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Abstract. Most classification methods assume that the samples are drawn inde-
pendently and identically from an unknown data generating distribution, yet this
assumption is violated in several real life problems. In order to relax this assump-
tion, we consider the case where batches or groups of samples may have internal
correlations, whereas the samples from different batches may be considered to be
uncorrelated. Two algorithms are developed to classify all the samples in a batch
jointly, one based on a probabilistic analysis and another based on a mathematical
programming approach. Experiments on three real-life computer aided diagnosis
(CAD) problems demonstrate that the proposed algorithms are significantly more
accurate than a naive SVM which ignores the correlations among the samples.

1 Introduction

Most classification systems assume that the data used to train and test the classifier
is independently and identically distributed. For example, samples are classified one
at a time in a support vector machine (SVM), thus the classification of a particular
test sample does not depend on the features from any other test sample. Nevertheless,
this assumption is commonly violated in many real-life problems where sub-groups of
samples have a high degree of correlation amongst both their features and their labels.

Good examples of the problem described above are computer aided diagnosis (CAD)
applications where the goal is to detect structures of interest to physicians in medical
images: e.g., to identify potentially malignant tumors in computed tomography (CT)
scans, X-ray images, etc. In an almost universal paradigm for CAD algorithms, this
problem is addressed by a three-stage system: (1) identification of potentially unhealthy
candidates regions of interest (ROI) from a medical image, (2) computation of descrip-
tive features for each candidate, and (3) classification of each candidate (e.g. normal
or diseased) based on its features. CAD applications were the main motivation for the
work presented in this paper, although the algorithms presented here can be applied to
any problem where the data is provided in batches of samples.

As an illustrative example, consider Figure 1, a CT image of a lung showing circular
marks that point to potential diseased candidate regions that are detected by a CAD
algorithm. There are five candidates on the left and six candidates on the right (marked
by circles) in Figure 1. Descriptive features are extracted for each candidate and each
candidate region is classified as healthy or unhealthy.

In this setting, correlations exist among both the features and the labels of candi-
dates belonging to the same (batch) image both in the training data-set and in the unseen
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Fig. 1. Two emboli as they are detected by the Candidate Generation algorithm in a CT image.
The candidates are shown as five circles for the left embolus & six circles for the right embolus.
The disease status of spatially overlapping or proximate candidates is highly correlated.

testing data. Further, the level of correlation is a function of the pairwise-distance be-
tween candidates: the disease status (class-label) of a candidate is highly correlated
with the status of other spatially proximate candidates, but the correlations decrease
as the distance is increased. Most conventional CAD algorithms classify one candidate
at a time, ignoring the correlations amongst the candidates in an image. By explicitly
accounting for the correlation structure between the labels of the test samples, the algo-
rithms proposed in this paper improve the classification accuracy significantly.

Beyond the domain of CAD applications, our algorithms are quite general and may
be used for batch-wise classification problems in many other contexts. In general, the
proposed classifiers can be used whenever data samples are presented in independent
batches. In the CAD example, the batch corresponds to the candidate ROIs from an
image, but in other contexts a batch may correspond to data from the same hospital, the
patients treated by the same doctor or nurse, etc.

1.1 Related Work

In natural language processing (NLP), conditional random fields (CRF) [4] and recently
maximum margin Markov (MMM) networks [7] are used to identify part-of-speech in-
formation about words by using the context of nearby words. CRF are also used in
similar applications in spoken word recognition. We are not aware of previous work on
CAD algorithms that exploit internal correlations among the samples. However, while
CRF and MMM are also fairly general algorithms, they are both computationally very
demanding and it is also not very easy to implement them for problems where the rela-
tionship structure between the samples is in any form other than a linear chain (as in the
text and speech processing applications). Certainly their application would be difficult
in many large-scale medical applications where run time requirements would be quite
severe. For example, in the CAD applications shown in our experiments, the run-time



Batch Classification with Applications in Computer Aided Diagnosis 451

of the testing phase usually has to be less than a second in order that the end user’s
(radiologist’s) time would not be wasted.

Our algorithm is also related to the multiple instance learning (MIL) problem, where
one is given bags (batches) of samples; class labels are provided only for the bags,
not for the individual samples. A bag is labeled positive if we know that at least one
sample from it is positive, and a negative bag is known to not contain any positive
sample. In this manner, the MIL problem also encodes a form of prior knowledge about
correlations between the labels of the training instances.

There are two differences between our algorithm and MIL. First, we want to classify
each instance (candidate) in our algorithm; unlike MIL, we are not only trying to label a
bag of related instances. Second, unlike the MIL problem which treats all the instances
in a bag as equally related to each other, we account for more fine grained differences
in the level of correlation between samples (via the covariance matrix Σ).

1.2 Organization of the Paper

Section 2 presents the clinical motivation behind our work and describes the training
and testing data that are used in these applications. In Section 3, we build a probabilistic
model for batch classification of samples. Although dramatically faster than CRFs and
their other cousins, the probabilistic algorithm is still too slow to be practical on several
CAD problems, hence we propose another faster algorithm in Section 4. Unlike the
previous methods such as CRF and MMM, both the proposed algorithms are easy to
implement for arbitrary correlation relationships between samples, and further we are
able to run these fast enough to be viable in commercial CAD products. In Section
5, we provide experimental evidence from three different CAD problems to show that
the proposed algorithm is more accurate in terms of the metrics appropriate to CAD as
compared to a naive SVM which is routinely used for these problems as the state-of-
the-art in the current literature and commercial products. We conclude with a review of
our contributions in Section 6.

Throughout this paper, we will utilize the following notations. The notation A ∈
Rm×n will signify a real m × n matrix. For such a matrix, A′ will denote the transpose
of A and Ai will denote the i-th row of A. All vectors will be column vectors. A vector
of ones in a real space of arbitrary dimension will be denoted by e. Thus, for e ∈ Rm

and y ∈ Rm, e′y is the sum of the components of y. A vector of zeros in a real space of
arbitrary dimension will be denoted by 0.

2 Data in the Medical Domain

Data collection process for training CAD classifiers. Medical images (such as, CT
scans, MRI, X-ray etc.) are collected from the archives of hospitals that routinely screen
patients for cancer. Depending upon the disease, ground truth is determined for each pa-
tient based either on a more expensive, potentially invasive test (e.g., biopsy of breast
lesions, or colonoscopy for colon polyps), or via consensus opinion of a panel of expert
radiologists for organs when a definitive test (lung biopsy) is deemed too dangerous.
In all cases, expert radiologist’s opinion is also required to mark the location, size,
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and extent of all “positive” regions within the images. A CAD system is then designed
from the database of training images. Considerable human intervention and domain
knowledge engineering is employed on the first two stages of a CAD system: (a) can-
didate generation: identify all potentially suspicious regions in a candidate generation
stage with very high sensitivity, and (b) feature-extraction: to describe each such re-
gion quantitatively using a set of medically relevant features. For example, quantitative
measurements based on texture, shape, intensity, contrast and other such characteristics
may be used to characterize any region of interest (ROI). Finally, the candidate ROIs
are assigned class labels based upon the overlap or spatial proximity to any radiologist-
marked (diseased) region.

From the above description it is clear that the samples (candidates) are naturally
collected in batches. While there are no correlations between the candidate ROIs in dif-
ferent images, the labels of all the regions identified from the same patient’s medical
images are likely to be at least somewhat correlated. This is true both because metas-
tasis is an important possibility in cancer, and because the patient’s general health and
preparation for imaging are important factors in diagnostic classification (e.g., how thor-
oughly was the cleaning of stool undertaken before a colonoscopy). Further, in order to
identify suspicious regions with high sensitivity, most candidate generation algorithms
tend to produce several candidates that are spatially close to each other, often referring
to the same underlying structure in the image. Since they often refer to regions that are
physically adjacent in an image, both features and class labels for these candidates are
also highly correlated.

Shortcomings in standard classification algorithms. Most of the classification algo-
rithms such as neural networks and support vector machines (SVM) assume that the
training samples or instances are drawn identically and independently from an underly-
ing distribution. However, as mentioned in the introduction and in the previous subsec-
tion, due to spatial adjacency of the regions identified by a candidate generator, both the
features and the class labels of several adjacent candidates are highly correlated. This is
true both in the training and testing data. The proposed batch-classification algorithms
account for these correlations explicitly.

3 A Probabilistic Batch Classification Model

Let xj
i ∈ Rn represent the n features for the ith candidate in the jth image, and let

w ∈ Rn be the parameters of some hyperplane classifier. Traditionally, linear classifiers
label samples one at a time (i.e., independently) based on:

zj
i = w′xj

i = (xj
i )

′w , z ∈ R1 (1)

For example, in logistic regression, the posterior probability of the sample xj
i belonging

to class +1 is obtained using the sigmoid function P (yj
i = 1|xj

i ) = 1
1+exp(−w′xj

i )
.

By contrast, in our model, we claim zj
i is only a noisy observation of the underlying,

unobserved variable uj
i ∈ R1 that actually influences classification (as opposed to the

traditional classification approach, where classification directly depends on zj
i ).
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We have an a-priori guess or intuition about uj
i even before we observe any xj

i (there-
fore before zj

i ), which is purely based on the proximity of the spatial locations of can-
didates in the jth image. Indeed this spatial adjacency is what induces the correlation
in the predictions for the labels; we model this as a Gaussian prior on uj

i .

P (uj ∈ Rnj ) = N(uj |0, Σj) (2)

where nj is the number of the candidates in the jth image, and the covariance matrix
Σj (which encodes the spatial proximity based correlations) can be defined in terms of
S, the matrix of Euclidean distances between candidates inside a medical image (from
a patient) as Σj = exp(−αS).

Having defined a prior, next we define the likelihood as follows:

P (zj
i |u

j
i ) = N(zj

i |u
j
i , σ

2) (3)

After observing xj
i and therefore zj

i , we can modify our prior intuition about uj in (2),
based on our observations from (3) to obtain the Bayesian posterior:

P (uj |zj) = N
(
uj |(Σj−1

σ2 + I)−1zj ; (Σj−1 + 1
σ2 I)−1

)
(4)

The class-membership prediction for the ith candidate in the jth image is controlled
exclusively by uj

i . The prediction probability for class labels, yj is then determined as:

P (yj = 1|Bj, w, α, σ2) = 1/
(
1 + exp

(
−[Σj−1

σ2 + I]−1[Bjw]
))

. (5)

Where Bj ∈ Rmj×n represents the mj training points that belong to the jth batch.
Note however, that this approach to batchwise prediction is potentially slow due to the
matrix inversion, if the test data arrives in large batches.

3.1 Learning in This Model

For batch-wise prediction using (5), w, α and σ2 can be learned from a set of N training
images via maximum-a-posteriori (MAP) estimation as follows:

[ŵ, α̂, σ̂2] = arg maxw,α,σ2 P (w)
∏N

j=1 P (yj |Bj , w, α, σ2) (6)

where, P (yj |Bj , w, α, σ2) is defined as in (5) and P (w) may be assumed to be Gaussian
N(w|0, λ). The regularization parameter λ is typically chosen by cross-validation.

3.2 Intuition About Batch Classification

Equations (4) and (5) imply that E[uj |zj] = (Σj−1
σ2 + I)−1zj . In other words,

the class membership prediction for any single sample is a weighted average of the
noisy prediction quantity zj (distance to the hyperplane), where the weighting coef-
ficients depend on the pairwise Euclidean distances between samples. Hence, the in-
tuition presented above is that we predict the classes for all the nj candidates in the
jth image together, as a function of the features for all the candidates in the batch
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Fig. 2. An illustrative example for batch learning. a) Training data points are displayed in batches.
b) Relations within training points are displayed as a linked graph. c) Classifier produced by
SVM. d) Pre-classifier produced by BatchSVM. Unlike standard SVMs, the hyperplane, f(x),
produced by BatchSVM (preclassifier) is not the decision function. Instead, the decision of each
test sample xi, is based on a weighted average of the f(x) values for the points linked to xi.

(here a batch corresponds to an image from a patient). In every test image, each of the
candidates is classified using the features from all the samples in the image.

4 A Mathematical Programming Approach

Motivated by equations (5) and (6), we now re-formulate the problem of learning for
batch-wise prediction as an SVM-like mathematical program.

In a standard SVM a hyperplane classifier, f(x) = x′w−γ is learned from the train-
ing instances individually, ignoring the correlations among them. Consider the problem
of classifying m points in the n-dimensional real space Rn, represented by the m × n
matrix A, according to class membership of each point xi (ith row of A) in the classes
A+, A− as specified by a given m × m diagonal matrix D with +1 or −1 along its
diagonal, this is, D = diag(y). The standard 1-norm support vector machine with a
linear kernel [8,2] is given by the following linear program with parameter ν > 0:
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min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ + e′v (7)

s.t.D(Aw − eγ) + ξ ≥ e

v ≥ w ≥ −v

ξ ≥ 0

where, ν is the cost parameter and at a solution, v = |w| is the absolute value of w.
While A ∈ Rm×n represents the entire traning data, Bj ∈ Rmj×n represents the

mj training points that belong to the jth batch and the labels of these training points are
represented by the mj × mj diagonal matrix Dj = diag(yj) with positive or negative
ones along its diagonal. Then, the standard SVM set of constraints: D(Aw−eγ)+ξ ≥ e
can be modified in order to take into account the correlations among samples in the same
batches, using the idea in equation 5 as:

Dj

[(
Σj−1

σ2 + I
)−1

(Bjw − eγ)
]

+ ξj ≥ e, for j = 1, . . . , k (8)

In a naive implementation, for each batch j, the probabilistic method requires calcu-
lating two matrix inversions to compute

(
Σ−1σ2 + I

)−1
. Hence, training and testing

using this method can be time consuming for large batch sizes. In order to avoid this
problem while retaining the intuition presented in subsection 3.2, we modify equation
(8). In particular, we replace the expression

(
Σ−1σ2 + I

)−1
by a much simpler expres-

sion: (Σθ + I). As a result, the correlation among samples belonging to the same batch
can be enforced by replacing the standard set of SVM constraints by:

Dj
[(

θΣj + I
)
(Bjw − eγ)

]
+ ξj ≥ e, for j = 1, . . . , k (9)

As in equation (8), the class membership prediction for any single sample in batch
j is a weighted average of the batch members prediction vector Bjw, and again the
weighting coefficients depend on the pairwise Euclidean distances between samples.
Using this constraint in the SVM equations (7), we obtain the optimization problem for
learning BatchSVM with parameters ν and θ:

min
(w,γ,ξ,v)∈Rn+1+m+n

νe′ξ + e′v (10)

s.t.Dj
[(

θΣj + I
)
(Bjw − eγ)

]
+ ξj ≥ e, for j = 1, . . . , k

v ≥ w ≥ −v

ξ ≥ 0

Unlike standard SVMs, the hyperplane (f(x) = w
′
x − γ) produced by BatchSVM is

not the final decision function. We refer to f(x) as a pre-classifier that will be used in
the next stage to make the final decision on a batch of instances. While testing an arbi-
trary datapoint xj

i in batch Bj , the BatchSVM algorithm accounts for the pre-classifier
prediction w′xj

p for every member in the batch. The final prediction f̂(xj
i ) is given by:

sign(f̂(xj
i )) = sign(w

′
xj

i − γ + θΣj
i

[
Bjw − γ

]
) (11)
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Table 1. Outputs of the classifier produced by SVM, pre-classifier and the final classifier produced
by BatchSVM. The outputs are calculated for the data points presented in Figure 2. The first
column of the table indicates the order of the data points as they are presented in Figure 2a and
the second column specifies the corresponding labels. Misclassified points are displayed in bold.
Notice that the combination of the pre-classifier outputs at the final stage corrects the mistakes.

Point Batch Label SVM Pre-classifier Final classifier

1 1 + 0.2826 0.1723 0.1918
2 1 + 0.2621 0.1315 0.2122
3 1 - -0.2398 0.0153 -0.0781
4 1 + -0.3188 -0.0259 0.2909
5 1 - -0.4787 -0.0857 -0.0276
6 2 + 0.2397 0.0659 0.0372
7 2 - 0.2329 0.0432 -0.0888
8 2 + 0.1490 0.0042 0.0680
9 2 - -0.2525 -0.0752 -0.1079
10 2 - -0.2399 -0.1135 -0.1671

Consider the two dimensional example in Figure 2, showing batches of training
points. The data points that belong to the same batch are indicated by the elliptical
boundaries in the figure. Figure 2b displays the correlations amongst the training points
given in Figure 2a using an edge. In Figure 2c, the hyperplane fsvm(x) is the final
decision function for standard SVM and gives the results displayed in Table 1, where
we observe that the fourth and the seventh instances are misclassified. In Figure 2d, the
pre-classifier produced by BatchSVM, fbatch(x) gives the results displayed in the fifth
column of Table 1 for the training data. If this pre-classifier were to be considered as the
decision function, then three training points would be misclassified. However, during
batch-testing (eq 11), the predictions of those points are corrected as seen in the sixth
column of Table 1.

Kernelized nonlinear algorithm. To obtain a more general nonlinear algorithm, we
can “kernelize” equations (10,11) by making a transformation of the variable w as:
w = A′v, where v can be interpreted as an arbitrary variable in �m. This transformation
can be motivated by duality theory [5]. Employing this idea will result in a term BjA′v
instead of Bjw in our formulations. If we now replace the linear kernels, BjA′, by more
general kernels, K(Bj , A′), we obtain a “kernelized” version of equations (10,11).

5 Experiments

5.1 The Similarity Function

As mentioned earlier, the matrix Σj represents the level of correlation between all pairs
of candidates from a batch (an image in our case) and it is a function of the pairwise-
similarity between them. In CAD applications, the covariance matrix Σj can be defined
in terms of the matrix of Euclidean distances between candidates inside a medical im-
age. Let rp and rq represent the coordinates of two candidates, Bj

p and Bj
q on the jth
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image. For our experiments, we used the Euclidean distance between rp and rq to define
the pairwise-similarity, s(p, q), between Bj

p and Bj
q as: s(p, q) = exp

(
−α‖rp − rq‖2

)
.

Experimentally, we found it useful to discretize the continuous similarity function,
s(p, q) to the binary similarity function, s∗(p, q) by applying a threshold as following:

s∗(p, q) =
{

0 , s(p, q) < e−4

1 , s(p, q) ≥ e−4 (12)

In all experiments, we set the threshold at e−4 to provide us with a similarity of one
if the neighbor is at a 95% confidence level of belonging to the same density as the
candidate assuming that the neighborhood is a Gaussian distribution with mean equal
to candidate and variance ς2 = 1

α . Each element of Σ is given by: Σpq = s∗(p, q).

5.2 Comparisons

In this section, we compare three techniques: regular SVM, probabilistic batch learning
(BatchProb), and BatchSVM. Receiver Operating Characteristic (ROC) plots are used
to study the classification accuracy of these techniques on three CAD applications for
detecting pulmonary embolism, colon cancer, and lung cancer. In clinical practice, CAD
systems are evaluated on the basis of a somewhat domain-specific metric: to maximize
the fraction of positives that are correctly identified by the system while displaying at
most a clinically acceptable number of false-marks per image. We report this domain-
specific metric in an ROC plot, where the y-axis is a measure of sensitivity and the
x-axis is the number of false-marks per patient (in our case, per image is also per pa-
tient). Sensitivity is the number of patients diagnosed as having the disease divided by
the number of patients that has the disease. High sensitivity and low false-marks are
desired. All our parameters in these experiments are tuned by 10-fold patient cross-
validation on the training data (i.e., the training data is split into ten folds). During
cross-validation, a range of parameters (θ, σ, ς) were evaluated for the proposed meth-
ods: for θ in BatchSV M and σ in BatchProb, we considered −1, −0.9, ..., 0.9, 1
and for ς that is necessary for Σ matrix, we used a logarithmically spaced range from
10−3 through 101. All classification algorithms are trained on the training dataset and
evaluated on the sequestered (held-out) test set.

5.3 Data Sources and Domain Description

Example: Pulmonary Embolism. Pulmonary embolism (PE), a potentially life-
threatening condition, is a result of underlying venous thromboembolic disease. An
early and accurate diagnosis is the key to survival. Computed tomography angiogra-
phy (CTA) has emerged as an accurate diagnostic tool for PE. There are hundreds of
CT slices in each CTA study, thus manual reading is laborious, time consuming and
complicated by various PE look-alikes (false positives). Several CAD systems are de-
veloped to assist radiologists in this process by helping them detect and characterize
emboli in an accurate, efficient and reproducible way [6], [9]. We have collected 72
cases with 242 PEs marked by expert chest radiologists at four different institutions
(two North American sites and two European sites). For our experiments, they were
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Fig. 3. SVM, BatchProb and BatchSVM ROC curves comparisons for (a) the PE data and (b) the
Colon Cancer data

randomly divided into two sets: a training and a testing set. The training set was used
to train and validate the classifiers and consists of 48 cases with 173 PEs and a total of
3655 candidates. The testing set consists of 24 cases with 69 true PEs out of a total of
1857 candidates. This set was only used to evaluate the performance of the final system.
A combined total of 70 features were extracted for each candidate.

Example: Colon Cancer Detection. Colorectal cancer is the third most common can-
cer in both men and women. It is estimated that in 2004, nearly 147, 000 cases of colon
and rectal cancer will be diagnosed in the US, and more than 56, 730 people would die
from colon cancer [3]. In over 90% of the colon cancer cases that progressed rapidly
is from local (polyp adenomas) to advanced stages (colorectal cancer), which has very
poor survival rates. However, identifying (and removing) lesions (polyp) when still in
a local stage of the disease, has very high survival rates, thus illustrating the critical
need for early diagnosis. Most polyps in the training data are inherently represented
by multiple candidates. The database of high-resolution CT images used in this study
were obtained from seven different sites across US, Europe and Asia. The 188 patients
were randomly partitioned into a training and a test set. The training set consists of 65
cases containing 127 volumes. Fifty polyps were identified in this set out of a total of
6748 candidates. The testing set consists of 123 cases containing 237 volumes. There
are 103 polyps in this set from a total of 12984 candidates. A total of 75 features were
extracted for each candidate.

Example: Lung Cancer. LungCAD is a computer aided detection system for detect-
ing potentially cancerous pulmonary nodules from thin slice multi-detector computed
tomography (CT) scans. The final output of LungCAD is provided by a classifier that
classifies a set of candidates as positive or negative. This is a very hard classification
problem: most patient lung CTs contain a few thousand structures (candidates), and
only a few (≤ 5 on average) of which are potential nodules that should be identified
as positive by LungCAD, all within the run-time requirements of completing the clas-
sification on-line during the time the physician completes their manual review. The
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Fig. 4. SVM, BatchProb and BatchSVM ROC curves comparisons for the Lung Cancer data

training set consists of 60 patients. The number of candidates labeled as nodules in the
training set are 157 and the total number of candidates is 9987. The testing set consists
of 26 patients. In this testing set, there are 79 candidates labeled as nodules out of 6159
generated candidates. The number of features extracted for this dataset were 15.

5.4 Results

Figures 3a, 3b, and 4 show the ROC curves for pulmonary embolism, colon cancer, and
lung cancer data respectively. In our medical applications high-sensitivity is critical as
early detection of lung and colon cancer is believed to greatly improve the chances of
successful treatment [1]. Furthermore, high specificity is also critical, as a large number
of false positives will vastly increase physician load and lead (ultimately) to loss of
physician confidence.

In Figure 3a, corresponding to the comparison of the ROC curves on the PE dataset,
we observe that standard SVM can only achieve 53% sensitivity for six false positives.
However, BatchSVM achieves 80% with a remarkable improvement (27%). BatchProb
also outperforms SVM with a 64% sensitivity. As seen from the figure, the two proposed
methods are substantially more accurate than standard SVMs at any specificity level.

Colon cancer data is a relatively easier data set than pulmonary embolism since stan-
dard SVM can achieve 54.5% sensitivity at one false positive level as illustrated in
Figure 3b. However, BatchSVM improved SVM’s performance to 84% sensitivity for
the same number of false positives. Note that BatchProb improved the sensitivity fur-
ther, giving 89.6% for the same specifity. In one to ten false positives region which
constitutes the region of interest in our applications, our proposed methods outperform
standard SVM significantly.

Although SVM is very accurate for lung cancer application, Figure 4 shows that
BatchProb and BatchSVM could still improve SVM’s performance further. BatchProb
method is superior to the other methods at two and three false positives per image. Both
BatchProb and BatchSVM outperform SVM in the 2-6 false positives per image region,
which is the region of interest for commercial clinical lung CAD systems. All three of
the methods are comparable at other specificity levels.
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6 Conclusions

Two related algorithms have been proposed for classifying batches of correlated data
samples. Although primarily motivated by real-life CAD applications, the problem oc-
curs commonly in many situations; our algorithms are sufficiently general to be applied
in other contexts. Experimental results indicate that the proposed method can substan-
tially improve the diagnosis of (a) early stage cancer in the Lung & Colon, and (b)
pulmonary embolisms (which may result in strokes). With the increasing adoption of
these systems in routine clinical practice, these experimental results demonstrate the
potential of our methods to impact a large cross-section of the population.
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