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Abstract. In this article, I will consider Markov Decision Processes with
two criteria, each defined as the expected value of an infinite horizon
cumulative return. The second criterion is either itself subject to an
inequality constraint, or there is maximum allowable probability that
the single returns violate the constraint. I describe and discuss three new
reinforcement learning approaches for solving such control problems.

1 Introduction

Most approaches in reinforcement learning (RL, see e.g. [8]) consider only Markov
decision processes (MDPs) with a single criterion, or with several criteria related
to hierarchical dependencies between behaviors. On the other hand, in practical
applications like robot control, there might exist several possibly conflicting ob-
jectives requiring a strategy that mediates between them. Problems with multiple,
non-hierarchical objectives have hardly been considered in RL, although some ar-
ticles from the field of dynamic programming (DP, [2]) can be found.

A typical example for a problem with constraints is the accomplishment of
some task with a limited amount of energy or time expressed as a second criterion
subject to a constraint. Imagine e.g. a robot equipped with a battery. The task
of the robot is to collect as much items as possible, but it shouldn’t run out of
energy.

I will consider two different kinds of constraints. The first group of problems
have a constraint on the second criterion function itself, i.e. on the expected
value of the return. Such problems are typically called constrained MDPs CMDPs
in the following (see also [1]). The second group contains problems in which we
constrain the probability that the return, considered a random variable, violates
a constraint. Such problems will be called MDPs with constrained probability
of constraint violation (CPMDP). Examples are constraints on the probability of
resource overutilization as discussed by Dolgov and Durfee in [4,3]. In CPMDPs,
actually two constraints are involved.

Since applications with unequal discount factors are relatively rare and very
difficult to solve [5,6,7], we will only consider MDPs with several criteria each
based on its own reward function, but using a common discount factor γ. We will
also focus on MDPs with two criteria only, where the first one is to be optimized,
and the second one is subject to a constraint.
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The purpose of this paper is to undertake a description and comparison of
different approaches for solving constrained problems (including some new ones),
and to discuss their respective advantages and shortcomings. In section 2, uncon-
strained RL problems including Markov Decision Processes, policies, and value
functions are introduced. In section 3, I consider MDPs with constraints, i.e.
CMDPs and CPMDPs. I will present standard solutions methods as well as three
new approaches for solving CMDPs and CPMDPs.

Each method has a parameter that allows to select different behaviours with re-
spect to the first and second criterion function yielding a curve in a 2-dimensional
space corresponding to the two criteria in the case of CMDPs I will base the experi-
mental comparison in section 5 on this approach that can also be used for CPMDPs.
A concluding discussion can be found in section 6.

2 Unconstrained MDPs

In RL and DP, one considers finite Markov decision processes (MDPs), that are
characterized by a finite state set X , a finite action set U , and state transition
probabilities px,u(x′) defined as the probabilty that x′ is reached when u is
executed in x. The value rx,u denotes the reward obtained when executing action
u in state x.

A policy represents the action selection strategy of the agent. Stationary,
deterministic policies are functions π mapping a state x to an action π(x). Ran-
domized policies are described using state dependent distributions π(x, .) on
possible actions.

The aim of the agent is to find a policy π for selecting actions that maximizes
the cumulative reward, called the return. The return is defined as R =

∑∞
t=0 γtrt,

where the random variable rt denotes the reward occurring in the t-th time
step when the agent uses policy π. Let x0, x1, x2, . . . denote the corresponding
probabilistic sequence of states, and ui the sequence of actions chosen according
to policy π.

The constant γ ∈ [0, 1] is a discount factor that allows to control the influence
of future rewards. The expectation of the return V π(x) = E

[
R | x0 = x

]
is

defined as the value of x with respect to π. It is well-known that there exist
stationary, deterministic policies π∗ for which V π∗

(x) is optimal (maximal) for
every state x simultaneously. The optimal values V ∗(x) := V π∗

(x) are the same
for every optimal policy π∗.

In order to define optimal stationary policies, let D be an initial distribution
on the possible starting states, e.g. the uniform distribution on the set X . We
define the value of a policy as the expected value of the value function, i.e.

Vπ = Ex∼D

[
V π(x)

]
=

∑

x∈X

D(x)V π(x) . (1)

For a fixed distribution D, this value is maximized by any optimal stationary,
deterministic policy.
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While DP algorithms often assume a fully know model, RL algorithms like Q-
Learning are able to learn in interaction with the real process. We suppose that
the reader is familiar with basic RL techniques and leave out the defintion of the
algorithm. If the model is known, then standard approaches can be applied. One
approach consists in formulating a linear program and solve it with standard
techniques, see [1,4].

3 Problems with Constraints

A constrained MDP has an additional second reward function cx,u that is
used to define the constrained value function Cπ, see below. In the case that
cx,u ≤ 0 holds, these values can be considered costs for the actions, but positive
values, i.e. rewards, might also occur.

We define constrained MDPs (CMDPs) as problems of the form

max Vπ

s.t. Cπ ≥ c

where the threshold c is a real value, and Cπ = E Cπ(x) with Cπ(x) = E
∑∞

t=0
γtcxt,ut . Problems with ≤ instead of ≥ can be normalized to yield the above
form.

From a practical point of view, we often consider (A) problems with maximum
costs, in which all cx,u ≤ 0 and c ≤ 0, e.g. a robot task and risk-sensitive control
as discussed by Geibel und Wysotzki in [7]; (B) Problems with minimum gain,
in which all cx,u ≥ 0 and c ≥ 0, e.g. the problem of Buridan’s ass, see [6], where
a minimum return must be achieved on average; (C) Mixed Problems where the
cx,u might take on positive as well as negative values and c is arbitrary.

In the robot example, one can argue that the introduction of the expectation
operator makes no sense, because we want the robot to never run out of energy,
or only with a maximum allowable probability p0, see [4]. Let C denote a ran-
dom variable that denotes the cx,u-based cumulative return occurred in a single
run. Now we define MDPs with constrained probability of constraint violation
(CPMDPs) as maximizing Vπ under the condition

P (C ≤ c′) ≤ p0 (2)

with c′ being the threshold for the cx,u-based return.
It should be noted, that for constrained problems it is no longer the case

that stationary deterministic policies are optimal. First of all, we might need
to consider randomized policies and a dependence on the initial distribution D.
For CMDPs randomized optimal policies can be found by solving a modified linear
program.

4 Solution Approaches for MDPs with Constraints

In the following, I will describe and discuss several approaches for solving MDPs
with constraints. I will start with the DP approach because it constitutes a
baseline for comparing the performance of the approaches.
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4.1 LinMDP: Linear Programming

In order to solve a standard constrained MDP, a linear program describing opti-
mal solutions of the unconstrained MDP is simply augmented by an additional
constraint expressing Cπ ≥ c is required to hold.This augmented program can
again be solved with standard linear programming methods. The method yields
a randomized optimal policy dependent on the CMDP to be solved, and the initial
distribution D. In the following we refer to this method as LinMDP.

LinMDP is tailored for problems with constraints on the expected costs. As
described by Dolgov and Durfee in [4], it can be used for CPDMPs by mapping to
a CMDP with constant c = p0c

′ which is possible in the case of negative values of
the cx,u (based on the Markov inequality).

Because LinMDP might be suboptimal for solving CPMDPs, we propose the
following method: the policy π resulting from solving the linear CMDP-program
has also a specific probability pπ for constraint violation. I.e. given a fixed c′ (for
the CPMDP), instead of setting c = p0c

′ we can vary the c in the corresponding
CMDP. We then pick that c which results in a feasible policy π for which pπ ≤ p0
holds and that has the highest Vπ-value. pπ, Cπ, and Vπ can be estimated using
several test runs. In the following, we will refer to this method for solving CMDPs
as well as CPMDPs as LinMDP.

4.2 WeiMDP: A Weighted Approach

Geibel and Wysotzki in [7] considered the problem of finding policies that have
a constrained risk of failing in an MDP with error states. We expressed the
probability of entering an undesirable state as an (undiscounted) second value
function. This resulted in a constrained MDP with possibly unequal discount
factors, which was solved by introducing a weight parameter for risk and value.
For solving CMDPs, we suggest to introduce a weight parameter ξ ∈ [0, 1] and
a derived weighted reward function defined as

wx,u = ξrx,u + (1 − ξ)cx,u .

For a fixed ξ, this new unconstrained MDP can be solved with standard methods,
e.g. Q-Learning resulting in an online-method.

Similar to LinMDP parameterized with c, using different values of ξ ∈ [0, 1] will
result in different points in the (V , C)-space (CMDPs) and (V , p.)-space (CPMDPs),
respectively. This method will be called WeiMDP in the following.

Again, there is a parameter ξ for choosing a suitable policy dependent on c
in the case of CMDPs and on CPMDPs. Unlike the approach proposed by Dolgov
and Durfee, we make no prior assumption on the sign of cx,u and c, i.e. we can
naturally treat mixed problems with mixed signs.

In contrast to LinMDP, our algorithm performs online learning of a stationary-
determinstic optimal policy for the weighted criterion that is a feasible one for
the CMDP (if the problem has a solution).
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4.3 AugMDP: State Space Extension

The rewards cx,u correspond e.g. to costs like energy or time. It is RL folklore
to include the status of the battery in the state description. Because we want to
deal with finite state MDPs only, the possible values of the so far accumulated
costs (e.g. consumed energy since t = 0) need to be discretized in an appropriate
manner, e.g. by using intervals of equal length covering the possible range of
values.

Since we are interested in the costs with respect to a starting state x0, we need
to keep track of the elapsed time if γ < 1. Otherwise the cost of the successor
state cannot be computed correctly. If i(0) is the interval corresponding to zero
costs, the process starts in the state (x0, i(0), 0) where x0 is a starting state of
the original MDP. Given a current state (x, i(C), t), a successor state obtained
for action u might be (x′, i(C + γtcx,u), t + 1) where cx,u is the cost incurred by
the executed action u, and i(C + γtcx,u) the new interval.

We don’t have to consider the time if γ = 1 holds. But for γ < 1, the state
space is possibly infinite. Assuming a maximum episode length of T and N
intervals for discretizing the costs, we arrive at an MDP having |X |NT states if
γ < 1, and |X |N states if γ = 1 holds.

In order to solve a CPMDP, we apply e.g. Q-learning using rx,u and the aug-
mented state space. An additional negative reward S ≤ 0 is given, when
the process enters a state such that the accumlated costs are below c′, i.e. when
the cost constraint of the CPMDP is violated. Using high absolute values of S will
prevent the process from entering such states at all, yielding a policy with a
minimal p0.

In order to deal with CPMDPs and also with CMDPs, we vary S in some sufficiently
large interval. Again we have a parameter to “tune the behaviour” until we find
a feasible policy for the CMDP or CPMDP, respectively. This way we have a new
method method that will be called AugMDP in the following.

The method seems only to be applicable to problems with a constraint on
the maximum cost, but not such with a constraint on the minimum profit. The
latter start with initial states where the constraint is already violated (the initial
gain is zero) resulting in a punishment S right from the start.

4.4 RecMDP: Recursive Reformulation of the Constraint

Gabor, Kalmar, and Szepesvari [6] developed an approach that is suited for
dealing with problems of the type (B) described above, i.e. in which cx,u ≥ 0
and c ≥ 0 hold.

Gabor, Kalmar, and Szepesvari give a recurrent reformulation of the con-
straint Cπ(x) ≥ c based on the observation that the actual value of Cπ is not
really important as long it is above the threshold c (the minimum gain). Note
that ∀x Cπ(x) ≥ c implies Cπ ≥ c for every distribution D on the starting states,
while the reverse is not true in general. That is, the method will generally arrive
at a feasible, suboptimal solution.
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Gabor et al. propose the recurrent formulation of a new value function defined
by C̄π(x) = min

(
c̄, Cπ(x)

)
as

C̄π(x) = min
(
c̄, cx,π(x) + min(c̄, γ

∑

x′∈X

[
px,π(x)(x′)C̄π(x′)

]
)
)

(3)

It holds C̄π(x) ≤ Cπ(x) holds if we set c̄ = c. Therefore we might choose a value
c̄ ≥ c in order to cover a larger range of feasible policies π.

Based on the recursive formulations of V π and C̄π, we developed an online
algorithm not requiring an initially known model. We leave out the details of
the algorithms for reasons of space.

The approach produces necessarily suboptimal stationary, deterministic poli-
cies. We have the parameter c̄ to adapt the result of the algorithm as in the
previous approaches.

Problems with maximum costs can be solved by adding a large enough positive
constant k to the values of the cx,u resulting in cx,u +k ≥ 0 for all x and u. Note
that it is not obvious what constant should be added to the threshold c̄. But
since we adapt c̄ anyway, a suitable value of c̄ can be found via trial and error.
This method will be called RecMDP in the following.

5 Experiments

In this section we describe the results of experiments with a series of randomly
generated MDPs. We decided to focus on problems with maximum costs (i.e.,
cx,u, c ≤ 0) because such problems occur most often in RL applications (e.g.,
time, energy). In our first experiment, we focused on uniform distributions D.
The MDPs were generated in the following manner:

– States: the number of states was selected randomly in the interval [2, 50].
With a probability of 1

|X| , a state was turned into an absorbing state.
– Actions: the number of actions ranged between 2 and 4. We generated ran-

domized actions such that for every state x and action u, px,u(x′) > 0 holds
for only approximately 25% of the possible successor states x′.

– Rewards: the rewards were selected in the interval [0, 5] with uniform prob-
ability.

– Costs: cx,u was selected randomly in the interval [−rx,u −1.0, −rx,u +1.0] to
ensure that actions with a high reward also tend to have a high cost. Values
larger than zero were set to 0.

– Discount factor: γ was selected randomly from the interval [0, 1].

We decided to qualitatively compare the approaches by looking at the possi-
ble behaviours that can be generated using different parameter values (c, ξ, S, c̄,
resp.). We will focus on CPDMPs where the curves in the (V , p.)-space were de-
picted in Fig. 1. The results for CMDPs were quite similar. For reasons of space,
we only depict the results for five MDPs being positively representative for all
20 runs performed. For the experiments, we chose c′ as −0.25 6

1−γ where 6
1−γ is
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Fig. 1. CPMDP: curves in the (V, p.)-space

the theoretical upper bound for the accumulated costs given that the cx,u range
in [−6, 0] (see description of the MDPs above).

In Fig. 1, curves are to be considered better that cover a larger range of possi-
ble V-values and pπ-values (corresponding to the projection onto the respective
axis), and that attain better combinations of the two values, corresponding to
curves that run more in the lower right part of the diagrams (i.e. with high re-
turns and low probabilites of constraint violation). LinMDP is depicted in the first
collumn. It can be seen that our weighted approach WeiMDP has a comparable
performance. This is a very surprising result, because LinMDP can find random-
ized policies with a possibly better performance than the deterministic policies
WeiMDP is restricted to. When looking at the policies computed by LinMDP, we
found that randomization occurs very rarely which explain the small differences
between WeiMDP and LinMDP.

AugMDP performed much worse especially with respect to the possible ranges
of values, see Fig. 1. The reason is the very much enlarged state space that has
to be considered. RecMDP performs quite well but seems to produce less stable
results and worse combinations compared to WeiMDP and LinMDP.
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6 Conclusion

All four presented methods have parameters that allow to switch between dif-
ferent behaviours. The parameters can be adapted to produce a feasible policy
for the originally given constrained problem. We found that the method LinMDP
performs best for CMDPs as well as CPMDPs, although it cannot be applied in an
online learning manner. The weighted method WeiMDP performs quite well, too,
and can be applied for problems with unknown model. Method WeiMDP, however,
has a higher time complexity than LinMDP. Both methods can be extended for
more than two criteria. Note that is possible to define handcrafted CMDPs, where
LinMDP will outperform WeiMDP.

Encoding the costs in the state space (method AugMDP) yields the worst results,
because of the much larger state space, and the approximation errors due to the
necessary discretization of the possible cost values. We tried a series of different
learning strategies with consistently bad results. The recursive method RecMDP
produced acceptable results. Its performance on gain-constrained problems, for
which it actually is designed, is still open and will be investigated in the future.
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