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Abstract. The Autonomic Communications concept emerges as one of the most 
promising solutions for future heterogeneous systems networking. This notion 
implies the introduction of advanced mechanisms for autonomic decision 
making and self-configuration. To this end, this paper proposes an integrated 
framework that facilitates autonomic features to capture the needs for RAT 
selection and device reconfiguration in a Composite Radio Environment. 
Specifically, a game theoretical approach targeted to the definition of 
appropriate policies for distributed equipment elements is presented. Thus, the 
user terminals are able to exploit context information in order to i) identify an 
optimum trade-off for (multiple) Radio Access Technology (RAT) selection 
and ii) adapt the protocol stack and respective protocol functionality using a 
proposed component based framework for transparent protocol component 
replacement. Simulation and performance results finally show that the proposed 
mechanisms lead to efficient resource management, minimizing the complexity 
on the network and terminal side as well as keeping the required signaling 
overhead as low as possible.  

Keywords: autonomic networking, cognitive networks, reconfiguration. 

1   Introduction 

Future beyond 3rd Generation (B3G) systems are expected to exploit the full benefits 
of the diversity within the radio eco-space, composed of wide range of systems such 
as cellular, fixed, wireless local area and broadcast. In this framework, it is important 
to provide suitable means on the network and terminal side serving as an enabler for 
this vision. Such vision is captured by the notion of autonomic communications which 
provides the grounds for the deployment of advanced concepts, including a device 
agnostic and protocol independent approach for an hierarchy of systems with self-
managing, self-configuring and self-governance features. Beyond the conceptual 
merits of such an approach, the following key issues need to be addressed in a 
practical context: i) Manage the complexity on the network and user terminal side and 
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provide policy communication means, ii) Minimize required signaling overhead and 
iii) Provide means for the device dynamic adaptation following the decision for RAT 
selection. 

The first of these items typically motivates a distributed system concept as 
analyzed in [1] in the context of autonomic communications where self-managing 
devices with behavior controlled by policies are introduced. Furthermore, we assume 
the introduction of a suitable cognitive channel which covers, besides policy related 
information, future context data helping the devices to perform decisions. Item ii) 
relates to the policies themselves, leading to the observation that simple, global 
policies (applicable to all users) should be preferred to user specific rules in order to 
assure a minimum signaling overhead. In addition item iii) is related to the 
introduction of a framework incorporating the necessary mechanisms that enable the 
dynamic adaptation/reconfiguration of the protocol stack. 

In the context of this paper, all these principles are highlighted; the rest of this 
contribution is organized as follows: Section 2 defines the general study framework 
portraying the problem that is examined in this contribution. A RAT selection 
analysis for a simple two-user context, based on game theoretic tools is presented in 
section 3.  A framework for the dynamic protocol reconfiguration over heterogeneous 
RATs is analyzed in section 4. Finally, related work and conclusion remarks as well 
as directions for future research are highlighted in section 5 and 6 respectively. 

2   Problem Statement 

In this analysis, a composite radio environment, in terms of a distributed network of 
heterogeneous Radio Access Technologies (RATs), is considered, as illustrated below 
(Fig. 1). A multitude of users is assumed to compete for access to one or several RATs 
and one or several distinct communication channels (in terms of spectrum usage) in 
parallel. An efficient operation requires suitable RAT/channel selection algorithms: in 
heterogeneous and reconfigurable wireless systems, terminals and network 
equipments should incorporate enhanced capabilities for adapting to the drastically 
changing environment.  

Towards this direction, this paper analyzes an integrated framework that facilitates 
autonomic features to capture the needs for RAT selection and device reconfiguration 
in a Composite Radio Environment. At first, the process of selecting a RAT targeted 
to the optimum adaptation of users is addressed. Following the RAT selection, the 
dynamic device adaptation to the new RAT should take place, to cope with 
application and QoS requirements. For example, after a change in the RAT, an update 
in a protocol component/codec may be triggered (either network initiated or device 
initiated) for various reasons: i) to compensate for QoS degradation, ii) to provide a 
protocol patch update to fix a software bug iii) to provide a new version of an existing 
component with enhanced capabilities. In this sense, a generic framework is provided 
that handles the necessary mechanisms for downloading, installation and on-the-fly 
activation of missing protocol-related RAT components. The following subsections 
highlight the focus and design assumptions in each of the previously mentioned 
reconfiguration phases. 
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2.1   RAT Selection Context 

The RAT selection phase addresses an efficient attribution of corresponding resources 
to a specific user (different RATs such as WiMAX, WiFi (IEEE802.11a/b/g/n, etc.), 
3GPP, DVB-T or DAB, different bands, etc.) in a distributed system, minimizing the 
required complexity in the network and user side as well as the signaling overhead. 
The focus is laid on techniques that are fully compatible with legacy technologies; the 
proposed approaches are also applicable to future air-interfaces, following the trend 
for the deployment of a (physical or virtual) cognitive channel as a single new 
element to be exploited for finding optimum resource usage strategy.  These 
approaches are meant to be transparent to the physical user – any reconfiguration 
process is handled automatically by the equipment devices.  

In addition, each terminal/user can apply several strategies in order to get the best 
service requested by the user. Multi-mode and reconfigurable terminals have the 
capability to connect simultaneously to several wireless network resources and also to 
reconfigure themselves in order to connect to new radio access technologies available 
in a cell. Given that multi-mode and reconfigurable network equipments inherently 
provide enhanced capabilities (by either dynamically adapting a specific radio access 
resource, or by reconfiguring some nodes to dynamically provide higher system 
capacity, depending on demands in a given area), consequently, the terminals should 
automatically adapt to the new scenario. 

 

 

Fig. 1. A distributed network approach in a multicell context with different Cellular Access 
Points (CAPs) 

Moreover, it is assumed that the system is organized in an entirely distributed way: 
the network propagates “policies” (e.g., via the Cognitive Channel) which define 
generic behavioral rules to be applied by any network and user equipment. 
Consequently, the network/user equipment is NOT parameterized by any central 
controller, but adapts autonomously (typically applying “Autonomic Networking” 
principles) to the constantly changing environment. This finally leads to a distributed 
optimization of the resource use. In the same example, a possible environmental 
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change triggering user adaptation is illustrated: a RAT terminates its services and the 
remaining resources (RATs, bands, etc.) must thus be split among the active users. 

The problem addressed within this paper concerns the optimum adaptation of users 
to a changing context/environment using autonomic networking and policy-based 
self-governance principles. A mechanism is proposed that enables users to adapt their 
resource use autonomously (applying autonomic networking approaches and relying 
on policy based self-management), such that a suitable compromise is found that is 
near-optimum from the perspective of a specific user (“get maximum data rate, even 
if I penalize other users”) and from the network perspective (“maximize total network 
throughput and split resources fairly among all users”). 

2.2   Protocol Reconfiguration 

Following the RAT selection, the protocol reconfiguration phase is aimed to address 
generic mechanisms for the deployment of transparent plug-in of protocol 
components in equipments. The presented solution is aligned with a set of 
assumptions regarding the design aspects of the proposed architecture and 
mechanisms: 

- a protocol stack is composed of discrete protocol layers. The communication 
between them is established either using standard defined interfaces, i.e. Service 
Access Points (SAPs) or queue-based communication schemes. This design also 
facilitates the maintenance of cross layer optimization issues in the protocol stack. 
In addition, this design provides the capability of specifying a protocol stack 
according to application needs, QoS requirements as well as the specific RATs. 

- A protocol layer is composed of protocol components. Each protocol component 
may specify specific protocol functionality (i.e, if we consider a TCP protocol, a 
TCP component may realize the congestion control algorithms) or a combination 
of different functionalities (i.e, a TCP component that realizes both congestion 
control and flow control algorithms). 

The introduced framework based on the above considerations is aimed to cope with 
the following protocol reconfiguration aspects: the dynamic binding of component 
services into a fully fledged protocol service as well as the runtime replacement of 
protocol functionality. Specifically, this solution extends the typical Manager-centric 
architectures for the establishment of component bindings introducing a distributed 
model. Such model apportions the above mentioned functionality to the protocol 
components. The latter is based on a semantic-layer of information which describes 
static characteristics of the components as well as dynamic characteristics to capture 
the environment configuration.  

The above analyzed mechanisms are incorporated into a generic management and 
control architecture enabling dynamic protocol reconfiguration via self-configuring 
protocol components (Fig. 2). In particular, the following key elements are identified: 

- The Download Manager module which caters for the software download in the 
system, as well as for authorization procedures and integrity checks. 

- The Installation Manager, which is responsible for post-download steps as well as 
the software installation to the system. 

- The Decision Manager module which specifies concrete decision concerning 
reconfiguration actions, based upon a set of policy rules and contextual 
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information. In the scope of this paper, such module is responsible for the 
protocol stack configuration, in terms of specifying the different protocol layers 
and components to be used, as well as for triggering a protocol stack update. 

- The Autonomic Manager module, which is responsible for the overall monitoring 
and control of the software operation, i.e., it instantiates the various 
components/triggers the component replacement process. 
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Fig. 2. A Management and Control Architecture Enabling Self-Configuring Protocols 

3   Analysis of Game Theory Based RAT Selection in a Simple 
Two-User Context 

Considering a simple two-user scenario, this section illustrates the application of a 
game-theoretic analysis [2] in order to derive suitable policy rules directing the user 
behavior. It is shown that global policies, applicable to all users, reduce the RAT 
selection convergence time considerably. Moreover, a global policy assures a 
minimum signaling overhead, since the user terminals are not addressed 
independently as it is the case of a centralized approach. The main aspects presented 
below can be extended to more complex scenarios consisting of a multitude of 
heterogeneous RATs and a multitude of users at the cost of an increased complexity 
for the RAT selection and search for suitable policies. This generalization, however, 
is out of the scope of this paper and will be discussed in future contributions. 

3.1   Scenario Definition  

The following scenario is considered in this analysis: An operator controls four 
IEEE802.11n Access Points (APs), each operating in a distinct 20MHz band and at a 
distinct carrier frequency. There are two Mobile Terminals (MTs) communicating 
over 1, 2, 3 or all of the available bands. The operator decides to switch off one AP, 
and indicates this information by propagating a corresponding message to the MTs. 
The MTs then need to redefine their spectrum / AP use autonomously.  Each MT has 
the choice among seven possible spectrum allocation strategies denoted from S1 to S7: 
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1)  S1: use band #1;   2)  S2: use band #2;   
3)  S3: use band #3;   4)  S4: use bands #1 and #2;  
5)  S5: use bands #2 and #3;  6)  S6: use bands #1 and #3; 
7)  S7: use bands #1, #2 and #3.  

A simplified throughput computation model is used, assuming a throughput per band 
(or channel) equal to D bit/s. When a given channel is reserved to only one MT, the 
total throughput D is available for the MT. In case it is split among two MTs, the total 
throughput decreases due to collisions: D’ = D*d where 0<d<1 is a kind of penalty 
factor, and each MT gets a throughput of D’/2 = D*d/2 with 0<d<1. In the examples 
below, we choose “d=0.9” for illustration purposes. The issue addressed is to find the 
best combination of strategies for both MTs such that maximal throughput is achieved 
for both.  

3.2   Performance Analysis 

The analysis is carried through the 2D game table presented below; the rows and the 
columns correspond to the strategies of MT1 and MT2 respectively. In addition, the 
table elements correspond to pairs of throughput values (MT1 throughput, MT2 
throughput), obtained when MT1 and MT2 are using a given combination of 
strategies. 

Table 1. Overall game table (1st column: User 1 strategies, 1st line: User 2 strategies) 

 S1 S2 S3 S4 S5 S6 S7 

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45) (0.45, 2.45) 

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2) (0.45, 2.45) 

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45) (0.45, 2.45) 

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45) (0.9, 1.9) 

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45) (0.9, 1.9) 

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9) (0.9, 1.9) 

S7 (2.45, 0.45) (2.45, 0.45) (2.45, 0.45) (1.9, 0.9) (1.9, 0.9) (1.9, 0.9) (1.35, 1.35) 

 

To give an example: in the first cell on the upper left corner, user 1 chooses 
“strategy S1” and user 2 equally chooses “strategy S1”; in conclusion, both users are 
sharing a single channel where collisions may occur and the throughput per user is 
½*d = 0.45. After analyzing the game table, the existence of a unique Nash 
equilibrium when both users choose strategy S7 (red cell) is apparent. In fact, this 
forms a stable state which no user would find it interesting to deviate from. However, 
it is not Pareto efficient since better couples of throughputs are obtained with other 
combinations (yellow cells). 

If a given user follows the simple rule of always targeting the maximal throughput, 
no matter what are the consequences on the other user, he will choose strategy S7 and 
reach the states corresponding to the green cells; this situation results in an operating 
point which is suboptimal, in spite of being a Nash equilibrium. 

For instance, suppose users play in turn, as represented with the orange arrows in 
Table 1. If users are in an initial state such that both users pick up strategy S1 (the 
normalized throughput they both achieve equals to 0.45) and if user 2 is the first to 
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play, he will try to achieve the maximal throughput and therefore chooses strategy S5 
(he achieves throughput equal to 2 instead of 0.45). Then given the new strategy of 
user 2, user 1 will try to maximize its throughput in turn and chooses strategy S7 (the 
normalized throughput he achieves equals to 1.9 instead of 1). Finally, user 2 
responds by selecting strategy S7 and the equilibrium is reached, since both users 
achieve throughput equal to 1.35 and no one can improve its throughput by modifying 
only  its own strategy. 

3.3   Derivation of Suitable Policies 

The idea is to establish controlled competition so as to get the fairest split of resources 
and reach the states corresponding to the yellow cells. This is achieved by the use of 
simple policies propagated by the operator, e.g. “do not use strategy S7”. 

The operating point search is made on the following suitable where strategy S7 has 
been removed for both users. If the game is played based on this table (Table 2) and 
users still follow the simple rule of always seeking for the maximal throughput (no 
matter what are the consequences on the other user), the states corresponding to the 
yellow cells will systematically be reached. 

For example, suppose again that users play in turn, following the orange arrows 
represented on Table 2. If users are in the same initial state as previously (both users 
select strategy S1 and achieve normalized throughput equal to 0.45) and if user 2 is the 
first to play, he will choose strategy S5 (he achieves a maximal throughput equal to 2 
instead of 0.45). Then given the new strategy of user 2, user 1 will try to maximize its 
throughput in turn and chooses indifferently strategy S4 or S6 to get 1.45 instead of 1. 
Since the resulting throughput of user 2 is also maximized (he cannot achieve better 
throughput than 1.45), this new configuration is an equilibrium, which is clearly more 
efficient than the previous equilibrium where users both picked up strategy S7. 

Table 2. Modified game table (1st column: User 1 strategies, 1st line: User 2 strategies) 

 S1 S2 S3 S4 S5 S6 

S1 (0.45, 0.45) (1,1) (1,1) (0.45, 1.45) (1,2) (0.45, 1.45) 

S2 (1,1) (0.45, 0.45) (1,1) (0.45, 1.45) (0.45, 1.45) (1,2) 

S3 (1,1) (1,1) (0.45, 0.45) (1, 2) (0.45, 1.45) (0.45, 1.45) 

S4 (1.45, 0.45) (1.45, 0.45) (2, 1) (0.9, 0.9) (1.45, 1.45) (1.45, 1.45) 

S5 (2, 1) (1.45, 0.45) (1.45, 0.45) (1.45, 1.45) (0.9, 0.9) (1.45, 1.45) 

S6 (1.45, 0.45) (2, 1) (1.45, 0.45) (1.45, 1.45) (1.45, 1.45) (0.9, 0.9) 

 
At this point it should be pointed out that the use of a very fundamental policy rule 
expressing a constraint on the strategy selection (“do not use strategy S7”), makes it 
possible to avoid sub-optimal Nash equilibrium. 

3.4   Analysis of Impact of Policy Introduction 

In the following figures, the game evolution in four different scenarios is illustrated:  

• Scenario 1: users play simultaneously and do not consider policy rules; 
• Scenario 2: users play simultaneously and respect the previously mentioned 

policy rule; 
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• Scenario 3: users play in turn (i.e. one after each other) and do not consider 
policy rule; 

• Scenario 4: users play in turn and respect the previously mentioned policy rule. 
 

 

Fig. 3. Convergence of strategies 

 

Fig. 4. Data Rates 

The first series of four graphs (Fig. 3) represents the evolution of the users’ choice 
of strategy for the set of four scenarios, while the second (Fig. 4) represents the users’ 
throughput evolution for the same four scenarios. It should be noted that a 
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configuration where users play in turn converge to the equilibrium faster than when 
users play simultaneously. Moreover, the curves confirm that the use of an 
appropriate policy rule helps the system to converge towards an absolutely efficient 
equilibrium. 

4   A Framework for Dynamic Protocol Reconfiguration over 
Heterogeneous RATs 

This section highlights the procedure of protocol reconfiguration, describing the 
proposed framework and mechanisms through a reconfiguration scenario over 
heterogeneous RATs.  

4.1   Protocol Reconfiguration 

The section analyzes the fundamental phases of the protocol reconfiguration 
procedure, Firstly, the mechanisms involved in the protocol stack bootstrap are 
considered.  In addition, a simple case that the decision mechanisms embedded in the 
terminal dictate that a protocol reconfiguration should take place is presented. This 
decision concerns the downloading, installation and on-the-fly activation of a protocol 
component.  

Control Signaling for Protocol Stack Bootstrap 
During the protocol stack bootstrap, a configuration of the protocol stack is selected 
by the autonomic decision making functionality; such configuration specifies the 
protocol layers that should form the protocol stack as well as the components that 
should be used within each protocol layer. Thereafter, the Decision Manager informs 
the Autonomic Manager about the protocol layer configuration and the protocol 
component configuration. After acknowledging the reception of this information, the 
Autonomic Manager proceeds with the instantiation of the protocol components 
selected for each protocol.  Considering that the binding between the protocol layers 
is realized via the standard defined Service Access Points (SAPs), the focus is on the 
procedures related to the protocol component binding and replacement. Therefore, the 
reconfiguration signalling depicted in Figure 1 illustrates only the instantiation of two 
protocol components that form a protocol layer (Component TestA and Component 
TestB) [16]. 

Semantic-Based Dynamic Binding of Protocol Components 
Next, the semantic-based dynamic binding of protocol components is performed. 
Specifically, the components evaluate the dynamic characteristics of their metadata 
and identify the components there are composed with. Finally they establish the 
bindings to the components they are composed with. 

The details of this procedure are illustrated with an example; a protocol layer 
comprised of two autonomic protocol components (CompA and CompB) is 
considered and the dynamic binding of these components is analyzed. In this case 
study a unidirectional communication pattern between the protocol components is 
assumed, in the sense that CompA sends data to CompB. The XML representation for 
the metadata profiles of CompA and CompB is illustrated in Fig. 5 (a) and (b) 
respectively. 
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The metadata profiles include static characteristics specifying the component 
identification (name, version, path to source code), whereas the dynamic characteristics 
depict their current configuration in the system and are dynamically updated according 
to the different protocol stacks stratification (dynamic characteristics include arrays for 
input and output components and their static characteristics). For example, as depicted 
in Fig. 5 (a), the protocol component CompA does not provide any input interface, 
whereas it provides an output interface to CompB. 

Based on the interpretation of the metadata profile, the component composition is 
realized. During this phase at first, CompA checks the input array in its metadata, 
which does not include any components. Thereafter, it checks its output array, which 
includes CompB. Next, it should verify the composition between CompA and CompB 
by checking that the input array in CompB metadata includes CompA. The same 
procedure is applied by CompB. At this point it should be clarified that this procedure 
also applies for all the protocol components regardless of the number of components 
they are composed with. 

 

 

  <?xml version="1.0" encoding="ISO-
8859-1" ?>  
 
<component> 
      <id> CompB</id>  
      <version>Version 1</version>  
      <path>/CompB</path>  

 
      <inputs> 
              <input No="1" /> 
              <id>CompA</id>  
              <version>Version 1</version> 
               <path>/CompA</path>  
      </inputs> 
 
      <outputs> 
             <output No="0" /> 
      </outputs> 
 
  </component> 

 

  <?xml version="1.0" 
encoding="ISO-8859-1" ?>  
 
<component> 
      <id> CompA</id>  
      <version>Version 1</version>  
      <path>/CompA</path>  

 
      <inputs> 
        <input No="0" />  
      </inputs> 
 
      <outputs> 
             <output No="1"> 
             <id>CompB</id>  
             <version>Version 1</version> 
             <path>/CompB</path>  
             </output> 
      </outputs> 
 
  </component> 

   (a)    (b)  

Fig. 5. Metadata profiles for protocol components CompA and CompB 

After the validation and verification of the composition, the component 
communication establishment is realized. Specifically, each component establishes a 
communication link for each component it is composed with by creating a FIFO 
queue. The latter is realized with the use of a unique key. Such key is generated by a 
conversion function that produces a global unique output based only on a unique 
parameter, the concatenated String of the ID of the specified component and the ID of 
the component it is composed with. In addition, it should be noted that with the use of 
this ID, the specified component creates or accesses a FIFO queue, depending if it 
already exists in the system. The composition verification and establishment 
procedures are repeated for all the protocol components that are bound to the 
specified component. 
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Control Signaling for Protocol Reconfiguration 
This phase comprises the necessary steps for the protocol reconfiguration process. 
Such procedure may be triggered by a change in the environment (new RAT/cellular 
system, handover procedures), or the QoS requirements posed by applications or user 
preferences.  Next, the decision module specifies the new protocol stack 
configuration. Based on contextual information about the protocol stack, it identifies 
whether the specified components exist in the system. In case of missing components, 
as in the scenario in Fig. 6 the Decision Manager should select the appropriate 
protocol component from the repository available in the network. Thereafter, the 
Autonomic Manager requests the Download Manager to perform the component 
downloading. After the successful realization of this procedure, the component 
installation in the system is performed by the Installation Manager. Finally, the 
Decision Manager informs the Autonomic Manager about the new system 
configuration. 

Regarding the selection of the most appropriate protocol component from the 
network, a theoretical approach is introduced. At first the interface compatibility 
between the stationary and available components is checked; then the compatible 
components are compared in order to select the “best”, based on the QoS it may 
provide and the delay introduced for its downloading in the system.  

This analysis is based on a modular system with the following formulation [8]. Let 

us assume there are i  protocol components, with input-output interfaces. In this 
sense, compatible components have the same interfaces with the same components.  
The methodology to find the compatible components is based on the Graph Theory. 

Every group of compatible components belongs to a module is
. Further, 

{ }321 ,, sssI =
 is the set of these modules, is

 module comprises all the compatible 
components. Each module is associated with: 1) a vector of output 

variables is PP
i

  ∈
, which describes the output interfaces of the protocol components. 

Each module has an initial estimate 
0

iP
 of its vector, which defines the output 

interface of the initial protocol components connection. 2) a set of input interfaces 

vectors from it’s neighbour modules  is PP i

''   ∈  and iN
 which specifies the 

modules with which modules belonging to I  need to interact. 3) An objective 

function  iQ
: that is a measure of how well the output vector iP

 of the specified 
module satisfies the task of the module, given its inputs from all its surrounding 
modules: 

( ) ( )
ii sssss PQPPPQ =321 ,,

, 

( ) ( ) ( )iii
iissss Pg

PqPPPQ
i λ

1
,, 321 +=

, where 

iq
 is the quality of service function of each protocol component, ig

 is the delay 

function of each protocol component and iλ
 depends on the number of the replaced 

components. 
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Fig. 6. Signaling for Protocol Stack Bootstrap and Protocol Self-Configuration 

The decision procedure, in terms of replacing a compatible component with the 

one can be modelled as a game. Specifically, a game with 
{ }321 ,, sssI =

 players is 

considered; in our example the game has three players 32  1 s and  , ss . Each player is 

associated with a decision vector (An individual decision vector 1s
P

, 2sP
and 3sP

) and 
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a payoff function. During the course of the game, which is a sequence of stages and 

moves, each player chooses a specific decision vector. The payoff function Q  

evaluates the performance of the player based on its decision isP
 and the decisions 

from the other players that influence the decision of player i. The I  player game 
starts; each player wants to find the decision that optimises its payoff. In particular, 
a solution requires: 1) a concept of what is meant to be optimality 2) decision 
making models that allow for the computation of this equilibrium. There exist no 
cooperation among the players and each player makes its own decision 
independently.  The game theoretic integration framework is a particular solution to 
the integration problem where the decision making model is defined in the context 
of no cooperative games. 

Dynamic Replacement of Protocol Components 
After evaluating the new protocol configuration, the Autonomic Manager should 
perform the replacement of the old protocol component with the new one. At first, the 
Autonomic Manager pauses the functionality of the component under replacement 
and retrieves its execution state (Fig. 6). Next, the Autonomic Manager instantiates the 
new component and dispatches to it the retrieved state information. Based on the 
acquired state information and its metadata, the new component realizes its dynamic 
composition with existing software components (by accessing the FIFO queues that 
correspond to existing communication links). The above analyzed on the fly 
replacement process also allows the reliable operation of the software under 
configuration, since it applies state management models to ensure the transparent 
switching from the old to the new component.   

4.2   Validation and Performance Assessment 

Targeted to verify and validate the introduced framework, a proof-of-concept 
prototype is implemented, concerning the dynamic binding and reconfiguration 
capabilities of test protocol components. Specifically, this prototype concerns  
the deployment of the following functionality: a) the Autonomic Manager, b) a  
test protocol which comprises of two protocol components (CompA and CompB 
presented in the example) with unidirectional communication as well as the 
component metadata and c) the presented reconfiguration framework upon its 
application in the test protocol. 

Exploiting the mechanisms and procedures presented in the previous sections, the 
implemented Autonomic Manager initiates these two protocol components; thereafter 
the protocol components discover and access their metadata files and automatically 
establish their bindings. In addition, a simple reconfiguration scenario was realized, in 
terms of replacing CompB with another component with similar functionality 
(CompC), during runtime operation of this test protocol. Following the scenario 
presented in Fig. 6, the dynamic replacement of CompB was achieved; in addition the 
new component incorporated itself seamlessly by taking into account the current 
system composition and configuration. Furthermore the reliable operation of the test 
protocol was preserved during the replacement process, in terms of achieving no  
loss of protocol data or existing connections. Therefore the process of autonomic 
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component self-configuration (dynamic component binding and replacement) was 
successfully validated under the current prototype, thus proving that the protocol 
components, when reassembled, form the initially specified protocol functionality.  

Furthermore, the performance assessment of the proposed system was considered 
taking into account that in communication devices, the protocol stack subsystem must 
meet strict performance requirements. Another aspect that should be taken into 
consideration is the overhead introduced by the incorporation of autonomic features in 
the new framework, in terms of performance metrics. In order to address these issues 
and validate the feasibility of the autonomic approach, performance evaluation studies 
were executed considering the following factors:  

- the calculation of the overhead that is created for the dynamic establishment of 
bindings between the protocol components, due to the introduced of autonomic 
capabilities,  

- the calculation of the time that is necessary for the specified protocol 
reconfiguration to take place 

The delay associated to the reconfiguration of the protocol was defined as the time 
interval from the time instance the existing protocol component is being signalled by 
the Autonomic Manager to stop its operation until the time instance the new protocol 
component is successfully incorporated in the system. The time interval for the 
original framework includes the following operations: 

- Autonomic Manager waiting in idle state until the old component stops (so as the 
old component is in a safe state at the time of replacement), 

- Instantiation/initialization of the new protocol component  by the Autonomic 
Manager, 

- Self-configuration of the new protocol component (the new protocol component 
identifies and establishes its bindings with the existing protocol components on 
its own) 

In particular, Fig. 7 (a) illustrates the binding delay for each component within a set 
of 100 samples, considering the underlying hardware capabilities (Pentium III 
800MHz PC with 512MB RAM) and operating system (Debian Linux 3.0 R4). The 
mean value for this binding delay is 787,46 µsec for CompA and 462,89 µsec for 
CompB. The minimum value of the binding delay is found to be 505 µsec for 
CompA and 415 µsec for CompB, whereas the maximum value is 2039 µsec and 
694 µsec for CompA and CompB respectively (it should be noted that the delay is 
greater for CompA compared to CompB, since the Autonomic Manager firstly 
initiates CompA; this way CompA creates the communication queue, whereas 
CompB simply accesses it). 

Moreover, Fig. 7 (b) illustrates the delay that was introduced for the protocol 
reconfiguration, for a set of 100 samples, considering the aforementioned experiment 
setup capabilities. The mean value for this delay is 2381 µsec (the minimum and 
maximum values are 2284 and 2456 µsec correspondingly). 

The performance evaluation studies proved that the deployment of the proposed 
framework and the introduction of autonomic capabilities in the protocol components 
have minimum performance impact in the system, thus increasing its flexibility. 
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Fig. 7. (a) Binding Delay for the autonomic components within a set of 100 samples, (b) Total 
time for the replacement of the old component with the new one 

5   Related Work 

The vision for autonomic computing and communications was the basis for several 
research activities in the past years in both industry and academia. These activities 
spawn across the definition, design and deployment of self-* features in emerging 
communication systems and devices [6]. Following the model proposed by IBM [5], 
an autonomic system should at least incorporate four attributes: self-configuring, self-
healing, self-optimizing and self-protecting, known as self-CHOP features. On the 
other side, additional features for autonomic communications systems are addressed 
in [7], including self-awareness, self-adaptation, self-implementation and self-
description. 

In addition, several work was performed in the context of deploying the above 
presented self-* features. Since one of the basic capabilities addressed in autonomic 
communication environments is the autonomic decision making, previous work in 
policy based management was considered. In particular, the approach presented in [9] 
should be mentioned, which addresses the policy management issue from a new 
perspective through posing it as a problem of learning from current system behavior, 
while creating new policies at runtime in response to changing requirements. A 
hierarchical policy model is used to capture users and administrators’ higher level 
goals into network level objectives. 

Moreover, regarding the introduction dynamic configuration or autonomic capab-
ilities in software subsystems, several other approaches extend the conventional 
software design. The above concept was initially applied to X-kernel, Cactus and 
Appia frameworks, which deal with protocol composition based on microprotocol 
objects so as to fulfill the application QoS requirements [13][14] . In addition, the 
CORBA Component Model specifies components for distributed software systems, 
However it is not appropriate for use in autonomic environments due to its limitations 
regarding standard defined interfaces and limited extension of object functionality 
[10][11]. Moreover, the Accord Programming Framework enables the development of 
autonomic components, but gives limited information on the design blueprints, 
pertaining to the establishment of component composition and replacement [12]. 

Furthermore, a different vision on protocol stack design for autonomic comm.-
unication based on the POEM model is analysed in [15]. This cross-layer  
design focuses on the advantages of layering and the benefits of holistic and systematic 
cross-layer optimization is at the core of this work. Finally, a Java-based protocol suite 
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that supports protocol subsystems is analyzed in [17]. This system introduces great 
performance overhead (10:1) and does not specify the mechanisms required to achieve 
on-the-fly protocol reconfiguration. 

Regarding the game theoretical analysis, it should be noted that it has recently 
attracted much attention in the general context of resource allocation in wireless 
networks. Moreover, it can be seen as an appropriate optimization tool for a fully 
distributed and scalable implementation (with a complexity transferred and shared out 
on the terminal side), where traditional centralized decision becomes computationally 
infeasible as the number of terminals in a cell, or the number of carriers in a 
multicarrier setting grows. Game theory has been applied to many wireless network 
problems, related to the physical, medium access or higher layers. In those problems, 
users are generally competing for a limited resource while having a limited 
knowledge of their environment, and therefore the strategic non-cooperative game 
model is often used, where each player selfishly tries to maximize its own utility 
regardless of the consequences its choice may have. For example, [3] deals with a 
power control game for wideband (e.g. CDMA-based) systems. Random access 
protocols, in particular ALOHA, are addressed in [4]. 

6   Conclusion 

This paper presented a framework to cope with RAT selection and the requirement for 
transparent plug-in of protocol-related RAT components in heterogeneous systems.  
The study results illustrate that a suitable introduction of policies applicable by user 
terminals impact the system behaviour considerably. The simple example in a two-
user context proved, that the interdiction of one strategy (applicable to all users) 
avoids sub-optimum equilibria and leads to a quasi-immediate convergence in terms 
of RAT selection strategy. As a follow-up of this work, the corresponding behaviour 
needs to be analyzed in more complex scenarios consisting of an increased number of 
users and RAT selection choices. 

In addition, a protocol reconfiguration framework was analyzed, which provides 
the necessary mechanisms for component-based protocol reconfiguration. The 
signaling for the four basic phases of this procedure was specified as well as the 
mechanisms that enable the transparent protocol component self-configuration. 
Finally the validation of the proposed framework proved its feasibility, thus the 
introduction of minimum performance overhead in the system. 
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