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Abstract. In this work, we proposed a discriminative model of Alzhei-
-mer’s disease (AD) on the basis of multivariate pattern classification
and functional magnetic resonance imaging (fMRI). This model used the
correlation /anti-correlation coefficients of two intrinsically anti-correlated
networks in resting brains, which have been suggested by two recent stud-
ies, as the feature of classification. Pseudo-Fisher Linear Discriminative
Analysis (pFLDA) was then performed on the feature space and a lin-
ear classifier was generated. Using leave-one-out (LOO) cross validation,
our results showed a correct classification rate of 83%. We also com-
pared the proposed model with another one based on the whole brain
functional connectivity. Our proposed model outperformed the other one
significantly, and this implied that the two intrinsically anti-correlated
networks may be a more susceptible part of the whole brain network in
the early stage of AD.

1 Introduction

Alzheimer’s disease (AD) is the most common type of dementia associated with
aging. The increased number of people suffering from AD makes it a major public
healthy concern. If the disease is diagnosed in the earlier stage, AD patients can
live an average of eight to twenty years. Therefore, a high quality and objective
discriminative approach distinguishing the early AD patients from the healthy
aging may be of great importance for clinical early diagnosis of AD.

Clinical observations of AD patients revealed that they often had great diffi-
culty in performing everyday tasks at the very early stage of the disease. They
were often described as being distractible and unable to concentrate when they
performed the tasks that were previously easily done. These observations sug-
gested that AD patients have attention deficits, and the attention deficits may
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be one of the possible factors underlying other cognitive deficits at the early
stage of the disease [6/19]. From this perspective, attention deficits may also be
seen as an early feature of AD.

Considering the fact that the attention process not only exists when people per-
form specific tasks but also maintains during the resting-state, it’s reasonable to
hypothesize that the attention deficits of AD patients may also have some expres-
sions even during the resting-state. Recently, by using the resting-state fMRI, two
pioneer studies by Fox et al. and Fransson identified two diametrically opposed
brain networks on the basis of both correlations within each network and anti-
correlations between networks [I3/16]. They suggested that one of the two networks
was “task-positive” network which was associated with the focused attention/goal-
directed behavior and the other one was “task-negative” network which was associ-
ated with the stimulus-independent thought. They also proposed that the
anti-correlations between the two networks might be interpreted as competition
between focused attention and process subserving stimulus-independent thought.
From this perspective, their findings offered a network model of attention in the
human brain and suggested that it was an intrinsic organization of the brain func-
tion. In this paper, we used these two anti-correlated networks as a discriminative
model of the brain functional deficits in early AD patients.

In this work, we hypothesized that the two anti-correlated networks may
be abnormal in early AD patients and their alterations could distinguish AD
patients from the elderly healthy controls. To test this hypothesis, we firstly
obtained the two intrinsically anti-correlated networks using an anatomically la-
beled template. Then we analyzed the alterations of the two networks in early
AD patients compared with the elderly healthy controls. In the end, we took
the correlation/anti-correlation coefficients of all pairs of nodes within the two
networks as the classification feature, and proposed a discriminative approach
based on the Fisher Linear Discriminative Analysis (FLDA) to distinguish early
AD patients from the elderly controls. MRI is noninvasive and has become more
and more popular in the hospitals. In addition, resting-state fMRI has the ad-
vantage of easier manipulations relative to task-driven method, especially for
patients. Hence a discriminative approach base on the resting-state fMRI may
have potential in clinical applications.

2 Materials

To reduce the impact of head motion on the calculation of functional connectiv-
ity, we excluded the subjects with greater than 1 mm maximum displacement in
either of x, y, z directions or greater than 1 degree of angular rotation. 14 AD
patients and 14 elderly healthy controls were remained for further analysis. The
AD patients and the elderly healthy controls were matched in gender , age and
education levels. However, the Mini-Mental State Exam (MMSE) scores of AD
patients were significantly lower than those of the healthy controls (23.142.6 for
patients, 28.8+1.0 for controls). The diagnosis of AD patients fulfilled the Diag-
nosis and Statistic Manual Disorders, the Fourth Edition criteria for dementia
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(DSM-1IV) [1], and the National Institute of Neurological and Communicative
Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA) criteria for AD [7]. According to the results of a clinical
progression and neuropathological study by Morris et al. [], all the patients
used here can be considered to be in the early-stage of AD. The AD patients
were free of other diseases and the healthy controls were free of any medical,
neurological and psychiatric disorders.

During the data acquisition, subjects were instructed to keep their eyes closed,
relax their minds, move as little as possible, and staying awake at all times. The
imaging processes of the AD patients and elderly healthy controls were per-
formed on a 1.5 Tesla scanner. Echo Planer Imaging (EPI) Blood Oxygen Level
Dependent (BOLD) images of the whole brain were acquired axially with the
following parameters: 2000/60 ms (TR/TE), 20 slices, 90 degree (flip angle), 24
cm (FOV), 5/2 mm (thickness/gap), 64x64 (resolution). The fMRI scanning
lasted for 6 minutes and 180 volumes were obtained. For each subject, the first
10 volumes were discarded for scanner stability. Preprocessing procedures for
fMRI signals included time aligning across slices, motion correction, spatial nor-
malization, voxels resampling to 3x3x3 mm?>. All the above preprocesses were
undertaken using SPM2 [I2]. We also used a linear regression process to fur-
ther remove the effects of head motion and other possible source of artifacts
[13]: (1) six motion parameters, (2) whole-brain signal averaged over the en-
tire brain, (3) the linear drift. In the end, the fMRI waveform of each voxel
was temporally band-pass filtered (0.01Hz < f < 0.08Hz) by using the AFNI
(http://afninimh.nih.gov/).

As described in the section 3, we pre-selected some regions in an anatomically
labeled template to construct the two intrinsically anti-correlated networks. In
order to test the validity of these regions, we also used another dataset of 17
young healthy participants (12 males and 5 females, age 25.714+5.62 years). The
imaging processes were also undertaken on a 1.5 Tesla scanner. The data ac-
quisition parameters and the preprocessing procedure were similar with those of
the AD patients and elderly healthy controls.

3 The Two Intrinsically Anti-correlated Networks

In order to automatically obtain the two intrinsically anti-correlated networks, we
used an anatomically labeled template previously reported by Tzourio-Mazoyer
et al. [I5]. This template divided the whole brain into 116 regions: 90 regions in
the cerebra and 26 regions in the cerebella. According to the results of Fox et al.
and Fransson [I3/16], we selected 5 pairs of bilateral homologous regions in the
“task-positive” network and 6 pairs of bilateral homologous regions in the “task-
negative” network. The regions and their abbreviations were listed in the Table 1.
We obtained the mean time series of each of the 22 regions by averaging
the fMRI time series over all voxels in the region. Correlations coeflicients were
computed between each pair of the regions. Then a Fisher’s r-to-z transformation
was applied to improve the normality of these correlation coefficients [T4121].
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Table 1. The selected regions in the two anti-correlated networks and their abbrevia-
tions used in this paper

Task-positive network Task-negative network
Region Abbreviations Region Abbreviations
Precentral gyrus PRECG Anterior cingulate gyrus ACC
Superior frontal gyrus SFG Posterior cingulate gyrus PCC
Middle frontal gyrus MFG Hippocampus HIP
Supplementary motor areas SMA Parahippocampal gyrus PHIP
Inferior parietal gyrus 1PG Angular gyrus ANG
Precuneus PCU

Because we used a labeled template to automatically obtain the two intrin-
sically anti-correlated networks, these regions were unlikely to exactly match
what have been suggested by Fox et al. and Fransson [I3I16]. Therefore, we
should test whether these selected regions could represent those of the two
intrinsic networks on the basis of both correlations within each network and
anti-correlations between networks. Taking into account of the possible alter-
ations of the two networks due to aging, we firstly tested the validity of the
automatically obtained networks on the data of 17 young healthy participants.
The results were shown in Figure 1 and Table 2. The correlation coefficients
between each pair of regions were entered into one-sample two-tailed t test to
determine the significant correlations (p<0.05, corrected for multiple compar-
isons [22]). Within the “task-positive” network, all the 23 significant correlations
were positive. Within the task-negative networks, all the 31 significant correla-
tions were positive. Between the task-positive network and the “task-negative”
network, 46 correlations were significantly negative, 5 correlations were signifi-
cantly positive, and others were not significant. This result suggested that the
two automatically obtained networks were mainly positively correlated within
each network and negatively correlated between networks. Therefore, the two
networks of those selected regions could be used as a representation of the
two intrinsically anti-correlated networks proposed by Fox et al. and Fransson
[13/16].

We then used these pre-selected regions to construct the two intrinsically
anti-correlated networks in the AD patients and elderly healthy controls, re-
spectively. As shown in Table 2, the number of significant correlations/anti-
correlations of both AD patients and elderly healthy controls was obviously less
than that of the young healthy participants. As to the AD datasets, the num-
ber of significant correlations within the “task-positive” network in AD patients
was more than that of elderly healthy controls. This was possibly because those
regions in the task-positive network were mainly distributed in the prefrontal
lobe. Many studies have reported increased functional connectivity associated
with the prefrontal regions compared with elderly controls [2J3I4]. The increase
of prefrontal functional connectivity has been interpreted as a compensatory re-
allocation or recruitment of cognitive resources [I3]. The number of significant
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Fig. 1. Graphic representations of the significant correlations within the “task-positive”
network/ “task-negative” network and anti-correlations between the two networks in the
dataset of young healthy participants. (A) The significant correlations within the “task-
positive” network. (B) The significant correlations within the “task-negative” network.
(C) The significant anti-correlations between the two networks. P<0.05 (corrected for
multiple comparison using the method described by Benjamini and Yekutieli [22]) were
used to determine the significant correlations/anti-correlations.

Table 2. The number of significant positive correlations within each network and
significant negative correlations between the two networks

Subjects NSPC in the task NSPC in the task NSNC between
-positive network -negative network two networks

Young healthy participants 23 31 46

Elderly healthy controls 16 19 22

Early AD patients 19 18 16

NSPC: the number of significant positive correlations; NSNC: the number of significant
negative correlations.

correlations within the “task-negative” network in AD patients was similar with
that of the elderly healthy controls but the number of significant anti-correlations
between the two networks was less than that of the elderly healthy controls. Fox
and colleagues suggested that the anti-correlations of the two networks might
be interpreted as competition between focused attention and process subserv-
ing stimulus-independent thought [13]. Fransson proposed that the two anti-
correlated networks reflected a recurring switch between an introspective versus
an extrospectively oriented attention state-of-mind [I6]. From this view, the
decreased number of significant anti-correlations indicated that when the AD
patients tried to concentrate on some things they might have difficulty in ef-
fectively inhibiting other random thought, and this may partly interpret the
attention deficits of AD patients.

The above results indicated that the number of correlations/anti-correlations
of the two intrinsically networks were altered in early AD patients compared
with elderly healthy controls. In the next section we used the correlation/anti-
correlation coeflicients of the two networks as the classification feature to dis-
criminate early AD patients from elderly healthy controls.
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4 Pseudo-Fisher Linear Discriminative Analysis

The primary purpose of the Fisher Linear Discriminative Analysis (FLDA) is
to discriminate samples of different groups by maximizing the ratio of between-
class separability to within-class variability [SIT7/18]. The between-class scatter
matrix is defined as formula (1) and the within-class scatter matrix is defined as
formula (2):

Sy = (m1 —ma)(my — m2)T (1)
Nl . . N2 . .
Suw = (ah —ma)(e} —mu) "+ (wh — mo)(h —ma) T 2)

Where x} and 7% are n-dimensional feature vectors of each sample. In this study
the feature is the vector of the correlation coefficients and anti-correlation co-
efficients of the two intrinsically network obtained in the section 3; m; and mo
is mean feature vectors of each group; N1 and N, is sample size of each group.
The main objective of FLDA is to find a projective direction w that maximizes
the objective function as (3):

w TSbw

J =
) w TSww

3)

Theoretically, the optimal can be determined by:
w* =8, (m1 —my) (4)

This is the standard FLDA procedure.

However, in many brain image analysis, the number of total training observa-
tions is very limited compared to the dimension of the feature space (N1+ Ny <<
n). In this condition, computing the inverse matrix of .Sy, is an ill-posed problem
and therefore the standard FLDA may get unreliable result. To solve this prob-
lem, we used a Pseudo-Fisher Discriminative Analysis (pFLDA) which firstly
applied a Principal Component Analysis (PCA) on the sample feature z € R™
to get a low-dimensional feature z/ € R" (n’ = N1+ Ny —1). Then the standard
FLDA procedure is used in the low-dimensional feature space to find w* € R
[11120].

In the end, we can project each sample z/ € R onto the direction w* € R"’
to get a discriminative score z by:

z=w""r (5)
The classification threshold zp is determined by:
20 = (N1mf + Nam3) /(N1 + Na) (6)

Where mi and m3 are the mean values of the discriminative scores of the two
classes in the training set.
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5 Experimental Results

The generalization performance of the classifier was evaluated by using a leave-
one-out (LOO) cross validation approach. The leave-one-out approach has been
widely used as a reliable estimator of the true generalization performance, es-
pecially when the sample size is very limited. Classification results were listed
in the top row of Table 3. The correct prediction rate performed on the AD
patients and the elderly healthy controls were 93% and 72% respectively, and
the total correct prediction rate reached 83%.

Table 3. Classification results

Discriminative model LOO test correct rate
Elderly controls AD patients Total
Two intrinsically anti-correlated networks 2% 93% 83%
The whole brain network 78% 43% 61%

We then compared the discriminative ability of proposed model with the whole
brain network model which used the correlation/anti-correlation coefficients of
all pairs of the 116 regions as the feature. pFLDA was also applied to the new
feature space and the results were shown in the second row of Table 3. We can see
that its classification rate (61%) was obviously lower than that of the proposed
classifier (83%). This result suggested that the discriminative model based on
the two intrinsically anti-correlated networks was more effective than the whole
brain network model. More importantly, this implied that the two intrinsically
anti-correlated networks may be a more susceptible part of the whole brain
network of AD patients in their early stage of the disease.

6 Conclusions

In this paper, we used a template to automatically obtain the two intrinsically
anti-correlated networks that have been suggested by Fox et al. and Fransson
[13/16]. Though not exactly the same, our results confirmed the existence of
the two intrinsically anti-correlated networks on the basis of correlations within
each network and anti-correlations between networks in a different set of sub-
jects. In addition, we found that there were alterations of the correlations/anti-
correlations associated with the two networks in early AD patients compared
with age-matched elderly healthy controls. We then used the correlation/anti-
correlation coefficients as the feature to discriminate the AD patients and the
healthy controls. The results indicated that the proposed classification method
based on the two intrinsically anti-correlated networks may be an effective and
promising tool for the discrimination of early AD patients. As resting-state fMRI
is non-invasive, objective and more easily manipulated especially for patients, it
may have potential ability to improve the current diagnosis and treatment eval-
uation of AD. Future work will involve the evaluation of the proposed method
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with larger sample size and multi-center imaging data. Moreover, we believe the
combination with other features may add more valuable information and possi-
bly get better classification performance.
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