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Abstract. Multidimensional fluorescence imaging is a powerful molecular im-
aging modality that is emerging as an important tool in the study of biological 
tissues. Due to the large volume of multi-spectral data associated with the tech-
nique, it is often difficult to find the best combination of parameters to maxi-
mize the contrast between different tissue types. This paper presents a novel 
framework for the characterization of tissue compositions based on the use of 
time resolved fluorescence imaging without the explicit modeling of the decays. 
The composition is characterized through soft clustering based on manifold 
embedding for reducing the dimensionality of the datasets and obtaining a con-
sistent differentiation scheme for determining intrinsic constituents of the tis-
sue. The proposed technique has the benefit of being fully automatic, which 
could have significant advantages for automated histopathology and increasing 
the speed of intraoperative decisions. Validation of the technique is carried out 
with both phantom data and tissue samples of the human pancreas.  

1   Introduction  

Fluorescence is an effective means of achieving optical molecular contrast in a wide 
range of instruments including cuvette-based systems, microscopes, endoscopes and 
multi-well plate readers. Fluorescent molecules (fluorophores) can be used as “labels” 
to tag specific molecules of interest. Alternatively, the fluorescence properties of the 
target molecules themselves may be exploited to provide label-free contrast. In addi-
tion to providing information about the properties of the fluorophores, the fluores-
cence process can be sensitive to the local environment surrounding the fluorophore, 
thus providing a sensing function. In principle, different species of fluorophores may 
be characterized by their excitation and emission spectra, quantum efficiency, polari-
zation response, and fluorescence lifetime. These parameters can change as a function 
of the local viscosity, temperature, refractive index, pH, calcium, oxygen concentra-
tion, and electric field. The practical use of these techniques for tissue characteriza-
tion is therefore challenging due to the need for an automatic method for extracting 
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the intrinsic fluorescence properties of the tissue from what is often high dimensional 
data (combinations of     , , , ,ex emx y t λ λ ).  

Fluorescence lifetime imaging (FLIM) is a technique that allows the fluorescence 
decay profile to be determined for each pixel of an image. After optical excitation, the 
fluorescence emitted by a fluorophore typically decays with a molecular- and/or envi-
ronment-dependent average time, called the fluorescence lifetime, (typically ~100 ps 
– few ns). FLIM is becoming increasingly popular as a method of measuring FRET 
[1] or autofluorescence contrast in tissues [2,3]. Typically, the computation of fluo-
rescent lifetimes or the analysis of raw FLIM data requires a model of the expected 
decay function to be chosen based on a priori assumptions. For instance, a double 
exponential decay model may be chosen in the case of a molecule with two distinct 
decay pathways, or a stretched exponential model may be chosen where a distribution 
of lifetimes is expected [4]. The results obtained depend on the choice of the model, 
and there are many situations where either the correct model is unknown or involves 
more fitting parameters than are meaningful for the limited signal-to-noise ratio. In 
practice, even if the correct model is used to obtain the fluorescence lifetime at each 
pixel, the analysis and presentation of the data are complicated for systems designed 
to resolve additional fluorescence properties such as the excitation or emission  
profiles.  

Thus far, some alternative model-free methods have been proposed for time re-
solved data only, such as the expansion of fluorescence decays in a discrete Laguerre 
basis [5]. The challenge, however, is to take advantage of the model-free nature of the 
algorithms and treat the multi-spectral raw time-gated images as the input dimensions 
whilst presenting the data in an intuitive image format. The purpose of this paper is to 
introduce a new framework that is model free and makes no assumptions about the 
distribution of the data for automated tissue characterization. By the use of manifold 
embedding, the method reduces the entire time-resolved image stack to a consistent 
representation using a color map that reflects the intrinsic fluorescence properties of 
the tissue sample. This technique has the additional benefit of being entirely auto-
mated, which could have significant advantages for automated histopathology and 
increasing the speed of intraoperative decisions. Validation of the technique is carried 
out with both phantom data and tissue samples of the human pancreas. 

2   Methods 

2.1   Fixed Reference IsoMap (FR-IsoMap) 

Theoretically, the main contribution of the work is the introduction of FR-IsoMap 
which allows consistent dimensionality reduction across samples. IsoMap [6] is a 
nonlinear dimensionality reduction technique that is able to describe the global struc-
ture of non-linear manifolds by detecting the main meaningful underlying dimensions. 
The method preserves the interpoint distances in a way that is similar to classical 
multidimensional scaling (MDS) [7] but caters for complex nonlinear manifolds by 
the use of geodesic distances for representing the dissimilarities.  

Given a set of N  pixels { iP } in the original space, a neighborhood graph G  is first 
constructed and used to initialize the geodesic distance matrix GD  as follows:  
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where d  is a dissimilarity distance between two pixels. The final geodesic distances 
are determined by calculating the shortest paths between all pairs of points in the 
graph G , by replacing all entries Gd  for each value of k  from 1 to N  by: 

( ) ( ) ( ) ( )( ), min , , , ,G G G Gd i j d i j d i k d k j= +  (2) 

The matrix GD  of geodesic distances is then fed to the classical MDS procedure [7]. 
The derived N  eigenvectors pv  are sorted in the decreasing order of the corresponding 
eigenvalues pλ . The new coordinates { ipy } of a pixel iP  in the embedded space are 
then calculated as follows: 

ip p piy vλ=  (3) 

The three main coordinates are used as color channels to construct a color map 
representation for tissue characterization. For every new image, however, reapplying 
IsoMap can be time consuming and may not guarantee a consistent embedding as it 
can change dramatically depending on the data distribution of the manifold. This is 
due to the lack of a fixed coordinate system, which prohibits the comparison of the 
embedded results across different tissue samples. To circumvent this problem, FR-
IsoMap is developed, which involves applying IsoMap only on a training data set 
that represents well the variability within the tissue. In order to obtain an optimal 
reference coordinate system whilst maintaining the topology of the manifold, input 
vectors that are evenly distributed on the manifold are selected. This is achieved by 
first selecting one or some seed pixels that correspond to the main constituents in the 
image and then eliminating points on the manifold that are within a predefined dis-
tance of the selected pixel. This is then continued until all pixels are either selected 
or rejected.  

To ensure consistent embedding, the training sample generated at the first stage 
and the corresponding original and embedding coordinates are used as a model to 
predict the embedded coordinates of a pixel in a new image. Given the fact that the 
training sample represents the variability within the data, the position of a new pixel 
in the embedded space can be predicted using the coordinates of the most similar 
pixels in the training set. The k  nearest neighbors of the training samples are located 
and the corresponding embedded coordinates are then calculated by minimizing the 
Sammon’s nonlinear mapping criteria shown in Eq. (4) such that the remapped dis-
tances approximates well the original distances [8] i.e.,  
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where ijd  and 
*
ijd  are pairwise distances in the embedded and original spaces, respec-

tively. By defining ( )sE m  and ( )ijd m  as the mapping error and the embedded  
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distance after the mth-iteration, respectively, the above problem can be solved itera-
tively and the newly estimated coordinates of the sample at iteration 1m +  is given 
by: 
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where px  is the pth coordinate component of the new pixel in the fixed coordinate 
system, and α  is the step size. The initial values of the coordinates are given by the 
nearest neighbor, which in practice gives a good indication of the final result. 

2.2   Phantom and Tissue Sample Validation 

In order to validate the proposed FR-IsoMap scheme for tissue characterization, both 
phantom data and tissue samples of the unstained human pancreas were used. Time-
resolved fluorescence images were recorded by exciting the sample using a pulsed 
excitation source (a broadband supercontinuum laser source for the phantom experi-
ment [9] and an amplified and frequency-doubled Ti:Sapphire laser for the pancreas 
tissue data). The resulting fluorescence was then imaged onto a microchannel plate 
gated optical intensifier (GOI, gate width ~400 ps) and temporal profiles of the fluo-
rescence decay were recorded by acquiring gated images of the fluorescence at differ-
ent delays after excitation (for details of a similar system see [10]). 

For the phantom data set, a total of 17 gated images were recorded over a total de-
lay range of 11 ns of two identical rows in a 384 multi-well plate containing five 
different dye solutions (DASPI in ethanol (DASPI-I), Coumarin, Rhodamine 700, 
Eosin, and DASPI in 40% ethanol, 60% glycerol (DASPI-II)). The large area imaged 
(1.5 x 2 cm) allowed a standard camera objective to image the fluorescence onto the 
MCP.  

For pancreas tissue imaging, the MCP was coupled to an Olympus IX71 inverted 
fluorescence microscope, and 14 gated images were recorded over a total delay time 
of 15 ns. All human tissues used in these experiments, including fresh resection speci-
mens and biopsies, were obtained in accordance with local ethics committee approval 
(2004/6742). All tissue had been ethically consented for use in medical research. 
Blocks of formalin-fixed paraffin-embedded tissue were cut to 10 μm sections and 
mounted unstained on uncoated glass slides. Glass coverslips with 1.5 thickness were 
mounted on the slides using either an aqueous-based coverslip mountant (50% PBS, 
50% glycerol) or a commercially available mountant (DPX).  

To assess the quality of the mapping, the distances between every new pixel in an 
image and the entire training sample are calculated in both the original space and the 
common coordinate system. The preservation of the distances is then measured by 
calculating the corresponding correlation coefficient: 
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3   Results 

Fig. 1 shows the conventional lifetime map (FLIM map) and the proposed FR-IsoMap 
for the multi-well phantom data with five different dye solutions. It can be seen that 
the FLIM map shows strong lifetime contrast for the DASPI-I and the Coumarin but 
is not able to distinguish the remaining dyes well. As highlighted in the histogram in 
Fig. 2(a), five peaks representing the different dyes are generated but with narrow 
separation and overlapped with the background, suggesting that ambiguous segmenta-
tion may be generated in the FLIM map. Also, the areas immediately surrounding the 
wells are low intensity background, but lifetimes for these regions are calculated that 
are similar to the well in the immediate vicinity due to the influence of scattered light 
or image blurring. Although this background could be thresholded out, this requires 
user input and is an interruption of the automated process. In addition, signals of low 
intensity may be lost along with the background. In contrast, the FR-IsoMap shows 
distinctive sample separation with clearly delineated background. The mapping accu-
racy calculated using Eq. (6) was equal to 0.989 and 0.993 for the two samples shown 
in Fig. 1, respectively. 

In Table 1, the average interpixel distances in the embedded space were calculated 
between all combination of dyes and within the five dyes. The results show a low 
average interpixel distance within a dye while this distance increases significantly 
across the different dyes, suggesting that the constituents are well separated. For a 
 

Table 1. Average interpixel distances within and between the different dyes calculated in the 
embedded space 

 DASPI-I Coumarin Rhodamine Eosin DASPI-II Background 

DASPI-I 11.6 293.2 146.0 293.3 174.3 191.2 

Coumarin 293.2 57.7 193.1 260.1 186.8 233.2 

Rhodamine 146.0 193.1 13.6 212.5 72.0 70.4 

Eosin 292.3 260.1 212.5 41.3 145.7 229.2 

DASPI-II 174.3 186.8 72.0 145.7 17.5 113.6 

Background 191.2 233.2 70.4 229.2 113.6 4.6 

 

 
 
 

Fig. 1. Results of FR-IsoMap and FLIM as applied to the multi-well phantom data with five 
different dye solutions. FLIM with single exponential decay is not able to distinguish com-
pletely between the different dyes or the background while the FR-IsoMap clearly distinguishes 
all the dyes in the images. 

FR-IsoMap FLIM 

(a) 

(b) 
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visual illustration, Fig. 2(b) shows the histogram of the interpixel distances within the 
Rhodamine dye and between the Rhodamine and the DASPI-II dyes. Although the 
average interpixel distance between the two dyes correspond to the lowest amongst all 
dyes combinations in Table 1, the graph shows that the two constituents are clearly 
separated by using the proposed FR-IsoMap method. 

  
  (a)   (b) 

Fig. 2. (a) FLIM histogram showing the peaks corresponding to the different dyes overlapping 
especially with the background. In (b), the histogram describing the interpixel distances in the 
FR-IsoMap embedded space within the Rhodamine and between DASPI-II and the Rhodamine 
clearly separates the two dyes.  

For the characterization of the pancreas tissue compositions, the proposed method 
was applied to the 30 datasets collected. The training sample was constructed by se-
lecting 567 pixels from dataset 28. It is evident from the accuracy results plotted in 
Fig. 3 that high mapping accuracy is maintained throughout the entire dataset, with an 
average correlation coefficient equal to 0.993 ± 0.005.  

 

Fig. 3. Reconstruction accuracy plotted for the 30 human tissue pancreas samples studied, 
demonstrating a high accuracy mapping for the entire tissue datasets 
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For visual illustrations of the color maps generated for the pancreas images, Fig. 4 
(a) and (b) illustrate two examples corresponding to the datasets 1 and 25 involved in 
this study. It can be seen that the different constituents are well distinguished in the 
color maps and mapped in a consistent manner across the samples when compared 
with the FLIM images. In particular, there appears to be more fine structure and 
improved spatio-contrast visible in FR-IsoMap. The oval structure in the centre of 
Fig. 4(a) is a duct, and the area just to the right of it (around the centre of the image) 
is collagen and elastin rich tissue. Fig. 4(b) has two oval islets of Langerhans in the 
centre, a duct on the right hand side, and the edge of the pancreas towards the left. It 
is worth noting that Fig. 4(c) corresponds to the same sample than in (b) but with a 
particularly high level of noise, in this case the obtained FR-IsoMap still displays a 
good contrast between the different constituents in the image while the FLIM map is 
affected by the noise, due to the least squares approach to fit the exponential decay.  

(a) 

(b) 

(c) 

 

 FR-IsoMap FLIM 

Fig. 4. Example human pancreas tissue sections mapped with FLIM and FR-IsoMap respec-
tively, showing the improved tissue class separation and improved SNR and spatio-contrast 
introduced by the proposed tissue characterization framework 

4   Conclusions 

We have presented in this paper a framework for tissue characterization with time 
resolved fluorescence images. The method is based on soft clustering achieved  
by using dimensionality reduction. The proposed FR-IsoMap constructs a fixed  
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dimensional coordinate system by selecting a training set that best represents the 
variability within the tissue. New samples are then embedded into the reference coor-
dinate system such that local similarities are preserved. Consistent color maps are 
generated from the embedded data which are capable of enhancing dissimilarities 
between tissue compositions. In comparison with the conventional FLIM maps, the 
proposed methods does not require a priori knowledge about the sample under inves-
tigation and all of the analysis may be presented on just one image in a fully auto-
mated manner. Furthermore, this approach may be extended to higher-dimensionality 
data sets, for instance where combinations of the lifetime, excitation and emission 
spectral profiles are recorded, and validation work is currently in progress. 
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