a
power control game for wideband (e.g. CDMA-based) systems. Random access
protocols, in particular ALOHA, are addressed in [4].

6 Conclusion

This paper presented a framework to cope with RAT selection and the requirement for
transparent plug-in of protocol-related RAT components in heterogeneous systems.
The study results illustrate that a suitable introduction of policies applicable by user
terminals impact the system behaviour considerably. The simple example in a two-
user context proved, that the interdiction of one strategy (applicable to all users)
avoids sub-optimum equilibria and leads to a quasi-immediate convergence in terms
of RAT selection strategy. As a follow-up of this work, the corresponding behaviour
needs to be analyzed in more complex scenarios consisting of an increased number of
users and RAT selection choices.

In addition, a protocol reconfiguration framework was analyzed, which provides
the necessary mechanisms for component-based protocol reconfiguration. The
signaling for the four basic phases of this procedure was specified as well as the
mechanisms that enable the transparent protocol component self-configuration.
Finally the validation of the proposed framework proved its feasibility, thus the
introduction of minimum performance overhead in the system.

Acknowledgments. This work has been performed in the framework of the IST
project IST-2003-507995 E2R II [18], which is partly funded by the European Union.
The authors would like to acknowledge the contributions of their colleagues.

References

1. J. Strassner, “Autonomic networking – theory and practice”, In Proc. 9th IFIP/IEEE
International Symposium on Network Management (IM’2005), Nice, France, May 2005.

2. D. Fudenberg and J. Tirole, “Game Theory”, MIT Press, ISBN 0-262-06141-4, USA,
1991.

3. C.U. Saraydar, N.B. Mandayam and D.J. Goodman, “Efficient Power Control via Pricing
in Wireless Data Networks,” IEEE Trans. on Communications, Feb. 2002.

284 E. Patouni et al.

4. A. B. MacKenzie and S.B. Wicker, “Selfish users in Aloha: a game theoretic approach,” In
Proc. Vehicular Technology Conference (VTC), vol. 3, Oct. 2001.

5. Jeffrey O. Kephart, David M. Chess. "The Vision of Autonomic Computing," Computer,
vol. 36, n° 1, pp. 41-50, Jan. 2003

6. Murch, R., Autonomic Computing, Prentice Hall, 2004.
7. M.Smirnov, “Research Agenda for a New Communication Paradigm”, Fraunhofer

FOKUS White Paper, Nov. 2004, http://www.autonomic-communication.
org/publications/doc/WP_v02.pdf

8. H. Isil Bozma and James S. Duncan, “A game Theoretic Approach to Integration of
Modules”, IEEE Trans. Pattern Anal. Machine Intell., vol. 16, no. 11, November 1994

9. N. Samaan and A. Karmouch, “An Automated Policy-Based Management Framework for
Wired/Wireless Differentiated Communication Systems” in special issue of JSAC on
Autonomic Communication systems, December 2005, Volume 23, Number 12

10. Wang, N., Schmidt, D.C., O'Ryan, C. Overview of the CORBA Component Model. In
Component-Based Software Engineering: Putting the Pieces Together, Addison Wesley,
Editors G.T. Heineman and W.T. Council. 2001.

11. OMG CORBA Components, version 3.0, June (2002), http://www.omg.org/
12. H. Liu and M. Parashar. A component based programming framework for autonomic

applications. In Proceedings of the International Conference on Autonomic Computing,
New York, NY, 2004.

13. Norman C. Hutchinson and Larry L.Peterson: The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software Engineering, 17(1):64-
76, January 1991.

14. Sergio Mena, Xavier Cuvellier, Christophe Gregoire, Andre Schiper: Appia vs. Cactus:
Comparing Protocol Composition Frameworks. 22nd International Symposium on
Reliable Distributed Systems (SRDS'03), Florence, Italy, October 2003.

15. X. Gu, X. Fu, H. Tschofeni, L. Wolf, “Towards Self-Optimizing Protocol Stack for
Autonomic Communications: Initial Experience”, in the Proceedings of the 2nd IFIP
International Workshop on Autonomic Communication (WAC'05), Athens, Greece,
October 2005.

16. E.Patouni, N.Alonistioti “A Framework for the Deployment of Self-Managing and Self-
Configuring Components in Autonomic Environments”, in the Proceedings of
the International IEEE WoWMoM Workshop on Autonomic Communications
and Computing (ACC 06) Niagara-Falls, Buffalo-NY, 26-29 June 2006.

17. B.Krupczak, K.L.Calvert, M.A.Ammar, Implementing Communication Protocols in Java,
IEEE Communications Magazine, October 1998.

18. End-to-End Reconfigurability (E2R II), IST-2003-507995 E2R II, http://www.
e2r2.motlabs.com

	Introduction
	Problem Statement
	RAT Selection Context
	Protocol Reconfiguration

	Analysis of Game Theory Based RAT Selection in a Simple Two-User Context
	Scenario Definition
	Performance Analysis
	Derivation of Suitable Policies
	Analysis of Impact of Policy Introduction

	A Framework for Dynamic Protocol Reconfiguration over Heterogeneous RATs
	Protocol Reconfiguration
	Validation and Performance Assessment

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

