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Abstract. Current diagnosis of prostatic adenocarcinoma is done by
manual analysis of biopsy tissue samples for tumor presence. However,
the recent advent of whole slide digital scanners has made histopatho-
logical tissue specimens amenable to computer-aided diagnosis (CAD).
In this paper, we present a CAD system to assist pathologists by au-
tomatically detecting prostate cancer from digitized images of prostate
histological specimens. Automated diagnosis on very large high resolu-
tion images is done via a multi-resolution scheme similar to the man-
ner in which a pathologist isolates regions of interest on a glass slide.
Nearly 600 image texture features are extracted and used to perform
pixel-wise Bayesian classification at each image scale to obtain corre-
sponding likelihood scenes. Starting at the lowest scale, we apply the
AdaBoost algorithm to combine the most discriminating features, and
we analyze only pixels with a high combined probability of malignancy
at subsequent higher scales. The system was evaluated on 22 studies
by comparing the CAD result to a pathologist’s manual segmentation
of cancer (which served as ground truth) and found to have an overall
accuracy of 88%. Our results show that (1) CAD detection sensitivity
remains consistently high across image scales while CAD specificity in-
creases with higher scales, (2) the method is robust to choice of training
samples, and (3) the multi-scale cascaded approach results in significant
savings in computational time.

1 Introduction

There will be an estimated 234,000 new cases of prostate cancer in the US in
2006, and approximately 27,000 men will die on account of it (Source: American
Cancer Society). Trans-rectal ultrasound (TRUS) guided biopsy of the prostate
followed by histological analysis under a microscope is currently the gold stan-
dard for prostate cancer diagnosis [1]. Up to twenty biopsy samples may be
taken from a single TRUS procedure, making manual inspection time-consuming
and labor-intensive. Computer-aided diagnosis (CAD), the use of computers to
assist clinical diagnosis, has been traditionally applied to radiological images.
Madabhushi, et al. [2] presented a powerful CAD system to automatically de-
tect prostatic adenocarcinoma from high-resolution prostate MRI studies. The
recent advent of high resolution whole slide digital scanners, however, has made
histopathology amenable to CAD as well.
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In the context of prostate histology, CAD methods have been proposed which
utilize image features such as color, texture, and wavelets [3], textural second-
order statistical [4], and morphometric attributes [5] to characterize and detect
cancer. However, in these studies the image analysis operations are applied at
arbitrarily chosen image scales. This is contrary to the multi-scale approach em-
ployed by pathologists who obtain most of the information needed for a definitive
diagnosis at the coarser image scales with the finer or higher scales usually serv-
ing to confirm their diagnoses. An effective CAD system to automatically detect
prostatic adenocarcinoma should therefore incorporate the spirit of this hierar-
chical, multi-scale paradigm. In [6] Viola and Jones proposed a computationally
efficient “Boosting Cascade” in which the AdaBoost classification algorithm [7]
was used to quickly classify image regions using a small number of image features.
The process is repeated using an increasingly larger number of image features
and an increasing classification threshold at each iteration.

Fig. 1. A multi-scale representation of digitized human prostate histopathology

In this work, we propose a fully automated CAD system to extract and then
combine multiple texture features within a Boosting Cascade framework [6] to
detect prostatic adenocarcinoma from digitized histology. Pyramidal decomposi-
tion [8] is first applied to reduce the image into its constituent scales (Figure 1).
At each image scale, we extract nearly 600 texture features at every image pixel.
A likelihood scene corresponding to each texture feature is generated, in which
the intensity at every pixel represents its probability of malignancy. A Boost-
ing Cascade scheme is used to efficiently and accurately combine the different
likelihood scenes at each image scale. Only pixels identified as adenocarcinoma
with a pre-determined confidence level at each specific scale are analyzed fur-
ther at the subsequent higher image scales. The novelty of our work lies in the
following:

• The method is fully automated and involves extraction of nearly 600 texture
features at multiple scales and orientations to discriminate between benign and
malignant tissue regions.
• The use of a multi-scale classification framework to accurately and efficiently
analyze very large digitized specimens (> 2 GB). Hence, only those pixels deter-
mined as adenocarcinoma with high probability at a given scale are considered
for further analysis at the subsequent higher scales.

The rest of this paper is organized as follows. In Section 2 we describe the
methodology and in Section 3 we present our results. Concluding remarks and
future directions are presented in Section 4.
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2 Methodology

2.1 Data Description and System Overview

Fig. 2. Outline of our methodology

Human prostate tissue samples cut into 6
μm slices are scanned into the computer
at 40× optical magnification. Typical im-
age file sizes were between 1-2 GB. We
represent each digitized image by a pair
C = (C, f), where C is a 2D grid of image
pixels c and f is the intensity at each pixel
c ∈ C. The set of image scales for C is de-
noted as S(C) = {C1, C2, · · · , Cn}, where
n is the total number of image scales
and Cj = (Cj , f j) for j ∈ {1, 2, · · · , n}
is the representation of C at scale j, for
1 ≤ j ≤ n. Hence, C1 represents the image
at the coarsest scale and Cn at the finest
scale. Our methodology is outlined in the
flowchart in Figure 2. Digital scenes are
acquired from a whole slide digital scan-
ner and are decomposed into n constituent scales using Burt’s pyramidal scheme
[8]. At each scale, feature extraction is performed to create a series of likelihood
scenes using Bayes Theorem [9]. An expert pathologist manually segmented can-
cer regions from S(C) for each of 22 images. During the training stage (off-line)
probability density functions (pdf’s) for cancer for each of the texture features
are generated using the cancer masks determined by the expert. Following fea-
ture extraction, Bayesian classification via the feature pdf’s is used to generate
cancer likelihood scenes for each feature. At each scale j the various likelihood
scenes are combined via the AdaBoost algorithm [7]. Only regions determined as
cancer at scale j with a pre-specified confidence level are considered for analysis
at scale j + 1.

2.2 Feature Extraction

Each image C is first converted from the RGB color space to the HSI space. We
obtain a set of K feature scenes F j

γ = (Cj , gj
γ), for γ ∈ {1, 2, · · · , K}, from each

Cj ∈ S(C) where for any cj ∈ Cj , gj
γ(cj) is the value of feature Φγ at scale j and

at pixel c. The choice of features was motivated by the textural appearance of
prostatic adenocarcinoma at the 3 scales (C1, C2, C3) considered for analysis. A
total of 594 texture features from the following three classes of texture operators
were extracted.

First-Order Statistics: A total of 117 first-order statistical features from
each image corresponding to average, median, standard deviation, difference,
derivatives along the X , Y , and Z axes, 3 Kirsch filter features, and 3 Sobel
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filter features were extracted at three different pixel neighborhood sizes (3 × 3,
5 × 5, 15 × 15).

Co-occurrence Features: A total of 117 Haralick features [10] correspond-
ing to angular second moment, contrast, correlation, variance, inverse difference
moment, entropy, sum average, sum variance, sum entropy, difference variance,
difference entropy, and two measurements of correlation for three different pixel
neighborhoods (3 × 3, 5 × 5, 7 × 7) were extracted.

Wavelet Features: The phase and orientation values of the result of applying
a family of 360 Gabor filters were obtained at every image pixel [2]. A Gabor
wavelet is a Gaussian function modulated by a sinusoid [11]. The modulating
function G for the family of 2D Gabor filters is given as:

G(x, y, θ, κ) = e
− 1

2 (( x′
σx

)2+( y′
σy

)2) cos(2πκx′), (1)

where x′ = x cos(θ) + y sin(θ), y′ = y cos(θ) + x sin(θ), κ is the filter scale
factor, θ is the filter phase, σx and σy are the standard deviations along the
X , Y axes, and x and y are the 2D Cartesian coordinates of each image pixel.
We convolved the Gabor kernel with the image at 3 pixel neighborhood sizes
(3×3, 5×5, 15×15) using five different scale parameter values κ ∈ {0, 1, · · · , 4}
and eight orientation parameter values (θ = ε·π

8 where ε ∈ {0, 1, · · · , 7}). In
Figures 3 ((b)-(f)) are shown some representative feature images for the digitized
histopathological image in Figure 3 (a).

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Original digitized prostate histopathological image with the manual seg-
mentation of cancer overlaid (black contour), and 5 feature scenes generated from (a)
and corresponding to (b) correlation (7 × 7), (c) sum variance (3 × 3), (d) Gabor filter
(θ = 5·π

8 , κ = 2, 3 × 3), (e) difference (3 × 3), and (f) standard deviation (15 × 15)
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2.3 Training and Determining Cancer Ground Truth

Ground truth for the cancer class was generated by an expert pathologist who
manually traced cancer regions on the digitized images at each image scale. The
set of pixels marked by the pathologist as ground truth are denoted E(Cj) at
scale j. The feature values gj

γ of pixels cj ∈ E(Cj) are used to generate pdf’s
pj

γ(cj , gj
γ |ωT ) at each scale for the cancer class (ωT ), for each texture feature Φγ .

In this study, we use 3 images to generate the pdf’s. Figure 4 shows pdf’s for
3 different texture features for the cancer and non-cancer classes at the lowest
image scale (j = 1).
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Fig. 4. Pdf’s for cancer (red dots) and non-cancer regions (black circles) corresponding
to (a) Gabor filter (θ = 6∗π

8 , κ = 4, 15 × 15), (b) difference entropy (3 × 3), and (c)
correlation (3 × 3) at the lowest image scale j = 1

2.4 Feature Classification

For each scene C = (C, f), Bayes Theorem [9] is employed to obtain a series
of likelihood scenes Lγ = (C, lγ), for γ ∈ {1, 2, · · · , K}, where for each pixel
c ∈ C, lγ(c) is the posterior conditional likelihood P (ωT |c, gγ) that c belongs to
cancer class ωT given feature value gγ(c). Using Bayes Theorem [9] the posterior
conditional probability that c belongs to ωT is given as

P (ωT |c, gγ) =
P (ωT )pγ(c, gγ |ωT )

∑
v∈{T,NT} P (ωv)pγ(c, gγ |ωv)

(2)

where ωNT denotes the non-cancer class, pγ(c, gγ |ωT ) is the a-priori conditional
density obtained during training via the pdf for feature Φγ , and P (ωT ) and
P (ωNT ) are the prior probabilities of occurrence for the two classes (cancer and
non-cancer), assumed as non-informative priors (P (ωT ) = P (ωNT ) = 0.5).

2.5 Feature Combination and the Boosting Cascade

We employ a hierarchical version of the well-known classification ensemble scheme
AdaBoost [7] to create a single, strong classifier from 594 likelihood scenes or base
learners. The method comprises two steps: Training and Testing.

Training. We generate a Boosted classifier Πj =
∑Ij

i=1 αj
i l

j
i at each image scale

j, where for every pixel cj ∈ Cj , Πj(cj) is the combined likelihood that pixel
cj belongs to class ωT , αj

i is the feature weight determined during training for
base learner Li, and Ij is the number of iterations used to train the AdaBoost
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algorithm. We used Ij < Ij+1 since additional discriminatory information is
incorporated into the classifier only at higher scales. Three images randomly
chosen from our database were used for training the Boosted classifier.

Testing. At scale j we create a combined likelihood scene Lj = (Cj, Πj). Using
Lj , a binary scene Cj,B = (Cj , f j,B) is created where for cj ∈ Cj , f j,B(cj) = 1
iff Πj(cj) > δj , where δj is a predetermined threshold. We then resize Cj,B to
obtain Cj+1,B = (Cj+1, f j+1,B). The feature extraction and Bayesian classifica-
tion steps are then repeated to obtain Boosted classifier Lj+1, considering only
those pixels cj in Cj,B for which f j,B(cj) > 0. The Boosting Cascade algorithm
is shown below.

Algorithm. BoostingCascade()
Input: Image pyramid S(C), ground truth for cancer E(C),

number of pyramidal levels n, set of predetermined thresholds δj

Output: Set L of binary cancer segmentations at each scale
begin

0. for j = 1 to n do
1. Obtain combined likelihood scene Lj for Cj via AdaBoost [7];
2. Obtain tumor mask Cj,B by thresholding Lj at δj ;
3. Obtain Cj+1,B by interpolating Cj,B so that Cj+1,B = Cj+1;
4. for each cj+1 in Cj+1,B do
5. if f j+1,B(cj+1) < 1 then f j+1(cj+1) = 0;
6. endfor
7. L[j] = {Lj};
8. endfor
9. Output L;

end

3 Results and Discussion

Figure 6 (a) shows the ROC curves for our CAD system obtained by evaluating
all 22 images in our database at 3 different scales. The increase in ROC area
at higher scales corresponds to an increase in specificity, further reiterating that
information at higher scales is necessary to achieve a more accurate classifica-
tion. Figure 6 (b) shows the ROC curves for a subset of testing images that were
trained using 3 training sets comprising 3, 5, and 8 images respectively. As can
be observed, the curves have a similar area, indicating that CAD is robust with
respect to training. In Figure 6 (c) is a bar chart showing the comparative com-
putational savings by using the Boosting Cascade scheme at each image scale. As
might be expected, the savings are greater at the higher scales; an 8-fold savings
at j = 3. The system was evaluated on a total of 22 separate patient studies.
CAD tolerance was evaluated in terms of (i) accuracy, (ii) precision (robustness
to training), and (iii) computational complexity. Accuracy was evaluated via the
receiver operating characteristic (ROC) curve [2]. Figure 5 shows qualitative re-
sults for 3 images in our database. Figures 5 (a), (f), and (k) show the original
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 5. (a), (f), (k) Digital histopathological prostate studies. (b), (g), (l) Tumor masks
corresponding to the studies shown in (a), (f), and (k). Corresponding combined like-
lihood scenes at scale j=1 ((c), (h), (m)), j=2 ((d), (i), (n)), and j=3 ((e), (j), (o)).
Note the increase in detection specificity at higher scales.
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Fig. 6. (a) Average ROC curve for all 22 studies in our database at scales j = 1 (solid
line), j = 2 (dotted line), and j = 3 (dot-dashed line). The increase in ROC area at high
scales demonstrates the increase in CAD detection specificity at high image resolutions.
(b) ROC curves obtained for a subset of testing images trained using 3 (dot-dashed
line), 5 (dotted line), and 8 (solid line) images. The similarity of the 3 ROC curves
indicates that CAD is robust to training. (c) Computation times (in minutes) for CAD
at each image scale with (gray bar) and without (black bar) the Boosting Cascade.

prostate images at scale j = 3. Figures 5 (b), (g), and (l) show the corresponding
ground truth for cancer (black contour). Figures 5 (c)-(e), (h)-(j), and (m)-(o)
show the combined likelihood scenes for images shown in (a), (f), and (k) at
scales j = 1 ((c), (h), (m)), j = 2 ((d), (i), (n)), and j = 3 ((e), (j), (o)). These
images show that integration of additional discriminatory information at higher
scales (higher resolution) increases the CAD detection specificity.
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4 Conclusions and Future Work

In this work, we have presented a novel fully automated CAD system that inte-
grates nearly 600 texture features extracted at multiple scales and orientations
into a hierarchical multi-scale framework to automatically detect adenocarci-
noma from prostate histology. To the best of our knowledge this work represents
the first attempt to automatically analyze histopathology across multiple scales
(similar to the approach employed by pathologists) as opposed to selecting an
arbitrary image scale [3]-[5]. Further, the use of a multi-scale framework allows
for efficient and accurate detection of prostatic adenocarcinoma. At the higher
scales, our hierarchical classification scheme resulted in an 8-fold savings in com-
putation time. Also, while CAD detection sensitivity was consistently high across
image scales, detection specificity was found to increase at higher scales. While
the CAD system was trained using only 3 images, the inclusion of additional
training data did not significantly change CAD accuracy, indicating robustness
to training. In future work, we intend to incorporate additional morphological
and shape-based features at the finer scales and to quantitatively evaluate our
CAD technique on a much larger database of prostate histopathological images.
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