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Abstract. Lung cancer remains an ongoing problem resulting in substantial
deaths in the United States and the world. Within the United states, cancer of the
lung and bronchus are the leading causes of fatal malignancy and make up 32% of
the cancer deaths among men and 25% of the cancer deaths among women. Five
year survival is low, (14%), but recent studies are beginning to provide some hope
that we can increase survivability of lung cancer provided that the cancer is caught
and treated in early stages. These results motivate revisiting the concept of lung
cancer screening using thin slice multidetector computed tomography (MDCT)
protocols and automated detection algorithms to facilitate early detection. In this
environment, resources to aid Computer Aided Detection (CAD) researchers to
rapidly develop and harden detection and diagnostic algorithms may have a sig-
nificant impact on world health. The National Cancer Institute (NCI) formed the
Lung Imaging Database Consortium (LIDC) to establish a resource for detect-
ing, sizing, and characterizing lung nodules. This resource consists of multiple
CT chest exams containing lung nodules that seveal radiologists manually coun-
toured and characterized. Consensus on the location of the nodule boundaries,
or even on the existence of a nodule at a particular location in the lung was not
enforced, and each contour is considered a possible nodule. The researcher is
encouraged to develop measures of ground truth to reconcile the multiple radiol-
ogist marks. This paper analyzes these marks to determine radiologist agreement
and to apply statistical tools to the generation of a nodule ground truth. Features
of the resulting consensus and individual markings are analyzed.

1 Introduction

Despite warnings stretching back 40 years – the initial United States Surgeon General’s
Report on Smoking was issued in 1964 and warning labels have been required on ciga-
rettes sold in the United States since 1969 – lung cancer remains a serious health threat
in the world with an estimated 1 million deaths in 2000 [1]. For the United States,
lung cancer is the single largest fatal malignancy and is second only to heart disease in
yearly fatalities. There are few effective treatments and five year mortality is approxi-
mately 14% [2,3] due largely to advanced stage of the disease at diagnosis. Despite this,
lung cancer screening is not recommended, even for at risk populations, based largely

� This publication was supported by the DOD and the Medical University of South Carolina
under DOD Grant No. W81XWH-05-1-0378. Its contents are soley the responsibility of the
authors and do not necessarily represent the official views of the Department of Defense or the
Medical University of South Carolina.

R. Larsen, M. Nielsen, and J. Sporring (Eds.): MICCAI 2006, LNCS 4191, pp. 487–494, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



488 W.D. Turner et al.

on statistically powerful studies carried out in the 1970s that showed little benefit to
lung cancer screening. However, imaging advances over recent years – most notably
the advent of thin slice MDCT – have prompted revisiting the notion of screening.

Recent studies of stage I cancers demonstrate that the diagnosis of lung cancer prior
to metasteses can give five year survival rates as high as 70% [4,1] and other studies [5]
equate small, subtle cancers with early stage disease. But before screening becomes
widely accepted, issues involving overdiagnosis, radiation dose, and appropriate popu-
lation selection must be addressed. However, a dose-limiting screening protocol that en-
ables early nodule detection while limiting overdiagnosis appears within reach. One of
the promising vehicles for early detection is the low dose, Multi-Detector Computed To-
mography (MDCT) scan. MDCT has been shown to be an effective method for detect-
ing small (<1cm) nodules in the lungs that may be cancerous or pre-cancerous lesions.
However, the rigors of reading a large number of MDCT chest scans with upwards of
500 images per scan, combined with the subtlety of some of nodules of interest argue
for computer aided detection (CAD) as a necessity for a rational screening program.

In this environment, the National Cancer Institute (NCI) formed the Lung Imaging
Database Consortium (LIDC) to study the barriers to effective CAD development and to
develop a database as a national resource that can be used to expedite development [6].
One of the major barriers to the development and evaluation of effective CAD devices
is the absence of rigorous ground truth (GT). Unlike other cancer screening applica-
tions, the determination of malignancy in a discovered lung lesion is not undertaken for
small, subtle lesions due to the likelihood of morbidity during the procedure. Although
histological analysis of biopsy samples provides the most reliable assesment of malig-
nancy, radiological diagnosis based on medical images currently serves as a surrogate
for an actual malignancy determination. Performance of CAD algorithms tends to be
very sensitive to the choice of GT. Consider the chart in Figure 1, which represents a
set of lung scans read by three radiologists. The data was generated based on lung can-
cer screening exams in the GE Global Research cancer database. The y-axis shows how
many nodules were detected by one, two or all three radiologists reading the exams. De-
pending on whether single radiologist GT, majority GT, or unanimous GT is chosen, the
performance of a typical CAD system will change drastically. As an example, a CAD
algorithm with 100% sensitivity on unanimous GT could have much lower sensitivity
on single reader GT, and an algorithm with 100% specificity for single reader GT could
gain hundreds of false positives using unanimous GT.

To get the best possible GT under these constraints, and to capture nodule charac-
teristics such as spiculations, lobulations and density, the LIDC asked multiple radiolo-
gists to perform a series of blinded and unblinded reads on a number of CT lung images.
Each radiologist first read the lung cases without knowledge of how his/her colleagues
marked the exams and placed contours around the periphery of nodules found. The ra-
diologists also described the nodules with the features in Table 1. Once all initial reads
where completed, a further round of unblinded reads where performed where the radi-
ologists could modify their own contours based on the contours of their colleagues. In
the end, all four sets of final contours were saved and provided as annotations to the
exams. This allows CAD and cancer researchers to determine an appropriate method to
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Fig. 1. The variability of nodule ground truth based on radiological consensus

Table 1. Nodule characeristics captured in the LIDC datasets

Characteristic Definition
Subtlety 1 - Extremely 2 - Moderately 3 - Fairly 4 - Moderately 5 - Obvious
Texture 1 - non/GGO 2 3 - Part/Mixed 4 5 - Solid
Margin 1 - Poorly Defined 2 3 4 5 - Sharp

Sphericity 1 - Linear 2 3 - Ovoid 4 5 - Round
Spiculation 1 - Marked 2 3 4 5 - None
Lobulation 1 - Marked 2 3 4 5 - None

combine the GT for their research so as to maximize detection and diagnostic capabili-
ties of their algorithms.

In this paper, we investigate the radiologist GT in the first twenty-nine LIDC datasets
released. We use statistical tools such as Simultaneous Truth and Performance Level Es-
timation (STAPLE) [7] available in the Insight Segmentation and Registration ToolKit
(ITK) [8] to both extract estimations of GT contours from the multiple radiologist marks
and to characterize reader performance.

2 Methods

The LIDC in cooperation with the NCI are collecting and distributing a database of lung
MDCT scans with annotations of nodules and nodule charateristics. The public database
currently stands at 30 datasets, of which we were able to process 29. The dataset size
is growing and will reach 400 cases before the end of the project. We downloaded the
cases from the LIDC public ftp site [9] (the data is also available at [10]). This data
is stored in anonymized DICOM format that eliminates patient identification elements
from the images, but preserves other data annotations such as dosage and reconstruction
parameters as well as the make and model of the scanner for each study. The image data
is accompanied by an XML file with information from the experts’ reads. The XML
details nodules smaller than 3mm, nodules larger than 3mm and non-nodules. In this
analysis we have focused on nodules larger than 3mm.
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Using ITK we read each image series and the corresponding XML data, which gives
a list of points defining a 2D contour at a specific Z-location within the CT image stack.
We convert these contours to label images in which only the interior voxels are labelled.
This is in keeping with the instructions given to the radiologists, who were instructed to
mark the nodules one pixel outside the border.

The next step is to ensure that the same nodule is labeled consistently in each of
the reader maps. This is done by comparing the bounding boxes of the nodules. If the
centroid of a bounding box overlaps with the bounding box of a nodule by a different
radiologist, we consider it to represent the same nodule. After the nodules are cross-
compared each resulting unique nodule is assigned a label and the original label maps
are adjusted to use the new labeling.

The result of this processing is a set of volumes labeled with consistent nodule num-
berings across all of the readers for each series from the database. We write these vol-
umes back to disk as DICOM series. While this is not the most compact storage choice,
it has the advantage that all of the original DICOM information is carried with the label
maps, minimizing the opportunity for error later in the process and allowing the nodule
contours to be viewed with standard DICOM viewing tools. The result is a set D of
label maps where Dm,n is the set of voxels from reader m with label n.

2.1 Calculating Ground Truth

Given the consistently labeled nodule volumes representing a set of expert opinions, we
combine the individual information into a common ground truth. There are a number
of ways in which this can be done. We compute several and then contrast the results.
The most expansive combination that we compute for a given nodule with label n is the
union of all reads.

Tmaxn =
⋃

A, A ∈ Dm,n ∀m. (1)

For this case any voxel labeled as part of nodule n by any of the readers is considered
to be a valid part of n. This is equivalent to saying that all of the readers have perfect
specificity, while some may have reduced sensitivity. That is all marked voxels are valid
parts of the nodules and no marks represent false positive voxels.

Conversly, we also compute the smallest estimate of ground truth by only considering
those voxels that were selected by the entire set of readers.

Tminn =
⋂

A, A ∈ Dm,n ∀m. (2)

In this case, there are no false negative voxels; readers are accorded perfect sensitiv-
ity while potentially suffering from reduced specificity.

Together Tmax and Tmin form the bounds on that which we will consider to be truth.
For some questions these two estimates may be sufficient representations of the truth.
Questions concerning whether the case needs further consideration may rely soly on
the Tmax estimate. Other questions that look at the reproducibility of results may con-
sider ‖Tmin‖/‖Tmax‖. As this ratio approaches 1 the agreement on nodule definition
is approaching consensus. The size and shape variation of nodules that fall within these
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bounds, however, is too wide to use in comparing algorithms that attempt to segment
nodules for the purposes of computing measures of nodule features such as lobulation
and spiculation.

To arrive at a more accurate estimate of ground truth, suitable for use in scoring
segmentation algorithms, we must consider truth not as just a binary decision, as in (1)
and (2), but as a continuum from which we will select. To arrive at this narrower ground
truth, we start by marking all the voxels which are in the complement of Tmax as having
zero probability of being a part of the truth and at the same time mark the voxels that are
elements of Tmin as having a 100% probability of being part of the truth. This leaves
Tmax − Tmin as those voxels whose probability is uncertain. There are two methods in
common use for selecting the probabilities to assign to these voxels.

For the first method consider each radiologist marking as a vote for including the
voxel in the nodule [11] as below:

vni,j,k
=

R∑

m=1

Vm,n(i, j, k)/R, (3)

Vm,n(i, j, k) =
{

1 Ii,j,k ∈ Dm,n

0 otherwise
(4)

where vni,j,k
is a voxel in the pmap for nodule n at image position (i, j, k), Ii,j,k is the

voxel in the label map, and R is the number of radiologists who provided annotations.
This voting method results in the creation of a pmap representing the probability

that a voxel is a part of a nodule. As presented, the voting method classifies all reader’s
opinions as equally valid. While it is possible to make a simple extension to weight
readers differently in the voting based on their relative expertise, this has not been the
practice in this domain.

The second method for computing probabilities for the uncertain voxels is STA-
PLE [7]. Staple simultaneously computes the consensus ground truth and the speci-
ficity and sensitivity for each of the readers. It employs an Expectation Maximization
(EM) algorithm to jointly optimize these values. As with the voting method a pmap is
produced with values at 0 for voxels definitely outside the nodule and 1 for voxels defi-
nitely inside based on the available manual markings. Voxels where certainty cannot be
achieved are marked in the interval (0, 1). Furthermore, STAPLE can be preconditioned
with the expected sensitivities and specificities of the readers to guide the optimization.

Both the voting and STAPLE pmaps represent a continuum of possible ground
truths. They can be thresholded at a particular point to force a binary decision on what
will be considered as truth for a particular calculation. In practice, the 50% level is often
used as dividing line between regions in computer vision applications.

3 Results

Table 2 shows a comparison of ground truthing techniques for several representative
cases from the LIDC database. In each column the total number of nodule-labeled vox-
els is given. It is evident by comparing the discrepancy in Tmin and Tmax values that
intra-observer variability is an issue. As expected, the thresholded pmaps produce to-
tals that lie between the corresponding Tmin and Tmax values. The fact that the total
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number of voxels remains unchanged as the pmaps are thresholded at different levels
indicates that probability values are tightly grouped either below the 25% level or above
the 75% level.

Table 2. Comparison of Ground Truth Approaches

Case Tmax Tmin pmap25 pmap50 pmap75

1 244 88 160 160 160
2 596 175 276 276 276
3 3049 1100 1630 1630 1630
4 953 233 484 484 484
5 6325 2356 4092 4092 4092

Figure 2 shows models generated using the Visualization Toolkit’s discrete marching
cubes implementation [12,13]. Not only is inter-observer variability clear, but it is also
evident that for some cases substantial step artifacts exist between slices.

Fig. 2. Models of the same nodule segmented by different readers

Figure 3 shows reader segmentations for a representative nodule, as well as the cor-
responding pmap generated by STAPLE. Variability across readers is clear. STAPLE
computed sensitivity averages 66% over the 24 nodule positive cases. Specificity is
nearly 100% (99.9993%) over the same cases, but this to be expected because the vast
number of voxels in the cases are not marked as part of any nodule. STAPLE com-
puted sensitivity on a per nodule basis is higher (82%) for the 26 unanimously detected
nodules reflecting radiologist disagreement about the actual presence of some subtle
nodules.

4 Conclusion

Diagnosis of lung nodules and recommendation of potentially costly follow-up depend
on the accurate assesment of nodule characteristics. Inter- and intra-observer variability
in such assesments indicates the complexity of the issue and motivates the development
of CAD techniques to assist human readers. The LIDC database provides an excellent
resource against which CAD algorithms can be scored. For accurate evaluation, how-
ever, a notion of ground truth must be derived from the hand segmentations provided
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(a) (b) (c) (d) (e) (f)

Fig. 3. From left to right: (a) zoomed CT region around a nodule, (b) reader 0 segmentation, (c)
reader 1 segmentation, (d) reader 2 segmentation, (e) reader 3 segmentation, and (f) log(pmap)
scaled to range from 0 to 255 in order to highlight probability drop-offs. The probabilities repre-
sented in this pmap are 100%, 99.9%, 6.1%, 4.7%, and 1.2%. Reader sensitivity and specificity
for this nodule as determined by STAPLE are, respectively: (0.903, 0.999), (0.876, 1), (0.781, 1),
(0.846, 1). Mean sensitivity and specificity are (0.851, 1).

by the expert radiologists. In this paper we have proposed and compared the use of
several ground-truthing techniques: the union of all reads, the intersection of all reads,
and STAPLE. We performed STAPLE analysis on a per-case basis to better leverage
the detection variability of the cases, but better segmentation results might be obtained
by running on a per-nodule basis. We currently plan to release pmap data to a public
ftp site for free download.

It would be interesting to correlate dosage and reconstruction settings with human
segmentation results. Such an analysis on segmentation contours could be performed by
investigating pmaps produced by the STAPLE algorithm. Image acquisition parameters
that result in pmaps that are tightly grouped around 0% or 100% probability suggest a
protocol that mitigates human variability in contour deliniation. As another next step we
plan to develop automated 2D/3D nodule measures and correlate them with radiologist
reported measures. Such measures would address the issue of human variability.

Hand segmentations performed on 2D slices can lead to “discontinuous” segmenta-
tions as viewed in 3D – no doubt as a function of the oftentimes amorphous nature of
nodules as well as the slice thickness of CT images and partial voluming. In order to
mitigate step-like artifacts, we propose the use of additional hand segmentation tools
that would augment human contouring. One idea would be to provide a 3D model im-
mediately after the complete segmentation of a nodule for evaluation. Performing seg-
mentations in coronal and sagittal reconstructions in addition to axial could also prove
beneficial as could segmentations on thinner slice protocols.
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