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Abstract. Recent scaling up of POMDP solvers towards realistic applications
is largely due to point-based methods such as PBVI, Perseus, and HSVI, which
quickly converge to an approximate solution for medium-sized problems. These
algorithms improve a value function by using backup operations over a single be-
lief point. In the simpler domain of MDP solvers, prioritizing the order of equiv-
alent backup operations on states is well known to speed up convergence.

We generalize the notion of prioritized backups to the POMDP framework,
and show that the ordering of backup operations on belief points is important. We
also present a new algorithm, Prioritized Value Iteration (PVI), and show empiri-
cally that it outperforms current point-based algorithms. Finally, a new empirical
evaluation measure, based on the number of backups and the number of belief
points, is proposed, in order to provide more accurate benchmark comparisons.

1 Introduction

Many interesting reinforcement learning (RL) problems can be modeled as partially
observable Markov decision problems (POMDPs), yet POMDPs are frequently avoided
due to the difficulty of computing an optimal policy. Research has focused on approx-
imate methods for computing a policy (see e.g. [8],[7]). A standard way to define a
policy is through a value function that assigns a value to each belief state, thereby also
defining a policy over the same belief space. Sondik [9]] show that this value function
can be represented by a set of vectors and is therefore piecewise linear and convex.

A promising approach for computing value functions is the point-based method,
where a value function is computed over a finite set of reachable belief points, in the
hope that it would generalize well to the entire belief space. Generalization is possible
through the use of the vector representation of a value function.

Improving a value function represented by vectors can be done by performing a
backup operation over a single belief state, resulting in a new vector that can be added
to the value function. Even though a vector is computed for a single belief state, it
defines a value over the entire belief space, though this value may not be optimal for
many belief states. A single backup operation can therefore, and in many cases does,
improve the value function for numerous belief points. Backup operations are relatively
expensive, and POMDP approximation algorithms can be improved by reducing the
number of backup operations needed to approximate the optimal policy.
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For the simpler domain of Markov decision processes (MDPs), it was previously
observed (e.g. [[13]) that the order by which states are updated can change the conver-
gence rate of the value function. For example, as the value for a state is influenced by
the values of its successors it is more useful to execute a backup operation for a state
only after values for its successors are computed. In an MDP it is also easy to find the
set of predecessors for a given state making backward state space traversals possible.
Such methods can be viewed as ordering backups by decreasing state priorities.

This paper aims at taking advantage of prioritized backups in a similar manner for
POMDPs. Since a direct implementation of the techniques used for MDPs is not possi-
ble, this issue is nontrivial. First, one cannot efficiently find the set of predecessors for
a belief state, which may have unbounded size. Second, a backup operation for a belief
state potentially improves the value for many other belief states as well, and therefore
affecting belief states that are not direct predecessors of the improved state.

Point-based methods tackle these problems by using only a finite subset of the belief
space, reachable from the initial belief state. The main contribution of this paper is in
showing how priorities can be computed for this finite set of belief points, and clearly
demonstrating the resulting improvement in speed of convergence towards an approx-
imate policy. We can hence provide prioritized versions for the PBVI [7] and Perseus
[[12]] algorithms, as well as a new prioritized algorithm, Prioritized Value Iteration (PVI),
which outperforms the unprioritized algorithms.

Another, methodological contribution of this paper is related to the schemes used for
reporting experimental results evaluating the performance of point-based algorithms.
Previous researchers have implemented their own algorithms and compared the results
to previous published results, usually reporting Average Discounted Reward (ADR) as a
measure of the quality of the computed policy, and convergence time, over well-known
benchmarks. Observe that while the ADR of a policy is identical over different imple-
mentations, the convergence time is an insufficient measurement. Execution time for
an algorithm is highly sensitive to variations in machines (CPU speed, memory capac-
ity), selected platform (OS, programming language) and implementation efficiency. We
comply with the commonly used result reporting scheme, but additional measures are
also reported, which may provide meaningful comparisons in future publications.

2 Background and Related Work

2.1 MDPs, POMDPs and the Belief-Space MDP

A Markov Decision Process (MDP) is a tuple (S, A, tr, R) where S is a set of world
states, A is a set of actions, t7(s, a, ) is the probability of transitioning from state s to
state s’ using action a, and R(s, a) defines the reward for executing action « in state s.
An MDP models an agent that can directly observe its state in the environment.

A Partially Observable Markov Decision Process (POMDP) is a tuple
(S, A, tr, R, 2,0, bo) where S, A, tr, R are the same as in an MDP, (2 is a set of obser-
vations and O(a, s, 0) is the probability of observing o after executing a and reaching
state s. A POMDP is a better model for real agents, such as robots, that do not have
direct access to the current state of world but rather observe the world through a set of
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sensors that provide noisy observations. The agent hence must maintain a belief over its
current state — a vector b of probabilities such that b(s) is the probability that the agent
is at state s. Such a vector is known as a belief state or belief point. by defines the initial
belief state before the agent has executed an action or received an observation.

Given a POMDRP it is possible to define the belief-space MDP — an MDP over the
belief states of the POMDP. The transition from belief state b to belief state b using
action a is deterministic given an observation o and defines the 7 transition function.
That is, we denote b’ = 7(b, a, 0) where:

v Ola,s',0) >0 b(s)tr(s,a,s’)
b = pr(olb,a) @

pr(o|b,a) Zb ZtT(s,a,s')O(a,s/,o) )

Thus, 7 can be computed in time O(]S|?).

2.2 Value Functions for POMDPs

It is well known that the value function V for the belief-space MDP can be represented
as a finite collection of |S|-dimensional vectors known as « vectors. Thus, V' is both
piecewise linear and convex [9]. A policy over the belief space is defined by associating
an action a to each vector a, so that o - b = >~ _«(s)b(s) represents the value of taking
a in belief state b and following the policy afterwards. It is therefore standard practice
to compute a value function — a set V' of a vectors. The policy 7y is immediately
derivable using:

7y (b) = argmax,., cy Qq - b 3)

The belief-space value function can be iteratively computed

Vn+1 (b) = maax[b “Tre Y ZPT(OW b)Vn (T(b7 a, O))] “)

where 7, (s) = R(s, a) is a vector representation of the reward function. The computa-
tion of the next value function V;,1(b) out of the current V;,, (Equationd)) is known as
a backup step, and can be efficiently implemented [2/7] by:

ao(s ZO a,s',0)tr(s,a,s")a’(s") ©)
ga =7q+ Y Z argmangva;aeV b- ga,o (6)
backup(b) = argmaxgb.,e A b- QZ @

Note that the g¢’ , computation (Equation[3)) does not depend on b and can therefore be
cached for future backups. All the algorithms we implemented use caching to speed up
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backup operations. Without caching the execution time of the backup operation takes
O(|S|2|V||£2||A]). In most benchmark POMDPs considered in our experiments, the
number of actions and size of observation space are bounded, leading to a complexity
of O(|S]?|V|) per backup step.

While it is possible to update V' over the entire belief space, hence computing an op-
timal policy [2]], the operation is computationally hard. Various approximation schemes
attempt to decrease the complexity of computation, potentially at the cost of optimality.

The vector representation is suitable only for lower bounds over the optimal value
function. When a value function is given using some other representation, such as a
direct mapping between belief states and values, one can define the H operator, known
as the Bellman update, that computes a value function update as:

Qv(b,a) =b-rq +v) , pr(ola,b)V,(r(b,a,o0)) €3]
HV(b) = max, Qv (b,a) ©)

The computation time of the H operator is O(T,|S|?|O||A|), where T, is the computa-
tion time of a specific belief point value using the value function V.

2.3 Point Based Value Iteration

Computing an optimal value function over the entire belief space does not seem to be
a feasible approach. A possible approximation is to compute an optimal value function
over a subset of the belief space [5]. Note that an optimal value function for a subset of
the belief space is no more than an approximation of a full solution. We hope, however,
that the computed value function will generalize well for unobserved belief states.

Point-based algorithms [7U12I11]] choose a subset of the belief points that is reachable
from the initial belief state through different methods, and compute a value function
only over these belief points.

Algorithm 1. PBVI

Function PBVI

1: B« {bo}

2: while true do

3:  Improve(V,B)
4: B« Ezpand(B)

Function Improve(V,B) Function Expand(B)

Input: V' — a value function Input: B — a set of belief points

Input: B — a set of belief points 1: B« B
1: repeat 2: for each b € B do
2:  foreachb e Bdo 3: Succ(b) « {b'|Fa,ToV’ = 7(b,a,0)}
3: a « backup(b) 4: B — B’ U
4: add(V, a) argmazy e suce(v)dist(B,b')
5: until V' has converged 5: return B’

Point Based Value Iteration (PBVI) [[7] (Algorithm [I)), begins with by, and at each
iteration computes an optimal value function for the current belief points set. After
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convergence the belief points set is expanded by adding the most distant immedi-
ate successors of the previous set. Following Pineua et al. we used the Lo distance
metric.

Spaan and Vlassis [12] explore the world randomly, gathering a set B of belief
points, and then executing the Perseud] algorithm (Algorithm ). Perseus appears to
provide good approximations with small sized value functions rapidly. However, it is
very stochastic due to the random selection of belief points and the random selection of
backup operations. These random selections cause a high variation in performance and
in more complicated problems may cause the algorithm to fail to converge at all.

Algorithm 2. Perseus
Input: B — a set of belief points
1: repeat
22 B« B
3:  while B # ¢ do
4 Choose b € B
5 a «— backup(b)
6: ifa-b> V(b) then
7 add(V, a)
8 B—{beB:a-b<V(b)}
9: until V' has converged

Algorithm 3. HSVI
Function HSVI Function Explore(b, d)
1: Initialize V and V Input: b — a belief state
2: while V(by) — V(bo) > edo Input: d — depth of recursion
3:  Explore(bo,0) 1: if V(b) — V(b) < ey~ then
2:  a* « argmax, Qy (b,a’) (Equation[8)
3 0" — argmax, (V(7(b,a,0)) —
V(7(b,a,0))

4:  Explore(r(b,a",0"),d+ 1)
5: qdd(\_’, backup(b, V))
6 V — HV(b)

Smith and Simmons [[10/11] present the Heuristic Search Value Iteration algorithm
(HSVI - Algorithm [3)) that maintains both an upper bound V' and lower bound V over
the value function. HSVI traverses the belief space following the V' policy, greedily
selecting successor belief points where the gap between the bounds is the largest, until
some stopping criteria has been reached. Afterwards it executes backup and H operator
updates over the observed belief points on the explored path in a reversed order. The
policy computed by HSVI is based on V. V is used only for exploration.

! We present here a single value function version of Perseus.
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3 Prioritized Point Based Value Iteration

Point based algorithms compute a value function using « vectors by iterating over some
finite set of belief points and executing a sequence of backup operations over these
belief points. For each set of belief points there are many possible sequences of backup
executions. As our goal is to approximate the value function as quickly as possible, we
say that a backup sequence seq; is better than sequence segqq if seq; is shorter than
seqa, and produces a policy which is no worse than the one produced by seqs.

We suggest creating (hopefully) better sequences using a heuristic that predicts use-
ful backups. The heuristic computation must be efficient so that the overhead of comput-
ing the heuristic does not outweigh any savings achieved by performing fewer backups.

3.1 Prioritizing MDP Solvers

A comparable scheme used for prioritizing in MDP solvers, suggests performing the
next backup on the MDP state that maximizes the Bellman error:

e(s) = mazq|R(s,a) + Ztr(s, a,s"\V(s)] = V(s). (10)

e(s) measures the change in V' (s) from performing a backup. Wingate and Seppi[[13]]
present a very simple version of prioritized value iteration for MDPs (Algorithm [4)).

Algorithm 4. Prioritized Value Iteration for MDPs
1: Vs € S,V(s) <0
2: while V has not converged do
31 s« argmax,ge(s’)
4:  backup(s)

A key observation for the efficiency of their algorithm is that after a backup op-
eration for state s, the Bellman error recomputation need be performed only for the
predecessors of s {s’ : Ja, tr(s’, a, s) # 0}.

3.2 Prioritizing POMDP Solvers

While the Bellman error generalizes well to POMDPs:

e(b) = maxgy[rq - b+ Zpr(o|a, b)V(7(b,a,0))] — V(b) (11)

there are two key differences between applying priorities to MDPs and POMDPs; First,
a backup update affects more than a single state. A new vector usually improves the
local neighborhood of its witness belief point. Second, the set of predecessors of a
belief state cannot be efficiently computed, and its size is potentially unbounded.
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Moreover, even supposing that some similarity metric for finding the neighborhood
of a belief point were defined, and that computation of the predecessor set were only
for the finite set of belief points we use, directly applying the approach would still be
infeasible. In practice, algorithms such as Perseus, frequently converge to an optimal
solution while computing fewer backups than the number of belief points in the finite
set. Pre-computations such as similarity matrixes will take more time than the original
algorithm they are designed to improve in the first place.

As we cannot find the set of belief states affected by the backup operation directly,
we recompute the Bellman error for all belief states after every backup from scratch.
When the number of belief points we use is relatively small this computation can be
done without seriously damaging the performance. As the size of the problem — states,
actions, observations and belief set size — increases, we can no longer afford the over-
head of recomputing the Bellman error for all belief states.

We take a stochastic approach, sampling (uniformly, with repetitions) a subset of
the belief points set and computing the Bellman error only for the sampled subset.
If the subset does not contain a point with positive error, we sample again from the
remaining subset until a belief point with positive error is found. If there is no belief
point with positive Bellman error then the value function reached a fixed point and
therefore converged to an optimal solution over the finite set of belief points, and cannot
be improved using point-based backups.

3.3 Prioritizing Existing Algorithms

Prioritizing Perseus is straight forward. The choose step is implemented in Perseus as a
uniform selection among any of the current belief points inside B. Prioritized Perseus
uses e(b) (Equation[IT) to choose a belief point whose value can be improved the most.
PBVI improves its value function (Algorithm [I line 3) by arbitrarily preforming
backups overs belief points. We replace this inefficient computation of the Improve
operation with our PVI algorithm (see Section[3.4). As the number of points used by
PBVI is relatively small, no sampling was used when computing the Bellman error.

3.4 Prioritized Value Iteration

Finally, we present an independent algorithm — Prioritized Value Iteration (PVI). Like
Perseus, PVI computes a value function over a pre-collected fixed set of belief points.
However, Perseus operates in iterations over the set of belief points, attempting to im-
prove all belief points between considering the same point twice. PVI considers at each
step every possible belief state for improvement. It is likely, therefore, that some belief
states will be backed up many times, while other belief states will never be used.

Algorithm [ presents our PVI algorithm. Note however that while the algorithm
described here is the clean version of PVI, in practice we implement the argmax oper-
ation (line 2) using our sampling technique described above. If the prioritization metric
is good, PVI executes a shorter sequence of backup operations. Indeed, experiments
show that it uses significantly fewer backup operations than Perseus using our locally
greedy Bellman error prioritization metric.
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Algorithm 5. Prioritized Value Iteration
Input: B — a set of belief points

1: while V' has not converged do

2 b* «— argmax, g e(b)

3:  a < backup(b*)

4:  add(V,a)

4 Empirical Evaluations

4.1 Improved Evaluation Metrics

Previous researchers [IJ7U1111246] limit their reported results to execution time, ADR
and in some cases the number of vectors in the final value function.

Value function evaluation — Average discounted reward (ADR) is computed by
simulating the agent interaction with the environment over a number of steps (called a

Z#M ials Z#atepa v F’I‘
trial) and averaging over a number of different trials: Htrials

ADR is widely agreed as a good evaluation of the value of a value functlon It can,
however, present very noisy results when the number of trials or the number of steps is
too small. To remove such noise we used a first order filter with weight 0.5. We stopped
the execution once the filtered ADR has converged to a predefined target.

Execution time — As all algorithms discussed in this paper compute a value func-
tion using identical operations such as backups, 7 function computations, and dot prod-
ucts (« - b), it seems that recording the number of executions of those basic building
blocks of the algorithm is more informative than just reporting CPU time.

Memory — The size of the computed value function and the total amount of main-
tained belief points are good estimates for the memory capacity required for the com-
putation of the algorithm.

4.2 Experimental Setup

In order to test our prioritized approach, we tested all algorithms on a number of bench-
marks from the point-based literature: Hallway, Hallway?2 [4] (two maze navigation
problems), TagAvoid [[7] (a robot must capture another escaping robot) and RockSam-
ple [10] (a robot identifies and visits valuable rocks on a map). Table [2] contains the
problem measurements for the benchmarks including the size of the state space, action
space and observation space, the number of belief points in the set | B| used for Perseus,
Prioritized Perseus and PVI, and the ADR measurement error over 10, 000 trials.

We implemented in Java a standard framework that incorporated all the basic oper-
ators used by all algorithms such as vector dot products, backup operations, 7 function
and so forth. All reported results were gathered by executing the algorithms on identi-
cal machines — x86 64-bit machines, dual-proc, processor speed 2.6Ghz, 4Gb memory,
2Mb cache, running linux and JRE 1.5.

As previous researchers have already shown the maximal ADR achievable by their
methods, we focus our attention on convergence speed of the value function to the re-
ported ADR. We executed all algorithms, interrupting them from time to time in order to
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compute the efficiency of the current value function using ADR over 5000 trials. Once
the filtered ADR has reached the same level as reported in past publications execution
was stopped. The reported ADR was then measured over additional 10, 000 trials (error
in measurement is reported in Table 2J).

We pre-computed 5 different sets of belief points for each problem, by simulating an
interaction with the system following the Q) y;pp policy with an e-greedy exploration
factor (e = 0.1). These were then used for algorithms that require a given set of belief
states B — Perseus, Prioritized Perseus and PVI. For each such belief points set we ran
5 different executions with different random seeds resulting in 25 different runs for each
stochastic method. The belief points set size for each problem is specified in Table
Using Qrpp for gathering B allowed us to use a smaller belief set than [[12].

Algorithms that are deterministic by nature — PBVI, Prioritized PBVI and HSVI —
were executed once per problem.

10 110 210 310 410 510 610 0 50 100 150 200 250 300 350 400 450 500

‘+ PPerseus —e— PPBVI —— PV —x— Perseus —s—HSVI ‘ ‘+ PPerseus —e— PPBV| —x— PVl —— Perseus —#—HSV| —+ PBVI ‘

(@) (b)

Fig. 1. Convergence on the Rock Sample 5,5 problem (a) and the Tag Avoid problem (b). The X
axis shows the number of backups and the Y axis shows ADR.

4.3 Results

Table 1 presents our experimental results. For each problem and method we report:
the resulting ADR, the size of the final value function (]V]), the CPU time until con-
vergence, the number of backups, of gg' , operations, of computed belief states, of 7
function computations, and of dot product operations.

The reported numbers do not include the repeated expensive computation of the
ADR, or the initialization time (identical for all algorithms). Results for algorithms
that require a pre-computed belief space do not include the effort needed for this pre-
computation. We note, however, that it took only a few seconds (less than 3) to compute
the belief space over all problems.

To illustrate the convergence of the algorithms we have also plotted the convergence
of the ADR vs. the number of backups an algorithm preforms in Figure[Il The graphs
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Table 1. Performance measurements. The algorithms that executed fewer backups and converged
faster are bolded.

Method ADR |V| Time (secs) #Backups #gg' , x 106 # belief states x 10* #7x10% #o - bx 106
Hallway

PVI 0.517£0.0027 144432 75+32 504+107 3.87£1.75 1.99+0.04 4.849.8 13.11+5.19
PPerseus 0.517+£0.0025 173443 126447 607+£166  5.524+2.95 1.99+0.04 4.8+9.8 26.87+9.2
Perseus  0.517+£0.0024 466+164 125+110 1456+388 31.56+27.03 0.03+0 0£0 32.07£27.16
PPBVI 0.519 235 95 725 9.09 1.49 13.45 25.72
PBVI 0.517 253 118 3959 31.49 1.49 15.79 31.69
HSVI 0.516 182 314 634 5.85 3.4 34.52 6.67
Hallway2

PVI 0.344£0.0037 234432 75+20 262443  2.5940.84 2.49+0.11 547£9.99 6.96+2.01
Pperseus 0.346+0.0036 273+£116 2194155 3434173  4.76+5.48 2.49+0.11 5.2549.99 18.97+12.79
Perseus  0.344+0.0034 578495 134+48 7034+120 17.03+6.08 0.03£0 0+£0 17.31+6.13
PPBVI 0.347 109 59 137 0.61 2.03 10.77 4.22
PBVI 0.345 128 76 1279 7.96 1.52 5.59 8.02
HSVI 0.341 172 99 217 1.56 2.11 11.07 1.81
Tag Avoid

PVI -6.467+£0.19 204138 40+12 211438  0.4240.19 0.16£0 0.5£1.02 0.95+0.25
PPerseus  -6.387+0.18 260143 105426 265444 5.27+1.8 1.73£0.02 5.68+11.59 12.82+3.01
Perseus -6.525+0.20 365+69 2124174 11242410433 28.69+32.09 0.04£0 0£0 30.78+33.96
PPBVI -6.271 167 50 168 2.09 0.41 32.11 245
PBVI -6.6 179 1075 21708 407.04 0.41 56.53 409.5
HSVI -6.418 100 52 304 0.5 0.29 1.74 0.53
Rock Sample 4,4

PVI 17.72540.32 231+41 442 232442 0.36+0.14 0.414+£0.01 1.174+2.38  1.7440.42
PPerseus 17.574+0.35 229426 542 228427  0.344+0.08 0.414+0.01 1.174+2.38  1.914+0.29
Perseus 16.843+0.18 193+24 158433 24772+5133 59.961+13.06 0.05+£0 0£0 66.524+14.25
PPBVI 18.036 256 229 265 0.62 243 55.31 9.46
PBVI 18.036 179 442 52190 113.16 1.24 35.47 119.8
HSVI 18.036 123 4 207 1.08 0.1 1.17 1.09
Rock Sample 5,5

PVI 19.238+0.07 357456 21+7 362+63  0.99+0.36 0.46+0.01 1.37+£2.79  3.39+0.87
PPerseus  19.151£0.33 340453 20+6 339+53  0.88+0.28 0.46£0.01 1.37£2.79 3.5+£0.73
Perseus 19.08+0.36 413+56 2284252 10333+9777 60.34£66.62 0.05+0 0£0 63.17£69.21
PPBVI* 17.97 694 233 710 4.95 0.95 17.97 18.12
PBVI* 17.985 353 427 20616 72.01 0.49 11.28 75.64
HSVI 18.74 348 85 2309 10.39 0.26 234 10.5
Rock Sample 5,7

PVI 22.945+0.41 358488 89+34 359489  1.284+0.64 0.29+£0.01 0.73£1.49 2.98+1.16
Pperseus  22.9374+0.70 408+77  118+37 407+77  1.61£0.59 0.2940.01 0.73+£1.49  4.09£0.98
Perseus  23.014+0.77 462170 116431 1002£195 5.18+1.9 0.02+0 0+0 5.36+1.93
PPBVI* 21.758 255 117 254 0.61 0.23 271 1.59
PBVI* 22.038 99 167 2620 3.05 0.15 1.66 3.23
HSVI 23.245 207 156 314 0.83 0.71 4.2 0.88

contain data collected over separate executions with fewer trials (500 instead of 10000)
so Table 2 is more accurate.

HSVI is the only method that also maintains an upper bound over the value function
(V). Table[Blcontains additional measurements for the computation of the upper bound:
the number of points in V, the number of projections of other points onto the upper
bound, and the number of upper bound updates (HV (b) — Equation Q).

PBVI and PPBVI failed in two cases (Rock Sample 5,5 and 5,7 — marked with an

asterix) to improve the reported ADR even when allowed more time to converge.

4.4 Discussion

Our results clearly show that an informed choice of the order by which backups are
preformed over a predefined set of points improves the convergence speed. The most
significant result is that our new algorithm, PVI, is among the quickest to converge in
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Table 2. Benchmark problem parameters Table 3. Upper bound measurements for HSVI
Problem |S| |Al |O| |B| ADR Error Problem V| #V(b) #HV(b) |B]
Hallway 61 5 21 250 £0.0015  Hallway 423 106132 1268 523
Hallway?2 93 5 17 300 £0.004 Hallway?2 232 37200 434 171
Tag Avoid 870 5 30 350 £0.045 Tag Avoid 1101 29316 1635 248
Rock Sample 4,4 257 9 2 500 £0.075 Rock Sample 4,4 344 6065 414 176
Rock Sample 5,5 801 10 2 500 £0.3 Rock Sample 5,5 801 101093 6385 1883
Rock Sample 5,7 3201 12 2 500 £0.25 Rock Sample 5,7 3426 9532 628 268

all but one test-bed (in Hallway?2 it is outperformed only by PPBVI). The efficiency of
PVT’s backup choices shows up nicely in Figure [I} where we see the steep improve-
ment of PVI. Its improvement seems to be the steepest among the algorithms tested,
indicating that it is a good choice for a fast approximation algorithm.

We can also see that, in general, prioritization helps each specific algorithm. We see
it clearly in the case of PBVI — its running time is always faster with prioritization —
whereas for Perseus there is one domain (Hallway2) in which the prioritized version
is significantly slower, and two domains where the performance is virtually the same
(Hallway and Rock Sample 5,7).

We can see an even more pronounced effect of prioritization on the number of back-
ups, both between the two version of PBVI and Perseus, and with respect to PVI. In all
these cases, there is an order of magnitude reduction in the number of backup operations
when the next backup to preform is chosen in an informed manner. However, we also
see that there is a penalty we pay for computing the Bellman error, so that the saving in
backups does not fully manifest in execution time. Nevertheless, this investment is well
worth it, as the overall performance improvement is clear. Note that the ADR to which
the different algorithms converge is not identical, but the differences are minor, never
exceeding 2%, making all ADRs shown equivalent, for all practical purposes.

In many case, HSVI executes less backups than other algorithms. Indeed, one may
consider HSVT’s selection of belief space trajectories as a form of prioritization metric.
As such, we note that in most cases our form of backup selection exhibits superior
runtime to HSVI, even when the number of backups HSVI uses is smaller. This is due
to the costly maintenance of the value function upper bound.

5 Conclusions

This paper demonstrates how point-based POMDP solvers such as PBVI and Perseus
can greatly benefit from intelligent selection of the order of backup operations, and
that such selection can be performed efficiently, so that the algorithms’ overall per-
formance improves. It provides an extensive experimental analysis of different aspects
of the performance of current point-based algorithms as well as their prioritized ver-
sions on popular domains from the literature. It also presents an independent algorithm
— Prioritized Value Iteration (PVI) — that outperforms current point-based algorithm
on a large set of benchmarks converging faster toward comparable values of ADR.



400 G. Shani, R.I. Brafman, and S.E. Shimony

Given that point-based algorithms are the methods of choice for approximately solving
POMDPs, PVI appears to be the fastest current approximation algorithm for POMDPs.
All the prioritized algorithms described in this paper use the same heuristic measure,
the Bellman error, to decide on the sequence of backups. The method for selecting the
order of backups using the Bellman error is pointwise greedy. While this choice may be
optimal in the context of MDPs, in the context of POMDPs it does not take into account
the possible improvement of a backup over other belief points as well. It is quite likely
that executing a backup that improves a region of the belief space rather than a single
belief point may have better influence over the convergence of the value function. Thus,
future work should examine other possible heuristic functions that take this issue into
account. The Bellman error is also expensive to compute, forcing us to estimate only a
sampled subset of the belief points — this was very noticeable in our experiments. This
implies that cheaper alternatives that lead to similar quality of backup selection may
lead to algorithms that are an order of magnitude faster than current algorithms.
Another possible direction for future research is the choice of belief points [3]] dif-
ferent algorithms use. Point-based algorithms use different methods for selecting belief
points, and better techniques can probably enhance the performance of these algorithms.
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