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Abstract. In their search through a huge space of possible hypotheses, rule in-
duction algorithms compare estimations of qualities of a large number of rules
to find the one that appears to be best. This mechanism can easily find random
patterns in the data which will — even though the estimating method itself may be
unbiased (such as relative frequency) — have optimistically high quality estimates.
Itis generally believed that the problem, which eventually leads to overfitting, can
be alleviated by using m-estimate of probability. We show that this can only par-
tially mend the problem, and propose a novel solution to making the common rule
evaluation functions account for multiple comparisons in the search. Experiments
on artificial data sets and data sets from the UCI repository show a large improve-
ment in accuracy of probability predictions and also a decent gain in AUC of the
constructed models.

1 Introduction

Most rule learning algorithms [8]] induce models by iteratively searching for the best
rule and removing the examples covered by it. Rules are usually sought by a beam
search, which gradually adds conditions to the rule with aim to decrease the number
of covered (so-called) negative examples, while at the same time losing as few positive
examples as possible. The search is guided by two measures, one which evaluates the
partial rules and the other which selects between the final rule candidates; most often,
as in the case of this paper, the same measure is used for both purposes.

A good rule should give accurate class predictions, or, in other words, have a high
probability of the positive class among all examples (not only learning examples) cov-
ered by rule. Hence relative frequency, an unbiased estimator of probability, seems to
be a reasonable choice for the measure of quality of rule:

Q(r) = (1)

n

where n is the number of learning examples covered by the rule r and s is the number
of positive examples among them.

However, the assumption that the relative frequency indeed estimates the probability
of positive class is wrong. Fig. shows how searching through a large space of
rules, which tries to maximize relative frequencies, can always find rules with 100%
positive subsets, though these are usually purely random patterns in the data and their
true positive class probabilities are much lowerl] Class proportions for the rules found
by the search process are thus completely uncorrelated with the true class probabilities.

! Experimental details are provided in the next section.
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Fig. 1. Relation between the estimated (y-axis) and true (z-axis) class probabilities for rules from
artificial data sets

A more general version of this problem has been extensively explored by Jensen and
Cohen [12] who blame multiple comparisons during the search to be responsible for
plethora of pathologies in induction algorithms. Our paper proposes a method which
can fix the relative frequency estimate and other rule evaluation measures by taking
multiple comparisons into account through the use of extreme value distributions [7].

Since a review of all proposed improvements of evaluation measures would take the
entire paper, the next section only studies the effect of the m-estimate of probability [2]
as a good representative of such techniques. We then present our algorithm and, in the
following section, validate it on several artificial and UCI data sets. The conclusion
gives a list of several open questions and limitations of the methods.

2 Experimental Study of Rule Estimators

The m-estimate [2] computes the class probability (or, in our case, the rule quality) as

S+ m X pg
n—+m

Qm(r) = 2
where p, is the prior probability and m is a parameter of the method. Fuernkranz and
Flach [8] showed that the m-estimate presents a trade off between precision (relative
frequency) and linear cost metrics (for instance, weighted relative accuracy [13I16]).
Different values of parameter m can be used to approximate many currently used eval-
uation functions. For instance, when m = 0, m-estimate equals the relative frequency.
Instead of citing various proposals from the extensive related work, we shall thus con-
centrate on the more general m-estimate.
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Table 1. Comparison of rules obtained from artificial data sets with different values for m: the
average true class probability, Spearman correlation between the true probability and the estimate,
and the mean square error of the estimate

m avg. accuracy Spearman mean error

0 0.68 0.00 0.119

2 0.68 0.54 0.074
10 0.68 0.68 0.027
20 0.68 0.72 0.015
50 0.67 0.70 0.009
100 0.66 0.65 0.010

To observe the correlation between the true and the estimated class probabilities, we
constructed a set of artificial data sets with controlled class probabilities for each pos-
sible rule. We have prepared 300 data sets with ten binary attributes. Five attributes in
each data set were unrelated with the class. For the other five, we prescribed a (random)
class probability for each combination of their values. We then generated 2'° examples
for each data set, one for each combination of attribute values, and assigned the classes
randomly according to the prescribed probabilities for the combination of informative
attributes. Note that the actual class proportions in the data set do not necessarily match
the defined probabilities for a particular combination of attribute values/l

For each of 300 data sets we learned a single rule using different values for m (0, 2,
10, 20, 50, 100). Fig. [lshows the relation between the rule’s estimated class probability
Q. (r) and the known true probability, which we shall denote by Q(r). As we already
mentioned in the introduction, at m = 0 (relative frequency), the method is extremely
optimistic. With increasing values of m, the method is still optimistic for rules with
lower true probability, but pessimistic for rules with higher true probability. It seems
that m-estimate lowers the estimated quality by the same amount for all rules, which can
not adjust the estimates to lie on (or at least close to) the ideal diagonal line representing
the perfect correlation.

Table [Il compares the measured evaluation functions by

— the average true prediction accuracy of the induced rules, which reveals the quality
of the evaluation function as search heuristics; B

— the Spearman correlation coefficient between Q,,, () and Q(r), that shows the qual-
ity of the rule ordering, which is crucial when rules are used for classification,
where we need to distinguish between “stronger” and “weaker” rules;

— the mean square difference between @Q).,,,(r) and Q(r) which indicates the rule’s
accuracy when used as probabilistic predictor.

The first column of Table [I] suggests that lower values of m give (marginally) better
rules than higher values. However, higher m’s score better in terms of the Spearman
correlation and give better probability estimates.

In conclusion, using the m-estimate with a suitably tuned m can considerably de-
crease the error of the estimated probabilities, yet, as seen from the graphs, the major

2 We obtained similar results in experiments with other ways of constructing artificial data sets.
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Fig. 2. An outline of the proposed procedure

effect comes from reducing the optimism, while the correlation between the true and
the estimated probability remains rather poor. m-estimate and the many other similar
techniques are thus not a satisfactory solution to the problem of overfitting, wrong rule
quality estimates and optimistic probability predictions.

3 Algorithm for Improved Probability Estimate

Relative frequencies, m-estimates and other potential measures of rule quality are com-
puted from the number of examples covered by the rule (n) and the number positive
examples among them (s). We have seen that relative frequencies overestimate the true
probability because the algorithm searches for the rule with the highest s : n ratio. Since
the training data presents only a limited sample from the population, the observed ratio
for each rule is subject to random distribution, so the found rule is therefore not neces-
sarily the optimal one, and it almost certainly has an optimistic s : n ratio. One way of
preventing these unwanted effects and improving the probability estimate s/n is to try
to find the expected value of s, which we shall denote by s.

The outline of the proposed procedure is illustrated in Fig. [2l For reasons that will
become clear later, we start by computing the log-likelihood ratio statistics (LRS) for
2 x 2 tables derived by Dunning [6]. It is usually assumed that LRS is distributed
according to x2(1). This is, however, true only for randomly chosen rules, or, in our
case, for LRS computed from the expected value of s, s.

The highest observed LRS (computed from s, not 5) is distributed according to the
Fisher-Tippet extreme value distribution (EVD) (718 Since EVD depends only the num-
ber of rules considered in the search (it is more likely to get higher LRS if number of
rules considered is higher), which is determined by the rule length, the chosen search
algorithm and the properties of the data set (number of examples, number and type of
attributes), we will be able to compute corresponding EVDs — for rules of different
lengths for the selected algorithm and a particular data set — in advance.

Now consider a specific rule. From n and the observed s, we can compute the LRS
and then, knowing its distribution (EVD), find the probability that a rule this good (or
better) is found under the null-hypothesis of no relation between the attribute and class
values. We shall denote this probability, the “significance of the rule”, by P,(r). Note
that P, (r) takes the multiple comparisons into account, so this estimate is unbiased.

3 For illustration, although the daily levels of a river are usually distributed normally, the distri-
bution of maximal annual levels is not normal but Fisher-Tippet’s.
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On the other hand, imagine that we knew the expected s of that rule. We could
compute its true log-likelihood ratio LRS and, through y?(1) distribution, arrive at the
same significance P, (r) as above.

The trick that we use in this paper is to reverse the second path. So, from the unbiased
P,(r) which we get from the known (but optimistic) s through LRS and EVD, we shall

compute the unbiased LRS and the corresponding s.

The reason for which we need to compute LRS instead of computing the extreme
value distribution for Q(r) = s/n directly, and estimate the unbiased Q through P, (),
is that the extreme value of a sampled random variable (such as s, @Q(r) or LRS) is
distributed by the Fisher-Tippet (or some other) extreme value distribution only if the
variable’s values are taken from a fixed distribution (independent from s and n). LRS,
as we just noted, fulfils this criterion, while s/n is distributed according to 3(s,n — s)
and is thus not the same for all rules.

As a side note, our approach to correcting quality estimators can be generalized to
other criteria beside Q(r) = s/n. If the density distribution of a criterion depends
upon the rule (like is the case with s/n), we need to find a measure which is well-
correlated with the criterion (additional explanation is given later), yet drawn from a
fixed distribution (like LRS, which is drawn from x?(1) and still reasonably correlated
with s/ n)ﬂ If the observed criterion already comes from a fixed distribution (if, for
example, LRS would be used as the main evaluation function), finding a correlated
measure is not needed and we can immediately proceed to the computation of EVD.

This section will present the details of the algorithm, along with a running example
for illustration.

Step 1: From s to LRS. Let s again be the number of positive examples covered by
rule and let s¢ be the number of positive examples not covered by the rule. Similarly let
n be the number of covered examples by the rule and n¢ be the number of examples not
covered by the rule. LRS is then defined as:

LRS =2 |slog 5 + (n—s)log nes + s¢log 5 + (n€ - sc)logn‘ - 3)
e e e

s n—s s¢ €Enc_sc

where e, is the expected value of z. For instance, e, is computed as n;i; When
computed on a randomly chosen rule, LRS is distributed according to x2(1) distribu-
tion, disregarding properties of the rule (length, s, n...) and the data. Note that a similar
formula for LRS, without the last two terms, was used in [4)3]] for computing signif-
icance of rules. However, as that formula is approximately correct only if n is small

enough when compared to n¢, we prefer to use the formula[3 derived by Dunning [6].

Example. We have a data set with 20 examples where the prior probability of the posi-
tive class is 0.5. Learning from that data, the rule search algorithm found a rule r with
two conditions which covers 10 examples with 8 of them belonging to the positive class.
Its LRS is, according to (3, 7.7.

* The correlation would be perfect if every rule covered the same number of examples.
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Fig. 3. Probability density functions

Step 2: From LRS to P,(r). P,(r) measures the probability that, given a random
data with no relation between the attribute and class values, the rule found by the chosen
search procedure will have the quality of at least LRS(r) (or another suitable measure
of quality). This definition suggests a way of computing P, (r): like Jensen and Co-
hen [12], we permute the class values in the data set so that all rules are purely random
and their true probability for positive class equals the prior probability. We then induce
arule on the randomized data set and compute its LRS. Repeating it for many times we
get a distribution for LRSs.

Gumbel and Lieblein [9l10] (cited in [14]) have shown that the limiting distribution
of all x? distributions is the Fisher-Tippet distribution (Fig.[3(a)). Fisher-Tippet distrib-
ution is characterized by two parameters, location (1) and scale (3). For LRS, it can be
shown that 3 always equals 2, and p equals the median of the above sample to which
we add 2In1n 2 (see Appendix [Al for a proof). In general, values of 1 and 3 depend
upon the number of rules covered by the search (which does not necessarily equal the
number of explicitly evaluated rules), which in turn depends upon the rule length and
the data set (and, of course, the search algorithm). Due to their independence of the
actual rule, we can compute values 1(L) and 3(L) for different rule lengths before we
begin learning, using the algorithm shown in Fig. [l The algorithm runs until u(L) is
smaller than p(L — 1), which signifies that rules of length L — 1 can not be improved
because they are perfect or they do not cover enough examples.

During learning we use the cumulative Fisher-Tippet distribution function (see the
formula in Appendix[A) with the pre-computed parameters to estimate P, (r).
Example (continued). Say that algorithm from Fig. [ found p(2) = 3 and 5(2) = 2
(remember that rule r has two conditions). The curve with such parameters is depicted
in Fig. B(a)} so the probability P, (r) for the rule from our example corresponds to the
shaded area right of LRS=7.7. P,(r) equals approximately 0.09.

Step 3: From P, (7) to Ijl?S(r) To compute I:lié(r) we need to do the opposite from
the last step. Looking at the x?(1) distribution (Fig.[3(b)), we need to find such a value
LRS(r) that the area under the curve to the right of it will equal P, (r). In other words,
the shaded areas under the curves in Fig.[3] should be the same.
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1. Let L =1 (L is the maximum rule length).

Permute values of class in the data.

Learn a rule on this data (using LRS as evaluation measure), where the maximum length of
rule is LA

Record the LRS of the rule learned.

Repeat steps 2-4 to collect a large enough (say 100) sample of LRSs

Estimate parameters p(L) and 3(L) of the Fisher-Tippet distribution (see Appendix [AD.

If (L) > p(L — 1), then L = L 4 1 and return to step 2.

w N

Now s

Fig. 4. The algorithm for computing parameters of the Fisher-Tippet distributions

Example (continued). The corresponding LRS for our examples as read from Fig.
is 2.9. Note that this is much less than LRS = 7.7, which we computed directly from the
data and which would essentially be used by an unmodified rule induction algorithm.

Step 4: From LRS to 5. The remaining task is trivial: compute $ from the formula for
LRS using an arbitrary root finding algorithm. Similar would be done for statistics other
than LRS and 3. In our task we are correcting probability estimates based on relative
frequencies, so we shall compute them by dividing the corrected 5 by n.

Example (conclusion). We used Brent’s method [1]] to find that LRS = 2.9 corresponds
to § = 6.95. The rule covers ten examples, so the corresponding class probability is
6.95/10 = 0.695. Note that this estimate is quite smaller than the uncorrected 0.8.

4 Experiments

We have tested the algorithm on artificial data described in Section[2and on a selection
of data sets from the UCI repository [[15]]. In all experiments we used beam search [3/4]
with a beam width set to 5. The algorithm was implemented as a component for the rule
based learner in machine learning system Orange [J5]].

The results of using the corrected measure on the artificial data are shown in Fig.
The estimated class probabilities are nicely strewn close to the diagonal axis, which is
a clear improvement in comparison with the results from Fig.[Il This is also confirmed
by the quantitative measure of fit: the average true probability is the same as the highest
values in Table [T the mean quadratic error is a little better than that of m-estimates,
while the Spearman coefficient is clearly superior.

We mentioned that LRS is perfectly correlated with class probabilities only if every
rule covers the same number of examples. Our data is constructed in that way, while
real data sets certainly do not possess that property. To test the practical impact of our
correction, we observed its behaviour on a set of UCI data sets. Each data set was split
evenly onto learn and test sets. For learning we then generated ten bootstrap samples
from the learn set.

> Note that using LRS at a given rule length will always order rules the same as would LRS.
However, as we will be using (s)/n in the actual learning phase, in order to correctly estimate
parameters of Fisher-Tippet distribution, measures 5/n and LRS should be well correlated.
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Fig. 5. Relation between the corrected (y-axis) and the true (x-axis) class probability

We ran the algorithm on the bootstrap samples and then used the examples from the
test set to count the number of positive and the number of all examples covered by each
induced rule. We took this ratio to be the true positive class probability for the rule
(although it is, as a matter of fact, still only an estimate, it is at least an unbiased one,
since it is computed from the test data). Results in Table show that we succeeded
in improving the probability estimates: the probability estimates by our method are far
more accurate than those by any m in m-estimate measure.

This would, however, be easily achieved and surpassed by a method returning a
single rule covering all examples and which would estimate the probability with the
prior class probability. To test that our gains are not due to oversimplification we also
computed the average AUC over the ten bootstrap samples. To make predictions from
lists of rules, we used a simple classifier that takes the first rule that triggers for each
class (we get one rule for each class), and normalize the class probabilities of these
rules to sum up to 1. Although there exist better classifiers from a set of rules, we
believe that using them would not considerably change the ranking of examples and the
related AUC. Table shows that the performance of our method in terms of AUC is
comparable to that of the other methods.

5 Conclusion

We have described a correction for removing the optimism in rule evaluation measures
which arises since the rule was selected among many other rules considered during
the search based on this same measure. The correction is based on the idea that the
optimistic statistics, which is distributed according to extreme-value distribution, and
the sought for statistics, which is (in case of LRS, which we used) distributed by x?(1)
should predict the same probability that the rule was found by chance.

Tests on artificial data sets show that the correction works well. Experiments on real-
world UCIT data sets also confirm the gain in terms of probability predictions without
decreasing the accuracy of predictive models.

There remain several limitations and unsolved problems. First, extreme value dis-
tributions are computed in advance, using entire data set. Common rule learning al-
gorithms use a separate-and-conquer approach in which the covered examples are re-
moved at each step, therefore changing the statistical properties of the data set. As
a most obvious consequence, removing examples reduces the effective search space,
which makes our correction too strict. We should therefore recompute the parameters of
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EVD distributions after each step, which is not practically feasible. The alternative
would be to develop a rule learning algorithm that does not remove learning examples.

Extreme value distributions, as computed in the paper, account for multiple com-
parisons between the rules of the same length, but not between the rules of different
lengths. We have developed and tested a remedy for this, but we omitted it in the paper
since the impact of this correction is minimal — the number of comparisons between
rules with different length is usually small.

We believe that the proposed method has a lot of potential. Although we here applied
it only for correcting the class probability estimates, the same trick could, in principle,
be applied to correcting other measures of rule quality that are being optimized by
the search process. It may be even adoptable to other machine learning methods that
extensively search through the space of possible hypotheses, such as learning decision
trees, and which could significantly benefit from such corrections.
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A Appendix: Computing Parameters of Extreme-Value
Distribution

Section [3] describes an algorithm for computing extreme distributions of rules learned
from random data which involves calculating the parameters of extreme value distrib-
ution for a vector of maxima of evaluations of rules distributed by x? with 1 degree of
freedom. The limiting distribution of all x? distributions is Fisher-Tippet [7/9/10]. The
cumulative distribution function of this distribution is
n—zq
Pz <xzg)=e* "’ 4)
where 11 and 8 are parameters of the distribution. Distribution’s mean, median, and
variance are
mean =y + (y, median =y — B*Inln2, var = 72(%/6 (5)
where ~ is Euler-Mascheroni constant 0.57721. The natural way to compute the para-
meters p and § from the sample would be to first estimate the variance from the data
and use it to compute [, followed by the estimation of p from the sample’s mean or
median. However, error of estimation of variance and mean propagates to estimations
of parameters p and 3, where variance is a bigger problem than mean, as it is used for
estimation of both parameters.
Gupta [L1] showed that for p independent and identically distributed values taken
from x? with one degree of freedom, where p is large, the following properties holds
for their maxima M::

E(M)=2Inp—Inlnp —Inw + 2y (6)
m(M)=2Inp—Inlnp—In7m —2Inln2 ™
o(M) = \/2/3n2 (8)

Since o (M) is independent of the number of values (or the number of considered rules,
in our case), combining [3 and [8] gives 3 = 2. We thus only need to estimate the re-
maining parameter p. In our algorithm we computed the median from the vector of
maximum values, so x equals the median plus 2 In1n 2.
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