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Abstract. This paper presents an outlier immune 3D active shape models 
framework for robust volumetric segmentation of the carotid artery required for 
accurate plaque burden assessment. In the proposed technique, outlier handling 
is based on a shape metric that is invariant to scaling, rotation and translation by 
using the ratio of inter-landmark distances as a local shape dissimilarity meas-
ure. Tolerance intervals for each descriptor are calculated from the training 
samples and used to infer the validity of landmarks. The identified outliers are 
corrected prior to the model fitting using the ratios distributions and appearance 
information. To improve the feature point search, the method exploits the geo-
metrical knowledge from the outlier analysis at the previous iteration to weight 
the gray level appearance based fitness measure. A combined intensity-phase 
feature point search is also introduced which significantly limits the presence of 
outliers and improves the overall search accuracy. Both numerical and in vivo 
assessments of the method involving volumetric segmentation of the carotid ar-
tery have shown that the outlier handling technique is capable of handling a 
significant presence of outliers independently of the amplitudes.  

1   Introduction 

Atherosclerosis is central to the clinical sequelae of coronary heart, cerebrovascular 
and peripheral vascular disease. For the assessment of atherosclerosis, cardiovascular 
MR is emerging as an attractive tool clinically because of its ability in identifying 
arterial remodeling, as well as providing information on plaque composition in vivo. 
The technique, however, is susceptible to motion and blood flow artifact and consis-
tent plaque burden assessment involving the calculation of total vessel volume in 
response to therapeutic measures is a significant challenge. This is because small, 
progressive changes of the vessel volume over time require a high segmentation accu-
racy, and the traditional manual approach is subject to significant inter- and intra- 
operator variabilities. Most existing segmentation methods for the carotid artery  
segmentation [1-3] are semi-automatic and usually based on Active Contours. They 
require additional user interaction to correct for errors due to artifacts and the lack of 
a model to limit the segmentation results to valid instances. 

Recently, automatic segmentation based on statistical shape modeling has attracted 
significant interests for vessel segmentation because of its unique strengths in exploit-
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ing a priori knowledge about the geometry of known anatomical shapes. The Active 
Shape Models (ASMs) [4], for example, can capture spatio-temporal principal shape 
variations from a set of labeled examples based on a Point Distribution Model (PDM). 
The model is then fitted to unseen shapes in an iterative manner where the pose and 
shape parameters are estimated using a least squares minimization approach. The 
ASM, however, is known to be problematic in the presence of image artifacts as  
well as incomplete or complex image features. In this case, some of the landmarks 
generated at the feature point detection stage are erroneous as they lie on incorrect 
boundary positions. These outlying landmarks are known to affect considerably the 
segmentation accuracy using the ASM search. A number of modifications have been 
introduced [5-8] to limit the effects of the outliers on the ASM search, but their actual 
performance is compromised as the number and amplitude of the outliers increase, 
especially for volumetric segmentation.  

The purpose of this paper is to present a robust outlier handling method for volu-
metric segmentation with ASM [9]. The method detects and corrects the individual 
outliers prior to the estimation of the pose parameters by using an invariant shape 
metric based on the ratio of inter-landmark distances. Tolerance intervals are calcu-
lated at the training stage for each descriptor to detect invalid ratios, and thus the 
corresponding erroneous landmarks. Instead of rejecting the identified outliers or 
replacing them by the corresponding mean values, they are rectified by a combined 
use of the ratios distributions and appearance information. The geometrical knowl-
edge gathered from the outlier analysis is propagated to successive iterations for fea-
ture point detection. This increases the search accuracy and reduces the number of 
iterations needed for final convergence. We also present a combined intensity-phase 
based feature point search, which significantly limits the presence of outliers and 
improves the overall accuracy. The practical value of the technique is validated by 
using a newly developed combined intensity-phase data acquisition scheme of plaque 
burden assessment for carotid arteries. 

2   Methods 

2.1   Outlier Handling 

The ASM search involves in an iterative manner the detection of feature points [10] 
which are then fitted to the model by the estimation of pose and shape parameters. 
This is achieved using least squares minimizations which are known to be sensitive to 
extreme values. Thus, when outliers are present amongst the feature points, the ASM 
often introduce significant errors in the segmentation results. Without the correct 
estimation of the pose parameters, it is difficult to infer the presence of outliers due to 
residuals distribution introduced. Thus, the proposed outlier detection is based on a 
fully invariant shape descriptor using the ratio of interlandmark distances, which 
allows the decoupling of outlier analysis and ASM model fitting. This metric can be 
calculated for any triplet of points and represents the relative position of a landmark 
with regard to other points in the shape. An important property of this descriptor is its 
ability to perform as a geometrical measure of dissimilarity, which makes it ideal for 
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outlier detection. Each ratio ijkr  can be assumed to follow a Gaussian distribution and 
we use ijkr  and ijks  to represent the mean and standard deviation of the distribution. 
The idea behind the proposed method is that outliers have some of their associated 
ratios as extreme values. Thus, outlier detection is achieved by using tolerance analy-
sis [11], with which tolerance intervals are calculated for each ratio from the training 
samples by using the following equation: 

2 2. , .ijk ijk ijk ijk ijkT r k s r k s⎡ ⎤= − +⎢ ⎥⎣ ⎦  (2) 

where 2k  is the two-sided tolerance factor [9] representing the size of the interval. 
From each tolerance interval, a likelihood ratio measure rf  can be derived, i.e., 
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This measure is equal to 0 if the ratio is an extreme value but it does not indicate 
which of the three landmarks associated with the ratio is invalid. By summing all the 
ratio likelihood measures that a given landmark is associated with, however, the like-
lihood of the point being an inlier can be estimated: 
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where iK  is the number of ratios associated with the landmark iP . 
Based on the above likelihood measure, an iterative algorithm is used where one 

outlier is identified at each iteration. When no outliers are present, all the likelihood 
measures of the feature points will be close to 1. In the presence of outliers, however, 
the likelihood measures decrease from 1, and the amount of decrease is more signifi-
cant for the outliers. Thus, at each iteration, the landmark with the lowest likelihood 
measure is rejected and the likelihood measures of the remaining landmarks are up-
dated by subtracting the contribution of the rejected point. This procedure is repeated 
until the lowest likelihood measure is close to 1, which suggests that all the remaining 
landmarks are inliers. 

The derived inliers are then used to rectify the detected outliers by using a local 
search regime that maximizes the product of the p.d.f. of the associated ratios. This is 
equivalent to choosing the point that minimizes the following least-square function: 
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where d  corresponds to interlandmark distances. It should be noted that the correction 
suggested by Eq. (5) is only based on geometrical information and may not optimally 
correspond to local salient features. Therefore, a final local adjustment based on the 
gray level information is required. Subsequently, the residual distribution can be seen 
as Gaussian and the traditional ASM model fitting can be applied efficiently. 
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2.2   Improved Feature Point Detection 

In this paper, two strategies are introduced to improve the feature point search. The 
first approach is directly connected to the outlier handling method described above 
and uses the geometrical knowledge gathered from the outlier analysis at previous 
iteration to weight the intensity fitness measure gd  as follows: 

( ) ( ) ( )total j g j jf P d P w P= ⋅  (6) 

where the weights w  take values from 0 to 1 and are calculated by using the point 
likelihood measure in Eq. (4) for each candidate point. This enables regions around 
the true position of the landmark point to be heavily weighted to avoid potential out-
liers from being generated. More importantly, this approach makes the segmentation 
procedure more stable as only a small number of iterations are needed for final con-
vergence. 

To further improve the system accuracy, feature point search based on combined 
intensity-phase information is also introduced. In cardiovascular MR, the assessment 
of plaque burden is usually achieved with 3D Turbo Spin-Echo (TSE) sequences. To 
suppress blood flow artifacts, double inversion preparation on either side of the exci-
tation slab is introduced. Three-dimensional TSE techniques have the advantage of 
providing contiguous coverage and high SNR, but they can suffer from incomplete 
blood signal suppression in certain regions. However, it has been shown recently that 
by the introduction of velocity phase sensitivity to the sequence, it is possible to use 
the reconstructed phase images to separate blood signal from vessel wall boundaries 
[12]. This additional information can also be used for a more robust feature point 
search to further limit the presence of outliers. This is achieved by combining the gray 
level appearance with the phase information to construct a fitness measure for feature 
point search based on the phase profile ϕ : 

( )1 ,...,s h sϕ ϕ ϕ ϕ ϕ= − −  (7) 

where h  is the size of the profiles and sϕ  the stationary phase (usually equal to 0). 

Both the intensity and phase profiles are then normalized as follows:  

min

max min

ˆ i
i

g g
g

g g
−

=
−

 min

max min

ˆ i
i

ϕ ϕ
ϕ

ϕ ϕ
−

=
−

 (8) 

After normalization, the intensity and phase vectors are concatenated to form a com-
bined profile vector p . PCA is then applied to the combined profile vectors of the 
training set for each individual landmark to extract the mean profile and the principal 
modes of variation. The Mahalanobis distance is then used as in the original ASM 
formulation [10] to calculate the global fitness measure as follows: 

( ) ( )1
pp p S p p−− −  (9) 

Other strategies can also be used to combine appearance and phase information, such 
as the use of a kNN classification approach as proposed in [13]. 
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2.3   Experiments 

To assess the practical value of the algorithm, 25 carotid artery datasets were col-
lected. Subjects with carotid artery atherosclerosis, as shown by prior carotid Doppler 
ultrasonography, underwent two CMR scans. Both asymptomatic and symptomatic 
subjects were included. MR was performed using a 1.5T scanner (Sonata, Siemens, 
Erlangen Germany), a purpose-built two-element phased-array surface carotid coil 
and a specially designed head and neck cushion for immobilization. A 3D volume-
selective TSE sequence was used with a pixel size of 0.47mm2, slice thickness of 2 
mm. A velocity phase sensitivity of π/40 rad/cm/s was used to acquire the phase im-
ages. For each dataset, 20 slices around the bifurcation were selected as a region for 
measurement. Delineations by an expert were performed using 272 landmarks. The 
data sets used for training and evaluation were selected on a leave-one-out basis. To 
tackle the problem of over-fitting and also to take into account the topological and 
geometrical configuration of the carotid artery including the main, internal and exter-
nal branches, an ASM formulation similar to [14] was used such that points were 
grouped into segments at different cross sections of the branches. 

3   Results 

For a detailed assessment of the performance of the outlier handling algorithm in the 
presence of different levels of outliers, the following experiments were carried out by 
randomly adding synthetic outliers to the manual delineations using non-Gaussian 
noise. In a first experiment, the percentage of the outliers varied from 0 to 65% of  
the total number of landmarks while the amplitude was fixed to 50% of the average 
extent of the arteries. The average and standard deviation point to surface error in  
Fig. 1(a) demonstrate that the proposed method can handle up to 50 % of outliers. In a 
second experiment, the percentage of outliers was fixed to 25% while the maximum 
amplitude varied from 0 to 9.25mm. It can be seen from Fig. 1(b) that the perform-
ance of the method is independent of the extremity of the outliers. 

 

Fig. 1. Mean segmentation error of the traditional ASM and ASM with the proposed outlier 
handling (ASM+OH) in response to different percentage (a) and amplitude (b) of the outliers  
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Fig. 2. Segmentation errors for the outer wall boundary by using the original ASM, ASM with 
the combined intensity-phase fitness measure (ASM+Phase), and the latter method with outlier 
handling (ASM+Phase+OH) for the 25 datasets used in this study 

 

Fig. 3. 2D illustrations of the occurrence of the outliers (in crosses) due to blood flow artifacts 
present in the magnitude images and how the phase images at the right can be used for true 
boundary localization (in squares)  

For in vivo validation, the original ASM and the proposed framework were applied 
to the 25 carotid artery datasets. Fig. 2 shows the segmentation results for the outer 
wall boundary which is particularly prone to outliers. Firstly, it can be seen that the 
combined intensity-phase feature point detection is considerably more robust as the 
average error decreases from 0.33 ± 0.12 mm for the original ASM to 0.17 ± 0.03 mm 
when using the proposed feature point search (47.91 % improvement). However, 
some outliers are still present amongst the feature points and further improvement is 
achieved using the proposed outlier handling scheme to a final average of 0.11 ± 0.02 
mm. This corresponds to 63.28 % overall improvement of the original technique, 
which is significant for serial plaque burden assessment. Fig. 3 shows two examples 
taken at the bifurcation region, where outliers were generated by using the traditional 
intensity based fitness measure due to blood flow artifacts. It can be seen that the 
combined use of intensity and phase information is able to localize the correct bound-
ary position. For 3D detailed visual illustration, Fig. 4 shows two examples of the 
application of the outlier handling procedure, followed by a robust generation of a 
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plausible instance of the shape by the ASM. The accuracy of the proposed method for 
the luminal and vessel outer wall boundary as well as the volumetric results are sum-
marized in Table 1, demonstrating the achievable accuracy in a clinical setting. 

 

Fig. 4. Two 3D examples of the outlier handling algorithm, where the outliers (in black) are 
detected and corrected before the ASM model fitting procedure 

Table 1. Overall segmentation accuracy of the patient data for the proposed technique 

 Average 
Error 

Standard 
deviation 

Median  
Error 

Maximum 
error 

Luminal boundary (mm) 0.09  0.01  0.09  0.13  

Outer wall boundary (mm) 0.11  0.01  0.10  0.14  

Vessel wall volume (%) 3.19 2.43 2.13 8.64 

4   Conclusions 

In this paper, we have presented an outlier immune framework for volumetric seg-
mentation that is suitable for plaque burden assessment. The method is based on out-
lier detection and correction prior to the model fitting procedure of the ASM using an 
invariant shape representation. The main advantage over exiting outlier handling 
techniques is that the proposed algorithm is independent of the severity of the outliers, 
and is robust even when half of the landmarks are incorrectly positioned. Further-
more, the technique uses a geometrically weighted fitness measure for feature point 
search, which exploits the result of outlier analysis from successive iterations, thus 
preventing outliers from re-appearing at subsequent iterations. Another contribution 
of the paper is the introduction of a combined intensity-phase scheme for feature point 
search, which limits the presence of outliers and reduces the average error of bound-
ary localization significantly. The experimental results on CMR volumetric segmenta-
tion of the luminal and outer vessel boundaries of the carotid artery demonstrate the 
robustness of the algorithm and its potential clinical value.   
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