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Abstract. We present a method for semi-automatic segmentation of
the liver from CT scans. True 3D interaction with haptic feedback is
used to facilitate initialization, i.e., seeding of a fast marching algorithm.
Four users initialized 52 datasets and the mean interaction time was 40
seconds. The segmentation accuracy was verified by a radiologist. Volume
measurements and segmentation precision show that the method has a
high reproducibility.

1 Introduction

One of the most important steps in medical image analysis is segmentation, i.e.,
the process of classifying data elements as object or background. Segmentation
is needed in diagnostics, therapy monitoring, surgery planning, and several other
medical applications. To manually segment the structures of interest in medical
datasets is a very tedious and error-prone procedure, while fully automatic seg-
mentation is, despite decades of research, still an unsolved problem. Therefore,
many methods are semi-automatic, i.e., the segmentation algorithm is provided
with high-level knowledge from the user [I]. A successful semi-automatic method
takes advantage of the user’s ability to recognize objects and the ability of the
computer to delineate objects. A common recognition task in semi-automatic
segmentation is initialization by placement of seed points inside the object of in-
terest. The interactive part is highly dependent on the user interface. Interfaces
that rely on two-dimensional (2D) interaction have many drawbacks when the
data is three-dimensional (3D) since it is not straight-forward how to map 2D
interaction into 3D space. It has been shown that by using true 3D interaction
with haptic feedback, more efficient semi-automatic methods can be obtained [2].

Liver segmentation is of importance in hepatic surgery planning, where it is
a first step in the process of finding vessels and tumours, and the classification
of liver segments [3/4]. Liver segmentation may also be useful for monitoring pa-
tients with liver metastases, where disease progress is correlated to enlargement
of the liver [B, p. 580]. Low contrast between organs and the high shape vari-
ability of the liver make automatic segmentation a hard task. In [4], a reference
3D liver model is deformed to fit the liver contour in the image. The method
performs well, except for atypical livers where manual interaction is needed.
Common for many semi-automatic methods is their slice-based 2;D nature [6].
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In this work, we demonstrate how a haptic user interface can be used to
facilitate initialization of a fast marching algorithm [7] in 3D in order to segment
the liver from CT images.

2 Fast Marching Segmentation

Fast marching methods [7] are numerical schemes for solving the Eikonal equa-
tion:

[Vu| = C, 1)
where u is time of arrival and C is a cost (“slowness”) function. The common
use of fast marching in image segmentation is to design a proper cost image
C, provide a set of seed points P with arrival time equal to zero, and then
propagate a front from these points until a certain arrival time is reached, i.e.,
solving Equation ().

The classical gradient approximations, e.g., centered differences, are not well-
suited for discretization of Equation (dI). In [7], it is shown how the use of upwind
schemes make the solution stable. We use the Godunov scheme

max (D, pu, D;xu ,0)2+ 1z
|Vu| ~ max(D”ku Yu,0)%4 = Cijk, (2)
maX(D”ku zyk:u O)

where ¢, j, k denotes the indices in the discretization and Dziz are standard
forward and backward difference operators. To solve Equation {IZI) for u, we use
the algorithm in [§].

The central idea in fast marching is the observation that information propa-
gates from smaller values of u to larger values. Using this property, the algorithm
builds the solution outwards from the boundary condition. The boundary con-
dition is expressed at the set of seed points: u(p) = 0, p € P. The algorithm
is accelerated by limiting the computational domain to a narrow band in the
proximity of the front. This narrow band is stored in a fast priority queue based
on a minimum heap data structure.

The cost image C should be designed to achieve low costs in homogeneous
parts and high costs at edges and is typically based on the image gradient mag-
nitude. We compute our cost image in four steps. First, we suppress noise in
the original image I(x) by using bilateral filtering [9]. This is an edge preserv-
ing smoothing filter that combines domain and range filtering, i.e., it takes into
account both spatial closeness and intensity similarity of voxels. We use a filter
kernel composed of two Gaussians, one for the domain (o4) and one for the range
(o). The filtered image is computed as

IBF(m):h—l(m)/1(5)6—;||e—m||2/036 U@ -1@)?/o? ge.
2

where h~!(z) normalizes the kernel. As the next step, we apply a voxel-wise
Gaussian filter with mean intensity pug and standard deviation og:

Io() = 1 — e~ bUpr@-ue)/a?,
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Fig. 1. The different steps in generating the cost image. Here, a 2D slice is shown,
whereas all computations are in 3D. From upper left: original CT image, result of
bilateral filtering, result of voxel-wise Gaussian filter, gradient magnitude, the resulting
cost image (o = 0.3), and the intensity profile along the red line in the cost image.

This gives low values for voxels with intensity close to pug. By weighting I¢ with
its gradient magnitude, we obtain our final cost function:

Clz) = alg(z) + (1 — a)|VIg(z)], aco,1].

Figure [l illustrates the steps in the cost image generation and a typical in-
tensity profile of the liver border in the cost image. We have a low cost inside
the object, high cost at the edges, and a middle-valued cost outside the object.
By this design of C, we aim to prevent the common problem of leakage. Once
we have our cost image, we can specify seed points and run the fast marching
algorithm. The problem that remains is to find at which arrival time we put a
threshold to obtain our final segmentation. We use a technique similar to the
energy measure suggested in [I0]. The average cost value of the voxels belonging
to the front is used to determine a suitable arrival time threshold. The average
cost at time u is .

C(U) - NFront

C(z),
zeFront

where N gy, is the current number of voxels in the narrow band. In the begin-
ning of propagation, the average cost is typically close to zero (assuming that
the initialization is inside the object). During propagation, the average cost will
increase as more and more voxels approach the object boundary. Eventually,
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Front mean cost value

Time of arrival

Fig. 2. The average cost of the front voxels at each time instance. The time of arrival
at the maximum peak is used as a threshold to obtain the segmentation.

when the front penetrates the object boundary the average cost will decrease
again. If we plot the average cost as a function of time, we typically obtain the
graph in Figure 2l Note the similarity between the shape of this graph and the
cost image edge profile in Figure Il We locate the maximum peak in the graph
and use the corresponding time of arrival as threshold.

3 Initialization with Haptic Interaction

The initialization is important for the fast marching algorithm. Most important
is that the seeds must be placed inside the object. It is also desired to have
them placed centrally in order to reduce the risk of leakage. To represent the
shape extent, the seeds should also be placed in protrusions, see Figure B] (left).
To facilitate the initialization, we use a 3D interface with haptic feedback to
draw regions of seed points. Our interface consists of a Reachin display [11]
that combines a PHANToM desktop haptic device with supporting systems. See
Figure [ (right). The application is developed in the Reachin API 3.2 which is
a scene-graph API for haptic and graphic visualization written in C++.

The basic view in the program is an orthogonal tri-planar construction of the
dataset. The haptic interaction consists of a spring force that guides the user to
hold the cursor in the closest plane. The interface consists of only the most basic
functions that are needed for this specific application:

Draw. Draw spherical seed regions of radius 5 voxels at the cursor position
Clear. Clear the current seed region and start over

Browse. Translate the three planes according to the cursor position
Contrast/Brightness. Adjust the graylevel display

Save. Save the current seed points and exit

The idea is to use the haptic guidance to put the cursor in one of the planes
and then translate this plane through the volume while drawing true 3D seed
regions inside the liver. The co-located haptics and graphics guide the user in
positioning numerous representative seed-points in a very fast manner.
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Fig. 3. Left: A screenshot from the application where seed regions are being drawn
centrally and representative for the shape extent. Right: A user working with the
haptic display. The PHANToM device is positioned beneath a semi-transparent mirror
in order to obtain co-location of graphics and haptics.

4 Experiment and Results

We used abdominal contrast enhanced venous phase CT images from 26 pa-
tients with either carcinoid or endocrine pancreas tumoutl]. Each patient un-
derwent two CT examinations with time interval 3—17 months. The 52 images
were acquired with a Siemens Sensation 16 CT scanner. The image dimensions
are 512 x 512 x N,, where N, ranges from 116 to 194. The resolution in xy is
between 0.54-0.77 mm and the slice thickness is between 2.5-3.0 mm.

Four users performed seeding of the 52 datasets using the haptic interface.
One user was an experienced radiologist and the other three users were medical
image analysts. The users performed the task independent of each other. Before
the real task started, there was a training session on a randomly selected dataset.
The ordering of the anonymized datasets were random and the same for all users.
All users completed the 52 seeding tasks in less than one hour. The interaction
times and the number of seeds are summarized in Table [Il

Given the regions of seed points, we computed the mean and variance of
seed voxel values, up and op. The cost images were then generated with the
parameters o4 = 1.0 mm, o, = og = 20p, ug = pp, and a = 0.3. On a
standard PC (2.4 GHz, 1 MB RAM), the computation of the cost images was
about one minute per image and for the fast marching segmentation about 20
seconds per image and user.

The segmentation results were visually inspected by the radiologist and the
majority were considered successful. In a few cases, there were problems with
leakage due to low contrast, especially at the heart and the stomach. We found
that these problems were easily repaired with manual interaction when neces-
sary. Figure @] shows slices with seed regions and resulting liver contour and
surface renderings of three segmentation results. Note that the leakage prob-
lem is emphasized. To obtain a measure of the between-user reproducibility of

! Dr Hans Frimmel is acknowledged for providing the datasets.
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Table 1. Interaction times and number of seeds for all users

(a) Interaction times (s) (b) Number of seed voxels

User Min Max Mean Stdd.  User Min Max Mean Stdd.
Ul 22 173 42 24 Ul 2346 8425 4453 1647
U2 20 146 41 26 U2 815 2752 1550 427
U3 24 110 53 19 U3 635 1833 1001 250
U4 13 51 26 9 U4 1434 5975 4047 1049
Total 13 173 40 23 Total 635 8425 2763 1811

Fig. 4. Top row: slices with the contour of the segmentation result (blue) and the seed
regions (red). Bottom row: surface renderings of the segmentation results in the top
row. To the bottom right the problem of leakage at the heart is encircled.

the method, we computed the correlation coefficient for liver volume estimates
between the users, see Table [l The mean liver volume for our datasets, taken
as the average of the four segmentations, was 1731 cm?® with standard devia-
tion 669 cm®. Comparing volume values alone is not sufficient to determine the
precision of the method. As suggested in [12], a measure of the inter-operator
precision 7;; for two segmentation results S; and S; is the fraction of intersection
and union:
_SiNs;
Nij = Sz US] :

We have computed 7;; and the corresponding coefficient of variation (CV) for
all possible pairs in our experiment, see Table[3l We also computed the precision
for all four users ﬂi:l Sk/Ui:l Sk and obtained the mean value 0.944 with
corresponding CV 5.48%.
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Table 2. Correlation coefficients for estimated liver volumes between the four users
and a 95% confidence interval

U1 U2 U3 U4
Ul ¢ 0.998(0.996-0.999) 0.979(0.963-0.988) 0.987(0.977-0.992)
U2 & & 0.983(0.970-0.990) 0.987(0.978-0.993)
U3 & & & 0.994(0.989-0.996)
U4 ¢ ¢ ¢

Table 3. Inter-user precision and coefficient of variation (CV) in % for the four users.
The precision is averaged between the users for all possible pairs of segmentations and
the CV is the corresponding ratio of standard deviation and mean.

U1 U2 U3 U4
Ul ¢ 0.972(2.01%) 0.960(5.36%) 0.969(3.67%)
U2 & & 0.967(4.91%) 0.973(3.59%)
U3 ¢ & & 0.973(3.80%)
U4 & ¢ ¢ ¢

Fig. 5. Left: A deformable surface model fitted to one of our segmentation results.
Right: A slice of a spleen segmented with our method showing contour and seed region.

5 Conclusions and Future Work

We have demonstrated the use of a haptic 3D interface for fast interactive seg-
mentation by using the fast marching algorithm. The mean interaction time
required for the four users was 40 seconds which enables practical use of the
method. Comparisons of interaction times with and without haptic feedback will
be undertaken in order to quantify the relevance of haptics. Inter-user precision
measures show that the method is robust despite the high shape variability of
the liver and the users’ very different approaches to place seed regions. Accord-
ing to the radiologist, the segmentation results are sufficiently accurate for liver
volume quantification. In future work, the segmentation results will be verified
with comparison to manually segmented ground-truth data.

We believe that the presented method can be used as a first step on the way
to accurate delineation of the liver with methods that involve shape constraints,
e.g., deformable surfaces or level-set methods. In Figure [l (left), we show a
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surface model that has been deformed under a distance field generated from
one of our segmentations. We have also tried the method on other organs with
promising results. Figure [ (right) shows a segmentation of the spleen.
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