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Abstract. Online auctions have gained immense popularity by creating an ac-
cessible environment for exchanging goods at reasonable prices. Not surpris-
ingly, malevolent auction users try to abuse them by cheating others. In this 
paper we propose a novel method, 2-Level Fraud Spotting (2LFS), to model the 
techniques that fraudsters typically use to carry out fraudulent activities, and to 
detect fraudsters preemptively. Our key contributions are: (a) we mine user 
level features (e.g., number of transactions, average price of goods exchanged, 
etc.) to get an initial belief for spotting fraudsters, (b) we introduce network 
level features which capture the interactions between different users, and (c) we 
show how to combine both these features using a Belief Propagation algorithm 
over a Markov Random Field, and use it to detect suspicious patterns (e.g., un-
naturally close-nit groups of people that trade mainly among themselves). Our 
algorithm scales linearly with the number of graph edges. Moreover, we illus-
trate the effectiveness of our algorithm on a real dataset collected from a large 
online auction site.  

1   Introduction 

Given a set of transactions among online auction users, how do we spot fraudsters? 
Suppose we want to transact with a user u, and we want to know how honest he is. 
Suppose we also have a lot of historical information (product names, amounts sold 
for, feedbacks from other users, timestamps, etc.), and that we also have a list of user 
IDs, who have committed frauds in the past. Currently, users of online auction sites 
can view the past feedbacks of a user u, which may very well be fabricated. How can 
we include the vast amount of historical information about the user and his trading 
partners, to spot fraud more effectively? In this paper we present 2LFS, the first sys-
tematic approach to attack auction fraud.  

Online auctions have gained immense popularity. For example, eBay, the world’s 
largest auction site, had over 192.9 million registered users at the end of Q1 2006, a 
31% increase over the previous year [4]. Unfortunately, auction frauds happen, and 
they are by far the most serious problems that auction sites face today. In 2005, the 
Internet Crime Complaint Center (IC3) received 231,493 complaints, 62.7% of which 
were auction frauds. 41% of the victims reported monetary loss with an average loss 
of $385 [7]. In some elaborate fraud schemes, the total incurred loss was in the order 
of millions [10]. 
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(a)  Initial (b) Labeled (c) Manually labeled 

Fig. 1. 2LFS in action: (a) given graph (b) after labeling by 2LFS: fraud (red triangles), honest 
(green circles), “accomplices” (yellow diamonds) (c) after manual rearrangement, to highlight 
the “bipartite cores”. The nodes in the two black rectangles are confirmed fraudsters.  

The goal of our work is to treat the auction fraud problem systematically, using 
data mining and machine learning techniques to spot unnatural patterns in auctions. 
We propose the 2LFS algorithm, and illustrate its effectiveness on real, public data 
from a large auction site. Figure 1(a) illustrates a small graph from the large auction 
site, in which it is difficult to spot any suspicious patterns. The result of labeling by 
2LFS is shown in Figure 1(b). Fraudsters are the red triangles and honest users are the 
green circles. The yellow diamonds correspond to accomplices, which we will discuss 
in detail later in the paper. Figure 1(c) shows the same graph after manual rearrange-
ment so that nodes with the same label are grouped together. Now we can clearly 
observe the existence of a bipartite core between the fraudsters and accomplices. As 
we will explain later, such bipartite cores are a tell-tale sign of a popular fraud 
scheme. In fact, the nodes in the two rectangles in Figure 1(c) are confirmed fraud-
sters, who have received many negative feedbacks from buyers who had paid for 
items that never got delivered.  

The rest of the paper is organized as follows. Section 2 provides an overview of re-
lated work. Section 3 describes the auction fraud detection problem. Section 4 de-
scribes in detail the 2LFS algorithm. Section 5 provides empirical evidence for the 
effectiveness, robustness and scalability of our method. Section 6 discusses some 
observations on how easily we can generalize our method to other fraud detection 
problems. Finally, we present a brief summary of our results in Section 7 with point-
ers for future work. 

2   Related Work 

To the best of our knowledge, this is the first work that uses a systematic approach to 
analyze and detect electronic auction frauds. We survey earlier attempts to detect such 
frauds, as well as literature related to trust propagation. 

Auction Frauds and Reputation Systems. Reputation systems are extensively used 
by electronic auctions to prevent frauds. Although helpful, these systems are very sim-
ple and can be easily foiled. To study the effectiveness of today’s reputation systems, 
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Melnik et al. [9] and Resnick et al. [14] conducted empirical studies which showed 
that selling prices of goods are positively affected by the seller’s reputation. In an 
overview, Resnick et al. [13] summarized that today’s reputation systems face many 
challenges which include the difficulty to elicit honest feedback and to show faithful 
representations of users’ reputation. Common-sense approaches to avoid frauds can 
be easily found on Web sites [5] and in news articles [15]. However, they require 
people to invest substantial amount of time and to constantly maintain a high level of 
vigilance, something that the average person cannot afford to do. Some researchers 
[3] have categorized auction fraud into different types, but they have not suggested 
any formalized methods to deal with them.  

Trust and Authority Propagation. Authority propagation, an area highly related to 
fraud detection, has been studied by milestone papers and systems, and specifically by 
PageRank [1] and HITS [8] which treat a Web page as “important” if other important 
pages point to it, thus propagating the importance of pages over the Web graph. How-
ever, none of them explicitly focus on fraud detection. Trust propagation was used by 
TrustRank [6] to detect Web spam, and their goal was to distinguish between “good” 
sites and “bad” sites (like phishers, adult-content sites, etc). Also related is the work 
by Neville et al. [11, 12], where the goal is to aggregate features from neighboring 
nodes, to do classification, in movie and stock databases.  

None of the above techniques focuses on a systematic way to do online auction 
fraud detection, which is the focus of our work. 

3   Problem Description 

We define our Auction Fraud Detection Problem as follows: given (a) a user of inter-
est u (b) the historical information of user u, as well as of many other users and (c) 
the fact that some of them are known fraudsters, find whether user u is a potential 
fraudster. 

We focus on describing the setup of eBay as other auction sites work similarly. A 
new user begins by registering an ID (also called “handle”) with the site. The user 
may then buy or sell items through bidding and auctioning. All auctions are time-
stamped and detailed information about auctions occurring in the last six months is 
usually available on the site. After a transaction, the site allows the buyer and the 
seller to rate each other on a scale of positive, neutral and negative (1, 0, -1) and leave 
a brief comment (e.g., “Great buyer! Prompt payment.”). These ratings are added up 
to form the feedback score of a user. Other users can see the score of a given user 
before they choose to transact with him. The key idea of the feedback system is to 
provide an estimate of trustworthiness for each user, that future dealers can consult.  

The most prevalent auction fraud is the non-delivery fraud, where the fraudster re-
ceives a payment for an item but never delivers it. To be able to commit such a fraud, 
fraudsters try to devise methods to trick the reputation system and boost their feed-
back score (we will see how this is done later in the paper.) Other types of frauds 
include selling faulty, counterfeit, or stolen goods. 
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4   2-Level Fraud Spotting (2LFS) Algorithm 

We now present the 2LFS algorithm, which tackles the fraud detection problem in 
two steps: (1) it examines user level features, i.e., information intrinsic to individual 
users (e.g., “age” of the user, the number and prices of items sold/bought, the bursti-
ness of the transaction times, etc.), and (2) it examines network level features to detect 
suspicious patterns in the network of transactions between users.  

4.1   User Level Features 

Auction sites keep records of their users. For each user, we can divide the stored in-
formation into two parts, profile and past transactions. To determine a set of user 
level features that distinguish fraudsters from honest users, we begin by learning from 
frauds that were widely publicized in newspaper articles and examining the involved 
fraudsters. Our observations indicate that fraudsters tend to be short-lived, they ex-
hibit bursty trading patterns (many, fake sales, on a single day) and a bi-modal distri-
bution of prices (cheap items to real, honest users; fictitious, expensive items to their 
alter-egos).  

 

Fig. 2. 17 user level features 

We believe that the trends (medians) and fluctuations (standard deviations) in the 
prices of items traded over time (first 15 days, first 30 days, etc) are the most impor-
tant features that we should use for classification, as they have direct relevance to 
fraudsters’ investments, costs and profits. The final set of 17 features is summarized 
in Figure 2. For example, one of the features is the standard deviation of prices of 
items sold within the first 15 days since the user registered. These features were pre-
viously evaluated to achieve a precision of 82% and a recall of 83% on some real 
eBay test data [2]. 

The feature values can be extracted from the profiles and transaction history of us-
ers, available from the Web. The class labels (fraud/honest) are derived manually, by 
inspecting users with many negative feedback scores. We train a decision tree with 
the C5.0 classification system, and use this tree to classify other user nodes. These 
class labels are then fed into the network level detection algorithm described in the 
next section. 

4.2   Network Level Features 

Transactions between users can be modeled as a graph, with a node for each user and 
an edge for all the transactions between two users. As is the case with hyperlinks on 
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the Web, an edge between two nodes can be assigned a definite semantics, and can be 
used to propagate properties from one node to its neighbors. For instance, an edge 
between two nodes can be interpreted as an indication of similarity in their behavior, 
since honest users will interact more often with other honest users, while fraudsters 
will interact in small cliques of their own. This semantics is very similar in spirit to 
the one used by TrustRank[6]. However, preliminary experiments with our dataset, as 
described in Section 5, suggest that fraudsters do not directly interact with other 
fraudsters, as this could cause them to suffer extensive “loss” relatively easily – sup-
pose one of the fraudulent account involved in a fraud is exposed, the auction site 
may easily identify and void other fraudulent accounts in the clique, which would 
destroy the “infrastructure” that the fraudster had invested in for carrying out the 
fraud. To carry out another fraud, the fraudster will have to re-invest efforts in build-
ing a new clique. 

A bit of manual inspection of the data unveiled an alternate way in which fraud-
sters behave to build a reusable infrastructure for their fraudulent activities. They 
create several identities and arbitrarily split them into two categories – fraud and 
accomplice. The fraud identities are eventually used to carry out the actual fraud, 
while the accomplices exist only to help the fraudsters by boosting their feedback 
rating. Accomplices themselves behave like perfectly legitimate users and interact 
with other honest users to achieve high feedback ratings. On the other hand, they also 
interact with the fraud identities to form near-bipartite cores, which helps the fraud 
identities gain high feedback ratings. Once a fraud is committed, the fraud identities 
get voided by the auction site, but the accomplices manage to beat contemporary 
fraud detection schemes (owing to their interactions with honest users) and linger 
around for reuse by new fraudsters. Through 2LFS, we propose a systematic way to 
model the network level interactions between users and identify suspicious graph 
patterns. In a nutshell, each node is given three scores (fraud-, accomplice-, honest-
scores), and we update these scores to be in harmony with the neighbors’ scores. 

The Markov Random Field Model. Markov Random Fields (MRFs) are a class of 
graphical models particularly suited for solving inference problems with uncertainty 
in observed data. The data is modeled as a graph with two types of nodes – hidden 
and observed. Observed nodes correspond to values that are actually observed in the 
data. For each observed node, there is a hidden node which represents the true state 
underlying the observed value. The state of a hidden node depends on the value of its 
corresponding observed node as well as the states of its neighboring hidden nodes. 
These dependencies are captured via an edge compatibility function ( )σσψ ′,  and a 

node compatibility function ( )ωσφ , . ( )σσψ ′,  gives the probability of a hidden node 

being in state σ ′  given that it has a neighboring hidden node in state σ . ( )ωσφ ,  

gives the probability of a node being in state σ  given that its corresponding observa-
tion was ω . 

We model the auction users and their mutual transactions as a MRF. We create a 
hidden node for each user, which can be in any of three states – fraud, accomplice, and 
honest. Let us denote this set of possible states by S. A transaction between two users 
is represented by an edge between their corresponding hidden nodes. With each hidden 
node n, we associate a belief vector nb , such that ( )σnb  equals the probability of 
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node n being in state σ  (which we call the belief of node n in state σ ). Further, each 
hidden node is also associated with an observed node, which corresponds to our initial 
(and possibly noisy) observation of its state. 

 Fraud Accomplice Honest 

Fraud pε  pε21−  pε  

Accomplice 0.5 pε2  pε25.0 −  

Honest pε  2/)21( pε−  2/)21( pε−
 

 Fraud Honest 

Fraud oε−1 oε  

Accomplice 0 0 

Honest oε  oε−1  
 

Fig. 3. The Propagation Matrix for an edge. Entry (i, 
j) gives the conditional probability that the destina-
tion node is at state j, when the source node is at 
state i.  

Fig. 4. The Observation Matrix for an 
edge. Entry (i, j) gives the observed 
probability that the destination node is at 
state j, when the source node is at state i. 

To completely define the MRF, we need to instantiate the compatibility functions 
ψ  and φ . For now, let us assume that we do not have an initial observation about the 

states of any of the nodes, and choose φ  such that ( ) ωσωσφ ,,/1, ∀= S . The edge 

compatibility function can be viewed as a matrix (which we call the Propagation 
Matrix) of dimension SS × . Figure 3 shows a sample instantiation of the propaga-

tion matrix based on the following intuition: a fraudster heavily links to accomplices 
but not to other fraudsters; an accomplice links to both fraudsters and honest nodes, 
with a higher affinity for fraudsters; a honest node links to other honest nodes as well 
as accomplices (since an accomplice effectively appears to be honest to the innocent 
user.) In our experiments, we set pε  to 0.05. We would like to set pε to zero, but this 

would create numerical problems with multiplications. Thus we set it to a small value, 
to denote the fact that it is highly unlikely that a fraudster will have a transaction with 
another fraudster. Ideally, we would “learn” the value of pε , as well as the form of 

the propagation matrix itself, if we had a large training set. 

The Belief Propagation Algorithm. The Belief Propagation (BP) algorithm has been 
successfully applied to a variety of disciplines (bayesian networks, MRFs, error-
correcting codes, etc.) In all of its applications, BP takes as input some form of a 
network of nodes, each of which can be in a finite number of states. Some encoding 
of how the state of a node influences its neighbors is also known beforehand. The BP 
algorithm then infers the posterior state probabilities of all nodes in the network given 
the observed states of some of the network nodes. We refer the reader to [16] for an 
excellent discussion on the BP algorithm and its generalizations to various problems. 

Here, we present the version of BP suitable for MRFs. The algorithm functions via 
iterative message passing between the different nodes in the network. Let ijm  denote 

the message that i passes to j. The message ijm  is a vector with 3 values (fraud-, 

accomplice- and honest-score), and it represents i’s opinion about the belief of j. At 
every iteration, each node i computes its belief based on messages received from its 
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neighbors, and uses the propagation matrix to transform its belief into messages for its 
neighbors. Mathematically,  

( ) ( )
( )

( )σσσψσ
σ

∏∑
∈′

′←
jiNn

niij
\

, mm ; ( ) ( )
( )

∏
∈

=
iNj

jii k σσ mb  (1)

where k is a normalization constant to make the beliefs sum up to 1. Initially, a suit-
able prior on the beliefs of the nodes is assumed. The algorithm then proceeds by 
iteratively passing messages between nodes based on previous beliefs, and then up-
dating beliefs based on the passed messages. The purpose of iteration is to reach a 
fixed point (equilibrium), that is, status-assignments to nodes that are as compatible 
with their neighbors as possible. The iteration is stopped as soon as the beliefs con-
verge, or a maximum limit for the number of iterations is exceeded. Theoretically, 
convergence is not guaranteed, although in practice, BP has been found to converge 
quickly to reasonably accurate solutions. 

4.3   Merging the Two Levels – 2LFS 

We now present the 2LFS algorithm, which combines the user level features (Section 
4.1) with the network level features (Section 4.2) to detect suspicious patterns in a 
graph of transactions between online auction users. 

We treat the user level features as noisy observations of the states of users, and use 
them to instantiate the observed values of nodes in the MRF model for the network 
level features. We believe that such a combination would yield the following benefits: 
(a) suitable prior knowledge will help the belief propagation to converge to a more 
accurate solution in less time, and (b) incorrect inference at the user level can be cor-
rected by the network level propagation of features. 

To combine these observations with the belief propagation, we need to modify the 
previously stated instantiation of the node compatibility function φ . Recall that 

( )ωσφ ,  gives the probability of a hidden node being in state σ  given that the corre-

sponding observation was ω . Let the domain of observed values be Ω . Then, the 
function φ  can be encoded as a matrix (which we call the Observation Matrix) of 

dimension Ω×S . In our case, the user level features classify users into only two 

categories – fraud and honest. A sample instantiation of φ  is shown in Figure 4. oε  

can be interpreted as the uncertainty in observation at the user level. In our experi-
ments, we set oε  = 0.2. 

Let iω  denote the observed value for node i. To incorporate the effect of the ob-

served values, the update rules in Equation 1 can be extended as follows: 
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σ
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These equations together constitute the 2LFS algorithm. The pseudo code for the 
same is provided in Figure 5. 
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Fig. 5. Pseudo code for network-LFS 

5   Experiments 

Here we describe the experiments we did, on real and synthetic datasets. Our goal was 
to answer the following questions: 

1. Robustness: how well does 2LFS work for fraud detection when the topology 
of the auction graph deviates from the ideal bipartite core setting? 

2. Effectiveness: how effective is 2LFS in focusing our attention on suspicious 
bipartite cores occurring in real auction data? 

3. Scalability: how well does the network level belief propagation scale with 
graph size? 

The algorithm was implemented in C++ and the experiments were performed on a 
desktop running Red Hat Linux 9 on a Intel P4 3.00GHz processor, with 1GB RAM, 
25GB disk space, and a 100Mbps internet connection. 

Robustness of 2LFS. Graphs observed in practice will almost never have exact bipartite 
cores; there will always be some “missing” edges. To successfully identify suspicious  
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Fig. 6. 43×G with labels assigned by 2LFS 
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nodes in such settings, 2LFS should be robust in nature and be able to tolerate minor 
deviations from the ideal scenario. In this section, we describe an experiment we 
designed to systematically test the robustness of 2LFS. 

We generated synthetic graphs which mimic ideal fraudulent behavior, and then 
randomly deleted a few edges from them. We started with the graph shown in Figure 
6 (called 43×G ) which contains 12 nodes – 4 fraud, 4 accomplice and 4 honest. This 

graph closely agrees with the propagation matrix shown in Figure 3. 2LFS when run 
on top of 43×G , converges in 3 iterations and assigns correct labels to all the nodes. 

Similar results were observed for xG ×3 with x varying from 5 to 20. 

  

Fig. 7. Min Detection Size vs noise - lower is 
better: 2LFS is robust to minor deviations in
graph structure, and even to wrong priors  

 Fig. 8. 2LFS scales almost linearly with the 
number of edges  

Next, we deleted edges in xG ×3  with a fixed probability p (called the Edge Dele-

tion Probability). The lowest value of x for which 2LFS produces the correct labeling 
is called the Minimum Detection Size (MinDS) for the given edge deletion probability. 
Further, to understand how critically 2LFS depends on the user level features, we 
introduced prior observations for some of the nodes in xG ×3 . Our observations are 

summarized in Figure 7. Each curve in this figure corresponds to a specific prior 
value. A prior of 0 means all the nodes were initialized with unbiased priors, a posi-
tive prior of z  means z  nodes were initialized with the correct prior observation, 
while a negative prior of z−  means z  nodes were initialized with an incorrect prior. 
With unbiased priors and edge deletion probabilities below 0.5, the MinDS is 9, 
which indicates that for large real-world graphs 2LFS can be expected to robustly 
tolerate deviations from the ideal xG ×3  scenario. Further, minor changes in the prior 

do not seem to significantly affect the stability of 2LFS. In case the prior knowledge 
is correct, performance is improved, while (interestingly) in case the prior knowledge 
is incorrect, the network level features are able to offset the error in the prior and 
2LFS still converges to the correct solution. 

Effectiveness of 2LFS. To test the effectiveness of 2LFS we decided to use a dataset 
crawled from eBay, the world’s largest auction site. EBay allows public access to the 
profiles and feedbacks of (almost) all its users. The feedbacks of a user tell us about 
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other users with whom he has interacted in the past. The pricing information of the 
items exchanged is also available only for transactions over the last six months.  

 

Fig. 9. Labeling of eBay users output by 2LFS 

To propagate the network level features, we rely on a complete and accurate de-
scription of the graph. However, user level features (i.e., pricing information) are 
available only for the last six months. Since the utility of our chosen user level fea-
tures is evident from [2], we focused on evaluating the effectiveness of the network 
level features alone, and we set all belief scores to 1/3, for all nodes. 

The data was collected by a breadth-first crawl starting from 5 users. The resulting 
graph had 55 nodes and 620 edges. We then manually observed the feedbacks for 
each of the 55 users and found six of them to be confirmed fraudsters. Next, we ran 
2LFS over this graph and recorded the labeling assigned to each node in the graph. 
The entire graph arranged as per the labellings produced by 2LFS is shown in Figure 
9 (same as Figure 1(c)). The nodes labeled as fraud and accomplice form a near bipar-
tite core, one end of which is disconnected from the rest of the graph. As mentioned 
earlier, the existence of such disconnected bipartite cores is unnatural and suspicious. 
Moreover, all the six confirmed fraudsters were found to be a part of this core. Thus, 
2LFS clearly succeeds in drawing our attention to suspicious patterns in the graph. 
Such cores, once identified, can be used to predict which users are likely to commit 
frauds in the future or are serving to boost the feedback ratings of fraudsters. We 
believe this aspect of 2LFS is invaluable in the context of fraud detection. 

Scalability of 2LFS. To test the scalability of our algorithm, we chose to generate 
synthetic graphs, since we are able to systematically control their sizes and structures. 
We measured the time taken by 2LFS to execute over xG ×3  for various values of x 

(averaged over 100 runs.) The results are shown in Figure 8. We observe that the 
absolute amount of time taken is very small (less than 0.15 seconds for 35003×G .) 

Moreover, the running time appears to grow linearly with the number of edges, which 
indicates that 2LFS can easily scale to very large real-world graphs. 
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6   Discussion 

We would like to emphasize some important observations. The first is the generality 
of our method, and the second is its potential for heavy impact on fraudsters. 

 Fraud Honest 
Fraud ε−1  ε  
Honest ε ′  ε ′−1  

Fig. 10. Propagation matrix for clique detection ( εε ′<< ) 

Generality. Thanks to the propagation matrix, 2LFS is general in applicability. The 
propagation matrix of Figure 3 can spot bipartite cores. With different instantiations 
of the propagation matrix, we might be able to spot a broader variety of graph pat-
terns. For example, near cliques could be spotted by the propagation matrix shown in 
Figure 10. 

Making fraud unprofitable. Not only does 2LFS find confirmed fraudsters, it also 
spots the accomplices, who help the fraudsters and can themselves commit frauds in 
the future. Accomplices are valuable to fraudsters, because they take time and effort 
to build, and they provide a reusable infrastructure for fraudsters to build positive 
feedbacks quickly. Spotting accomplices can be a hard blow to fraudsters, because 
accomplices take much more time, money and effort to create and manage. In re-
sponse, the fraudsters might resort to more sophisticated schemes to hide their evils. 
However, these schemes will require more effort and cost, thus making fraud increas-
ingly unprofitable for them.  

7   Conclusions 

We have shown how to use data mining, machine learning and trust propagation 
methods to address the problem of fraud detection in the complex settings of auction 
sites. Users and their respective transactions form a rich social network, with much 
more information than just nodes and links – feedbacks, timestamps, the prices and 
types of items sold, and more. To handle the complexity of the problem and to exploit 
useful pieces of information hidden in the social network of auction users, we propose 
2LFS, a novel, two-step algorithm that merges user level and network level informa-
tion to detect fraudulent users. Our main contributions include: 

• The careful extraction of user level features 
• The use of belief propagation and MRFs to combine user level and network 

level features 
• Experiments on synthetic and real data, proving the robustness, scalability, 

and effectiveness of 2LFS. 

Future research directions include the generalization of 2LFS, so that it can auto-
matically learn the propagation matrix from data, and the inclusion of game theory, to 
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anticipate and guard against new fraud schemes, in addition to Fraud-Accomplice 
bipartite cores. 
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