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Abstract. A reoccurring theme in the diffusion tensor imaging litera-
ture is the per-voxel estimation of a symmetric 3 x 3 tensor describing the
measured diffusion. In this work we attempt to generalize this approach
by calculating 2 or 3 or up to k diffusion tensors for each voxel. We show
that our procedure can more accurately describe the diffusion particu-
larly when crossing fibers or fiber-bundles are present in the datasets.

1 Introduction

Diffusion tensor Magnetic Resonance Imaging (DTI) has recently become an
important tool in the analysis of the central nervous system. For quantitative
analysis of possible white matter anomalies, parameters derived from the diffu-
sion tensor can be associated with tissue microstructure and compared between
health and disease. Diseases about which white matter abnormality is known
or hypothesized (e.g. multiple sclerosis, Alzheimer’s disease and schizophrenia)
have successfully been investigated using a single diffusion tensor model [TI2].

Upon inspection of histology, however, much of the white matter in primates
has been shown to be composed of multiple interdigitating fibers. On the spatial
scale of MRI, many voxels contain more than one fiber direction. The estimated
diffusion tensor will then describe an average of the actual diffusion. Depend-
ing on the degree of intra-vozel heterogeneity, the single tensor fit may lead to
inaccuracies in the diffusion tensor and derived quantities, such as fractional
anisotropy (FA), linear, planar and spherical measures [3] and fiber trajectories.

In this work we have investigated multi-tensor estimation, in which we approx-
imate the diffusion per voxel with more than one diffusion tensor. In particular,
our approach allows the estimation of a user specified number k tensors per
voxel. We will show that our method for k-tensor estimation can better describe
the actual diffusion in both real and synthetic datasets.

1.1 Related Work

In a related work Tuch [4] is able to make 2-tensor estimates by solving the multi-
tensor model presented in section 2]l In order to solve this set of equations,
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however, he assumes prior knowledge of the eigenvalues of the diffusion tensors
about to be estimated. Jansons et al. [5] solves the same problem in the Fourier
domain using a maximum-entropy parameterization, although their numerical
approximations are sensitive to local minima, and are in general not guaranteed
to converge to a global optimum. Peled et al. [6] use the coordinate frame of a
single tensor fit to estimate two tensors residing in the resulting plane. It is not
reported, however, if this approach can be generalized to k larger than 2.

2 Background

In diffusion-weighted imaging, the image contrast is related to the local mobility
of water molecules in living tissue, where the measurements can be made sensitive
to water self-diffusion along n distinct spatial directions g1, - - , gy, specified by
the image acquisition protocol, such that for each voxel we obtain a collection
of n measurements S, - ,S,.

These measured values S; are related to the 3 x 3 diffusion tensor X as de-
scribed by the Stejskal-Tanner equations [3]

S; = So exp(—bg] Xg;) (1)

where b is an acquisition-specific constant, Sy is signal intensity without diffu-
sion sensitization, and unit-length gradient directions gi,--- ,g,. The number
of equations n is usually larger than the minimum 6 required for a single tensor
estimate, so least-squares minimization is used.

By taking the logarithm and rearranging, the estimation of the symmetric
3 x 3 diffusion tensor X can be found by solving the linear least-squares problem

. T )2
H%nzi:(gi Xgi —d;) (2)

where

_ log(So) — log(S;)

N b

These d; values are in the literature commonly referred to as the apparent diffu-
sion coefficients (ADC), and we will let the term ADC profile denote the surface
spanned by the d;g;.

One common way to visualize a diffusion tensor is by the letting the eigen-
vectors define the orientation of an ellipsoid, with per-axis scaling determined
by the corresponding eigenvalues. Figure [Tl shows an estimated diffusion tensor
and the corresponding ADC profile for a synthetic example. We observe that the
orientation of the ADC profile seems to correspond well with the orientation of
the diffusion tensor in that they both have their longest extent along the x-axis.

d;

2.1 Multi-Tensor Model

Equation () describes the relationship between one diffusion tensor X and the
measured MRI signals S;. However, sometimes the measured S-values are not
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(a) The diffusion tensor (b) The corresponding ADC profile

Fig. 1. A synthetic diffusion tensor with principal diffusion along the z-axis and with
eigenvalues A\ = {1, é, é}, with b = 700, Sp = 1, using n = 642 uniformly distributed
gradient directions

well modeled by a single diffusion tensor, due to a more heterogeneous distrib-
ution of fiber orientations, as arises with crossing fibers.

To cope with this situation, Tuch [4] has modeled the relationship between
the k£ tensors X; and the measured S; values as

k
Si= S0y fiexp(~bg! X;g) (3)
j=1
where f; are non-negative weights which sum to 1 for j = 1,--- ,k and ¢ =

1,---,n. Note that this model reduces to that of (Il) when k = 1.

Fig. [ shows a synthetic example with & = 2. S-values calculated according
to (@) produce the ADC profile in Fig. Note the apparent 45° shift of the
main axes of the ADC profile relative to the orientation of the original tensors.
As the angle between the two synthetic tensors varies, the relative size and angle
between the two main extent directions of the ADC profile changes. This non-
intuitive behavior motivates a different diffusion description, the Q-ball.

2.2 Approximating the Q-ball

The basic idea of Q-ball imaging [47] is to transform the measured diffusion
signal to a orientation distribution function directly on the sphere. Considering
each point on the sphere as a pole, the Q-ball transform assigns the value at the
pole to be the integral over the associated equator.

In our implementation we approximate the Q-ball by taking a given g; as a
plane normal, and let the associated Q-ball value ¢; be a weighted sum of §j-
values where the weights associated with S; are inversely proportional to the
distance from g; to the plane. Specifically,

1 & ™
%= g, ; S; cos( zging)p (4)
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(a) Two diffusion tensors (b) ADC profile (c) Q-ball profile

Fig. 2. k = 2 synthetic diffusion tensors with principal diffusion along the z-axis and
y-axis, respectively, and both with eigenvalues A = {1, é, é} We let f = { é, é} and
selected the other parameters as in Fig. [I]

where p is a constant, in the current implementation p = 5. We define the Q-ball
profile as the surface spanned by ¢;g;, shown in Fig. Observe that the Q-
ball profile extrema now correspond better with the extremes of the two original
tensors.

3 Methods

We estimate k diffusion tensors by segmenting the S-values. To simplify our
notation, we identify each of the values S; simply by its index i. We segment

these n values into k disjoint sets Z; for [ € 1,2, --- k. A diffusion tensor X; is
then estimated from each set Z;, using (2)) with ¢ € Z;. Note that when k = 1, all
samples are segmented into the same set Z; = {1,2,---,n}, and the approach

reduces to the standard single tensor estimation (Section ).

3.1 Segmentation

The Q-ball profiles is used to segment the samples. Each triangle vertex in
Fig. corresponds to one g;g;, calculated from the sample i. Thus segmenta-
tion of the Q-ball vertices corresponds to a segmentation of the original samples.

The vertices of the Q-ball can naturally be segmented into k = 2 sets in Fig.
one belonging to each of the two principal (directions, extents, or simply)
azes of the Q-ball. In the following we define an axis j to be a line going through
the origin and a unique point p; taken from a uniformly distributed set of points
on the unit sphere. However, since we do not know in advance what the principal
axes are, we make the following simplification: we will only consider m discretely
sampled axes in our approach, and attempt to choose the £ which matches the
vertices best. We will then attempt to pair each of the vertex points (identified
by the index i) with exactly one of the k axes.

Assigning a vertex ¢ to axis j will contribute an error (or cost) ¢;; > 0, and we
define this error to be the shortest distance from vertex i to axis j. Orthogonality
conditions give

cij = |lp; % (—qigi)ll2
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where x denotes vector cross-product. The assignment of vertices to axes should
minimize the total cost of the assignments.

We can now formulate the problem of assigning vertices to axes as a binary
integer program (BIP). In order to do so we first define our variables. We let

1, iff vertex i is assigned to axis j
Tij = .
0, otherwise

and also define

1, iff any vertex has been assigned to axis j
Yj = .
0, otherwise

Having done so we write the following minimization problem

min E E CijTij
Lij -
J

s.t. Z Ti; = 1 (5)
J

Tij < Yj (6)
Z yi =k (7)

Ti5 € {0, 1},yj S {07 1}

where ¢ = 1,2,--- ,n and j = 1,2,--- ;m. Here ({) ensures that each vertex is
assigned to exactly one axis. Equation (@] ensures that if any vertex is assigned
to axis 7, then axis j is labeled as “in use”. Finally, ([l ensures that exactly k
out of the m axes are in use.

One important observation learned from our BIP formulation is that once the
choice of which axes to use has been made (that is, the variables y; has been
chosen) the remaining variables can be selected in a straightforward manner: Let
J denote the set {j : y; = 1}. Then it is optimal to let

1, iff ¢;; is the smallest value in the set {c;, : p € J}
Tij =
“ 0, otherwise

for all ¢ when j € J. For all other ¢ and j, z;; = 0.

When k is small, this observation suggests that we can solve the BIP by
exhaustion; enumerate all the possible choices of y, select x as suggested above
and save the solution which has the minimum objective-function value.

4 Results

Figure [3] shows results a synthetic test case which varies the angle between the
originating principal diffusion directions. The estimated diffusion tensors
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Fig. 3. The leftmost column shows k& = 2 synthetic diffusion tensors with principal
diffusion directions 30° and 45° apart. The middle column shows the Q-ball profile and
the estimated principal axes. The last column shows the estimated diffusion tensors.

y

Fig. 4. Two tensor approximation in each voxel of a real DTI dataset. The upper right
hand panel shows the position of the regions (a)-(c¢) visualized in the upper left, lower
left and lower right panels, respectively.
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correspond well with the original ones. Specifically, the sum of error norms
SOF L |Xorigmal _ estimated|| 1 for the 30° and 45° cases are 8.24 x 1072 and
5.45 x 1072, respectively, letting other parameters be as in Fig. P

Using the same setup, our algorithm was unsuccessful in computing two ten-
sors when the angle between principal diffusion directions became smaller than
30°. One of the estimated principal axes became orthogonal to the xy-plane,
resulting in a bad segmentation. However, as the angle between the two prin-
ciple diffusion directions decreases, the single tensor fit in fact becomes more
appropriate, so we currently have not made attempts to alleviate this problem.

Figured shows an axial slice from a healthy human volunteer DTI scarll. Two
tensors were approximated for each voxel and their estimates were visualized as
described in [8]. The background images are direction-encoded FA maps where
red indicates right-left, green indicates anterior-posterior and blue indicates a
superior-inferior primary diffusion direction of the single tensor fit.

We observe spatially consistent orientations of two diffusion directions that
are plausible given the known predominant fiber directions in these regions.

5 Discussion

In this work we have presented a novel way to estimate several diffusion tensors
per voxel. To implement this approach no extra data needs to be acquired other
than what is routinely available from clinical scans. This fact enables larger
clinical studies to be performed with already existing DTT datasets, although
we have not attempted to do so thus far. We also point out that since we rely
on Q-ball imaging, we expect the procedure to give better results when many
gradient diffusion directions are used in the acquisitions.

Our approach differs from those outlined in [4J6] in that we do not explicitly
try to solve (B). Therefore we do not get the weighting parameters f; of that
model either, however by substituting our estimated tensors into (3]), these values
can be estimated by solving the resulting constrained linear problem.

Deciding how many tensors one should try to fit to the data is in itself a
difficult problem. As [4J6] points out, there is some evidence to suggest that 2
tensors might be appropriate when an estimated single tensor is planar in form.
One measure of this oblateness is when the difference between the second and
the third largest eigenvalues of the tensor, i.e. Ay — A3, is large. Ultimately, the
choice of the parameter k depends on what’s being studied and we have not
considered how to choose it as a part of this work.

Other segmentation strategies based on the Q-ball profile are possible, such
as k-means clustering. This is potentially faster, but k-means clustering does not
in general guarantee optimality of the final segmentation, given its dependence
on an initial (often random) configuration. Since our current focus has been to
ensure a good segmentation rather than than a fast one, we have not considered
k-means clustering any further, but hope to do so in the future.

! DTI data was estimated from 30 DWIs at b = 700s/mm? and 5 non-DWI T2s, from
a 1.5 T Philips scanner, with resolution 0.94 x 0.94 x 2.5mm.
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