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Abstract. An automatic method for lung nodule segmentation from
computed tomography (CT) data is presented that is different from pre-
vious work in several respects. Firstly, it is supervised; it learns how to
obtain a reliable segmentation from examples in a training phase. Sec-
ondly, the method provides a soft, or probabilistic segmentation, thus
taking into account the uncertainty inherent in this segmentation task.
The method is trained and tested on a public data set of 23 nodules for
which soft labelings are available. The new method is shown to outper-
form a previously published conventional method. By merely changing
the training data, non-solid nodules can also be segmented.

1 Introduction

Lung cancer is by far the main cancer killer. Early detection of malignant nod-
ules from computed tomography scans and subsequent surgery, is considered one
of the most promising strategies to reduce lung cancer mortality. Only a small
fraction of nodules is cancerous and volume and growth rate of the lesions are the
main indicators of malignancy. Thus accurate segmentation of small pulmonary
nodules is of paramount clinical importance. Many academic groups and com-
panies have developed lung nodule segmentation schemes, see for example Refs.
[1,2,3,4,5,6,7] and [8] for a more extensive overview. Most of these approaches
are based on standard image processing techniques such as thresholding, region
growing, component labeling, ray shooting, mathematical morphology, etc. Many
are semi-automatic, requiring internal parameters to be tuned for every specific
case.

A major impediment for algorithm development and validation is the im-
possibility to obtain a ground truth for nodule segmentations in real clinical
data. Most algorithms have therefore been validated on phantom data, with
good results. But these phantoms do not capture the enormous variety of pul-
monary structures and scan artifacts encountered in real data. Our experience
with several commercial algorithms from various vendors is that they regularly
produce unsatisfactory segmentations, even on simple cases of isolated nodules.
Reproducibility studies have shown [9] that 95% limits of agreement for volume
measurements are around 20% for commercial software with manual interac-
tion by a radiologist. This limits the possibility to unequivocally demonstrate
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growth of nodules on short-term follow-up scans. Hence the problem of nodule
segmentation is still far from solved.

Recently the Lung Image Database Consortium (LIDC) [10], published a set
of 23 scans with manual nodule outlines. Analysis of this data, that is used in this
work, reveals that only 15% of voxels with probability for being nodule pi > 0
have pi = 1 and only an additional 18% has pi ≥ 0.9. This suggests that nodule
segmentation is not a hard classification task and that it is preferably to perform
probabilistic or soft segmentations, contrary to what published methods do.

In this work we propose a new method for probabilistic nodule segmentation
that takes the uncertainty about the voxel label explicitly into account. We use
the LIDC data for training, and employ statistical techniques to infer the prob-
ability that voxels in unseen data belong to a nodule. The method is completely
automatic if a seed point in the nodule is supplied, and can be applied to different
types of nodules by only changing the training data.

2 Materials

The LIDC data consists of 23 scans in which one nodule has been manually
segmented by 6 radiologists using manual tracing and two (unspecified) semi-
automatic algorithms, making for a total of 18 manual segmentations. Together
with CT data, soft segmentations are available, derived by averaging the 18 hard
segmentations. These soft segmentations are taken as truth in this work. Slice
thickness is 0.625 mm, in-plane resolution varies from 0.625 to 0.742 making for
nearly isotropic data. All volumes and length parameters in this work are given
in voxels. The variety among the nodules is large. They range from very small
to very large, from round and solid to spiculated, ill-defined and non-solid.

3 Method

The method assumes that we are supplied with a CT scan and a seed point in
the nodule to be segmented. The result is independent of the exact position of
the seed point as long as the seed is inside the nodule. As a pre-processing step,
the lung fields in the scan are segmented. This allows for correct segmentation
of nodules in contact with the chest wall. The data does not consist of complete
scans but only of sections around the nodule. Therefore a 2D lung field segmen-
tation algorithm was used, similar to the one described in [11] and based on
thresholding, component-labeling, rule-based selection of lung field components,
hole filling and smoothing the lung fields by a morphological closing operation
with a circular kernel. The results were satisfactory in all cases. All subsequent
analysis is performed on voxels within the lung fields only.

3.1 Region Regression

The core of the soft segmentation algorithm consists of a region growing process
starting from the supplied seed point. We used 6-connectivity. For every neighbor
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encountered during the growing process, the probability pi for it belonging to
the nodule is estimated using regression. All neighbors with pi > t are accepted.
We used t = 0.15 but slight changes to this value are not critical.

Regression is a general statistical technique to relate one or more predictor
variables (features, that form a feature vector that resides in feature space) to a
single response variable (output value, pi). The functional relationship between
the input and the output values is learned from examples and can then be used to
predict the output of a new, previously unseen feature vector. We experimented
with linear regression and two types of non-linear regression, k-nearest neighbor
regression (kNNR) and support vector machine regression.

Both nonlinear methods gave similar results, better than linear regression. As
kNNR was fastest and easiest to use, we report here results for this method only.
The number of neighbors k was set to 15 (again, this setting was not critical).
The average output of these neighbors is the output of kNNR.

3.2 Features

A proper choice of features is crucially important to obtain good performance.
Density of voxels is the most obvious feature to use, as most lung nodules have
tissue densities which distinguish them from the surrounding lung parenchyma.
To incorporate gray level information from a spatial neighborhood we used the
original density as well as five blurred versions of the volume (Gaussian blur-
ring with σ = 0.5, 1, 2, 4, 8) as features. To separate voxels on edges from those
in homogeneous regions in features space, we added the gradient magnitude,
computed with Gaussian derivatives at the same scales.

The main reason why simple region growing only produces good results in
the case of isolated nodules is that other structures with tissue density, mainly
vessels, are frequently in contact with the nodule. The remaining features aim to
distinguish nodule voxels from those in attached structures. Vessels are elongated
and a classic way to distinguish nodular from elongated structures is to examine
second order derivatives along principal directions. We computed the eigenvalues
of the Hessian matrix, sorted from large to small, again at scales σ = 0.5, 1, 2, 4, 8.
Another way to remove dense structures that have limited extent in any direction
(like vessels, or fissures) is by gray level openings. We performed a separable
gray level opening with a uniform kernel of 3 voxels length. This process was
repeated four times, yielding four feature values. Finally, we applied an algorithm
described as Iterative Morphological Filtering (IMF) in [2]. This is a sequence
of morphological operations aimed at removing small vessels that are in contact
with a nodule. First a volume of interest around the nodule is thresholded at
threshold T and stored as I. Next, a binary opening with a spherical kernel of
diameter D is applied to I and only the component connected to the seed point
in the nodule is retained. This result is iteratively dilated with a spherical kernel
of size D, D/2, D/4 and so on until D = 1. After every dilation, the result is
multiplied with I. With only the opening applied, the vessels are removed but
the shape of the nodule boundary changes substantially. The iterated dilation
and multiplication process restores as much as possible of the original nodule.
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We applied IMF with T = -550 HU and D = 11 voxels and used the result, as
well as five blurred versions (σ = 0.5, 1, 2, 4, 8) as feature volumes.

A set of feature vectors from voxels with known output pi is needed to train
the regression system. To sample a balanced learning set from the nodules and
their surroundings, 1000 voxels from every training case were randomly selected
for which pi > 0 and another 1000 were chosen among those with pi = 0 and
the distance to the closest voxel with pi > 0 below 10 voxels.

3.3 Nonsolid Nodules

For nonsolid nodules, IMF is not effective, not even with different settings of
T and D. Also the other features are very different for these nodules. Solid
nodules have fairly constant (low gradient) densities around 0 HU, while non-
solid nodules have fluctuating (high gradient) densities around -500 HU. Training
a regression system with predominantly solid nodules and applying it to non-solid
nodules is therefore bound to give poor results. We developed a simple algorithm
that inspects the density around the seed point, and decides if a nodule is solid
or non-solid. We then trained different regression systems for solid and non-solid
lesions. In the case of non-solid nodules, IMF features were not used.

3.4 Conventional Method

As reference method a published lung nodule segmentation algorithm [2] was
implemented, which we believe representative of most existing methods. This
method is based on the IMF algorithm. A volume of interest (VOI) around
the nodule and a seed point is required. The VOI is first supersampled to 0.25
mm isotropic voxel size using tri-linear interpolation. Next, the IMF algorithm
is applied. Finally, the VOI is subsampled to the original resolution by voxel
averaging. Note that in this way a soft segmentation is obtained, but voxels
with 0 < pi < 1 can only occur around the nodule boundary. We determined
T = −550 HU and D = 31 voxels (in the supersampled data) as best parameter
settings.

4 Experiments and Results

A soft or probabilistic segmentation s is a volume in which each voxel has a
probability 0 ≤ pi ≤ 1 for belonging to the object associated with it. To compute
object volume from s we use

SV (s) =
n∑

i=1

pi, (1)

where the summation runs over all voxels.
To compare two soft segmentations we define the soft overlap as

SO(s1, s2) =
n∑

i=1

min(p1i, p2i)
abs(p1i − p2i) + min(p1i, p2i)

. (2)
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This definition is a straightforward extension to the soft case of the common
definition of overlap for hard segmentations as intersection divided by union. It
is equal to 1 for complete agreement and has a minimum value of 0 for complete
disagreement.

Any soft segmentation s can be turned into a hard (binary) segmentation h
by thresholding at 0.5. SO(s, h) is a measure of the ‘softness’ of a segmentation,
it is the best possible soft overlap with a given s that could be obtained with a
hard segmentation.

We report the soft volume of each nodule and SO(s, h). The latter can be
compared to SO for both the new and the conventional method. We also report
the relative (soft) volume error RVE in % which is the relative difference (positive
for oversegmentation and negative for undersegmentation) in volume between the
true and the automatically determined soft volume.

As the number of nodules cases released by the LIDC is fairly small, all
experiments were carried out in a leave-one-out regime. That means that for
testing one case, all other cases are used for training. The number of non-solid
cases turned out to be three. So there are 19 cases available for training for every
solid nodule and only 2 for every non-solid nodule.

The results of the experiments are given in Table 1 and illustrated for a number
of cases in Figure 1. The overlap values are significantly higher for the proposed
method than for the conventional method which fails completely on all non-solid
nodules and on case 1 (attached fissure is included in the segmentation), and
case 3 (complex vascular attachment). For case 1 the new method provides an
excellent segmentation. Case 3 is the only large failure of the proposed method,
probably because there is no other case like this one available for training. Note
how both methods produce good results for a large solid, almost isolated nodule
(case 15) and even for a complex nodules such as case 10 (although the soft
volume obtained with the proposed method agrees much better with the truth
than the result of the conventional method). The overlap obtained with the
proposed method is in 17 cases higher than the maximum possible overlap of a
hard segmentation (columns SO(s, h) vs. SO in Table 1). The relative volume
errors are fairly large but the proposed method achieves an RVE < 15% in 14
cases.

5 Discussion

The results clearly demonstrate the possibility of obtaining a fairly reliable soft
nodule segmentation with a simple, voxel-wise methodology. The complete seg-
mentation requires in the order of 20 to 30 seconds, including computation of
feature images. There is ample room for improving the speed of the method. The
differences between the proposed method and the conventional method are in
many cases not big, which is understandable as the result of the IMF algorithm
was used as features for the regression method.

The results for non-solid nodules are encouraging, taking into account that
just two nodules were used for training the system in these cases. Using a
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Table 1. Experimental results for all 23 nodule cases. The last two columns show the
results of the conventional method. Non-solid nodules are indicated with an asterix.

case # SV SO(s, h) SO RVE SO [2] RVE [2]

1 772.2 0.74 0.89 3.7 0.28 253.7
2 215.3 0.65 0.80 9.4 0.67 37.8
3 121.3 0.59 0.13 586.0 0.10 842.0
4 243.9 0.64 0.68 0.4 0.49 88.0
5 307.2 0.61 0.80 -1.1 0.67 22.0
6 144.2 0.59 0.73 27.4 0.68 34.0
7∗ 347.0 0.63 0.52 -44.6 0.01 7456.6
8 251.3 0.64 0.79 10.0 0.70 27.7
9 1171.0 0.66 0.67 11.5 0.58 67.5
10 21653.3 0.72 0.78 7.7 0.68 34.4
11 150.4 0.56 0.65 20.4 0.63 43.1
12 385.1 0.55 0.70 25.9 0.59 7.6
13 67.7 0.56 0.47 -52.4 0.50 -45.7
14 138.3 0.59 0.77 -10.2 0.68 -5.4
15 8125.5 0.84 0.90 0.2 0.85 15.6
16 541.8 0.41 0.54 -39.7 0.37 -48.8
17 113.1 0.54 0.70 7.8 0.64 4.3
18∗ 912.4 0.53 0.29 6.9 0.04 1845.5
19 4472.6 0.55 0.51 -32.9 0.56 4.2
20 464.7 0.67 0.79 -9.5 0.71 29.8
21∗ 623.6 0.46 0.60 23.4 0.08 977.7
22 1515.9 0.69 0.74 4.4 0.64 40.7
23 19497.3 0.79 0.77 -9.1 0.78 15.8

mean 2705.9 0.62 0.66 23.7 0.52 510.8
std 5928.6 0.10 0.18 124.5 0.25 1577.7

larger training database is clearly a priority. Many of the current 23 cases are
unique and therefore not represented in the training data in a leave-one-out test
regime. There is no doubt that this has a detrimental effect on the segmentation
performance.

Obvious issues for further research are investigation of other feature sets, dif-
ferent regression schemes and the use of feature selection and extraction meth-
ods. More interesting is the extension to a method that employs a second region
regression based on features derived from the output of the first process. In
this way features that are more directly related to the shape of the resulting
segmentation can be defined.

In practice, the purpose of nodule segmentation is often growth rate deter-
mination. It has been observed [1] that volume errors in automatic segmen-
tation methods are not necessarily problematic for accurate growth rate esti-
mation as long as they are consistent. The current method should be tested
on more data to determine its reproducibility and accuracy in growth rate
determination.
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(a) (b) (c) (d)

Fig. 1. Segmentation result for various cases. (a) CT data, axial or coronal sections
zoomed in on the nodule with a lung window level, W/L = 1400/-600 HU. (b) Truth.
(c) Results of the proposed method. (d) Result of conventional method [2].

6 Conclusion

The manual outlines in the LIDC data set make a strong case for using soft
instead of hard segmentation schemes for pulmonary nodules. The proposed
method is fully automated, provides soft segmentations and learns from ex-
amples, contrary to existing approaches that use hard-coded rules, typically
require correct choices of internal parameters to achieve good results, and pro-
duce binary segmentations. Although the system is not extensively optimized
and trained with only a small number of cases, the obtained results are very
promising.
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