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Abstract. For quantitative C-arm fluoroscopy, we have developed a
unified mathematical framework to tackle the issues of intra-operative
calibration, pose estimation, correspondence and reconstruction, with-
out the use of optical/electromagnetic trackers or precision-made fiducial
fixtures. Our method uses randomly distributed unknown points in the
imaging volume, either naturally present or induced by randomly stick-
ing beads or other simple markers in the image pace. After these points
are segmented, a high dimensional non-linear optimization computes all
unknown parameters for calibration, C-arm pose, correspondence and
reconstruction. Preliminary phantom experiments indicate an average C-
arm tracking accuracy of 0.9° and a 3D reconstruction error of 0.8 mm,
with an 8° region of convergence for both the AP and lateral axes. The
method appears to be sufficiently accurate for many clinical applications,
and appealing since it works without any external instrumentation and
does not interfere with the workspace.

1 Introduction

C-arm fluoroscopy is ubiquitous in general surgery, interventional radiology, and
brachytherapy, due to its real-time nature, versatility, and low cost. At the same
time, quantitative fluoroscopy has not found a large scale clinical acceptance,
because of inherent technical difficulties involving intra-operative calibration of
model parameters, pose tracking, and target matching/reconstruction. While
these aspects have been studied extensively, a clinically extant solution appears
to be lacking. Advanced commercial and academic systems employ resident cal-
ibration structures [IJ2I3] and optical/electromagnetic trackers or calibrated ra-
diographic fiducials [4J56] to obtain the C-arm pose. The resulting equipage
tends to be prohibitively expensive and complex that often interferes with the
subject, image space, and clinical work-volume. While some procedures may be
more tolerant to these shortcomings, despite pressing clinical needs, quantitative
fluoroscopy is completely missing from brachytherapy, which is the motivating
application of our project.

It can be observed that point correspondence across images (without any
knowledge about their 3D locations) is a very strong constraint for pose esti-
mation, also referred to as bundle adjustment in computer vision [7]. In fact,
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six known correspondences across two X-ray images are sufficient to constrain
the relative C-arm pose. If eight or more correspondences are available, well
known linear methods exploiting the fundamental matriz can be applied [7],
while with five correspondences, a maximum of ten degenerate solutions are
possible. Thus, in general, five point correspondences across three X-ray im-
ages can recover the C-arm locations. Theoretically four correspondences have
been shown to be sufficient to recover the poses in general, barring a zero mea-
sure set of the configurations that can lead to multiple solutions [§]. Though,
these configurations are known to lie on certain special cubic curves (incld.
cases when three points project collinearly on any X-ray image), an intuitive
understanding of all these point constellations is not yet known. Moreover, it
should be noted that certain special point constellations can always be cre-
ated, such that they can never be resolved uniquely using any fixed number of
images.

In many applications, radioactive seeds, screw/needle ends, implanted surgi-
cal markers, special anatomy points etc. are naturally present in the images.
By enforcing the ”consistency” of these feature points across the images, one
can potentially solve for all unknown parameters of calibration, pose recovery,
matching, and reconstruction in one fell swoop, in one massive high-dimensional
non-linear optimization loop. In applications that do not have an adequate in-
formation in their images, one can place a few additional sticky beads or wire
markers randomly on any temporarily stationary part (for example on the pa-
tient skin or under the operating table), and then apply the same framework.
Thus the subject of this paper is a unified mathematical framework to solve
the problems of intra-operative calibration, pose tracking, and target match-
ing, and reconstruction without any sort of pre-fabricated external fiducials or
tracking instrumentation. In applications where there is no need for real-time
tracking of mobile surgical instruments, for example in prostate brachyther-
apy, the complete elimination of intra-operative tracking and calibration en-
tourage promises to lead to a wider clinical acceptance of quantitative 3D C-arm
fluoroscopy.

2 Methods and Materials

The three integral components of this problem, in decreasing order of complex-
ity are: (1) point correspondences; (2) C-arm pose; and (3) C-arm geometry
calibration. We assume that the points have been segmented from the X-ray
images. Though generic and extendible to any number of images, we currently
develop the framework for exactly three images. The reason for not using two
images is that they have reconstruction singularities, solved by introducing a
third image, which in turn makes the problem NP-Hard (i.e. no algorithm can
even verify the optimality of a given solution in polynomial time). The theoret-
ical complexity of four or more images is similar to that of three images. Thus
we propose a detailed solution for three images, which is easily extendible to
multiple images.
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2.1 Mathematical Framework

Let NV be the number of points chosen arbitrarily from the clinical work volume
and let N,,, be the number of points detected in images I,, with pose [R,,, Ty,]
and projection model M,,,. We do not assume that the 3D points are distinctly
visible in all the images, but are allowed to be hidden under one another. Though
this makes the correspondence problem significantly harder, it is a more realistic
representation of the clinical setting. Let s, be the position of I** point in m®*
image. When three images are used, the problem can be formulated as a large
optimization problem.
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Ciji is the the cost (described later) of matching point s;; to points sjo and
sk3. Note that it varies with any variation in R, 7, M. f; is a discrete variable
taking a value 1/0, and deciding the correctness of the match < 4,5,k >. The
inequalities force every segmented point to be chosen atleast once. Thus, f repre-
sents any feasible global match (and vice versa), with the cost of that correspon-
dence given by > > > Ciji fije. The problem hence is to compute R, 7, M, f
that minimize the total cost. It should be noted that since the images represent
a real situation, this optimization has a solution with a near-zero cost. The only
case in which a unique solution might not exist is when the information is not
sufficient, i.e. when the number of beads are less than 7 or when they lie in a
degenerate configuration.

Complezity: This is a non-linear optimization in N2 + 20 variables with 3N?
constraints. The pose and model parameter optimization is in a continuous 20 di-
mensional space (2x6 for each pose, 3x3 for each model, one less for scale), while
that for the correspondences is in a discrete combinatorial space. Note that we
assume pixel sizes to be constant and known. Even if the pose & model param-
eters are known, it can be shown that the combinatorial optimization reduces
to the minimum-weight tri-partite matching problem, known to be NP-Hard.
This severely ill-conditions the problem, necessitating methods to constrain the
problem adequately. It should be noted that though the global optima for two
image matching can be proved to have only a cubic complexity, in many cases
it suffers from singularities (Figure 2 (a)), forcing the use of a third image and
hence an exponential complexity.

3D Reconstruction: Though crucial, 3D reconstruction is not explicitly in-
corporated into the framework. By optimizing for the cost, we also indirectly
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compute the best reconstruction. Thus when the true pose parameters have
been computed, the correct 3D reconstruction will come out as a byproduct. In
the meanwhile, we shall only concern ourselves with the explicitly incorporated
pose, correspondence and calibration parameters.

C-arm Imaging Model: C-arm imaging is typically approximated as a 5-
parameter projection camera [IJ2I3/4] to be calibrated intra-operatively for each
individual image. Recently, however, it has been shown [9] that C-arm calibra-
tion might not always be necessary (Figure [I]), implying that any reasonable
calibration can be assumed for each image without actually calibrating at any
time. Note that we assume the imager pixel sizes to be fixed and known.

Construct flow network

Solve for min—cost flow|

Generate "complete’ seed—subsets|

Brute force matching

Fig. 1. Mis-calibration shifts all reconstructed objects, but keeps the relative pose
nearly constant (left). The flowchart for the correspondence algorithm (right).

The central intuition is that while an incorrect calibration gives erroneous es-
timates for the absolute transformations, nevertheless it still provides acceptable
relative estimates. Experimental results corroborate the theoretically derived
bounds in that mis-calibration by as much as 50 mm still allows for tracking
with an accuracy of 0.5 mm in translation and 0.5° in rotation, and such mis-
calibration does not impose any additional error on the reconstruction of small
objects [9]. Thus to condition the optimization in Equation () better, it it advis-
able not to solve for the imaging parameters using sparse data from the image,
but just use nominal values that may be known from a pre-calibration or the
manual/header. An alternate perspective is to notice that since reconstruction
errors change only negligibly with calibration errors, any attempt to calibrate
using a sparse point set (instead of a very accurate calibration fixture) will ill-
condition the problem by allowing for a whole space of feasible solutions. Thus
it is wiser to fix the value at a choice that is practically close to reality. Later, if
needed, the calibration can be further refined after the optimization converges.

Though we do not explicitly address the issue of distortion correction, ad-
vancements in intensifier tubes allow for lesser distortion and more recently the
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advent of flat panel detectors obviates this step altogether. Furthermore, many
application like brachytherapy, with their limited C-arm workspace, allow for a
constant pre-operative distortion correction.

Correspondence: Assuming known pose parameters, we converted the point
correspondence problem to a weighted tri-partite matching problem in Equa-
tion (), an NP-Hard combinatorial optimization problem. An attractive ap-
proximate solution using a network-flow-based combinatorial optimization has
recently been extended to efficiently deal with ”hidden seeds”, (i.e. points that
overlap in some images) in practically O(N?) times [10].

Sink
(T)

Set A Set B Set C Set A
Image 3 (Imagel) (Image2) (Image3) (Imagel)

Fig. 2. A third image is needed to resolve two-image singularities (left). The flow
network formulation used to solve the correspondence problem.

Sets A, B, C, and D, represent an image each. Links with a cost connect
every feasible match between any two images. A flow of value N originates at
the source S and ends at sink T. The problem reduces to computing a min-
cost flow, easily computed using the cycle cancelling algorithm (pushes negative
cycles until there are none left). A flowchart is illustrated in Figure[Il Since the
problem is NP-hard the network cannot completely constrain the same point in
both set A and D. Nevertheless, it works well, producing near perfect matchings.

Cost Metric: In general, any cost-metric that directly measures the deviation
from the observation should perform well. The metric should incorporate all the
available information, making the global minimum sharper and the algorithm
robust. One good choice for a metric is projection error (PE). For any given
set of poses and correspondence, the intersection of the three lines that join
each projection to its respective x-ray source can be computed using a closed
form solution that minimizes the Ly norm of the error. PE can be computed by
projecting this 3D point in each image and then measuring the distance between
the projected location and the observed location of the point.

2.2 Optimization Strategy

Due to the convolution of both continuous and discrete parameters, the opti-
mization in Equation () becomes ill-conditioned. Incorrect pose estimates will
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invoke incorrect correspondences, especially for dense point clouds. However, it
should be observed that incorrect pose estimates and the subsequent correspon-
dences invoked by it, are typically inconsistent. This is because, while it is true
that any given pose estimates invoke a correspondence, it is also true that any
given correspondence also invokes a unique pose where Equation ([J) will be min-
imized for that correspondence. Thus the desired minima will be such that the
current pose invokes a correspondence, and the correspondence in turn will also
invoke the same pose (with near zero cost). This order of stability we believe, will
exist only at the true unique global minima. We propose an iterative strategy
that exploits this observation, in spirit similar to a coordinate descent method.

Another observation to make is that given any generic estimate of the pose, the
correspondence is usually completely incorrect. Nevertheless, some other pose in
the vicinity can usually establish atleast a few correct correspondences (~ 10%).
This new pose estimate will behave like a local minima. We say behave because,
for any fixed pose estimate, computing f such that Equation (1) is minimized is
not a polynomial time computation (N'!?). Thus only a working algorithm can
be practically available. Even though our correspondence algorithm has been
experimentally shown to be over 98% accurate near the correct pose, its as-
sumptions start breaking down at incorrect estimates. Nevertheless, if we can
estimate these few correctly matched points and block the rest, we can quickly
converge to the correct answer. In the absence of any additional information, a
working strategy is that if a flow in the network originates at a vertex ¢ in set A
and also ends up at vertex ¢ in set D, then this flow is self-consistent. We choose
a subset of self-consistent points as matched points (typically the ones closer to
the average PE). These few points can now be easily used to update the pose
estimates, which in turn could provide a improvement in the correspondences at
a later stage. Thus the algorithm iteratively establishes the best possible corre-
spondences (keeping the pose relatively constant) and then uses a self-consistent
subset of points to refine the pose. As the iteration progresses, it can stop only at
a self-consistent parameter choice where the pose and correspondence perfectly
complement each other.

For very high density clouds, the optimization might require non-practical num-
ber of iterations to converge. Two main methods to constraint such cases are: (1)
establishing a good initial estimate using prior knowledge about the surgical pro-
tocol and workspace constraints. (2) in the absence of good initial estimates, a
couple of known correspondences can prove to be sufficient. These might be natu-
rally available or artificially induced. In any case, this might become a necessary
step since projective geometry can recover the 3D reconstruction only up to an
arbitrary scale. To recover the scale, information external to the image is required
(ex. length of an inserted screw), allowing for a few known correspondences.

3 Phantom Experiments and Results

A radiographic fiducial was used to track the C-arm (0.56 mm translation; 0.33°
rotation accuracy), and was accurately attached to a point cloud phantom as
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shown in Figure[3l The cloud phantom comprises of multiple slabs, thus capable
of multiple random point configurations. 100 points with 1.56 points/cc were
used. X-ray images within a 20° cone around the AP-axis were randomly taken
using an Philips Integris V3000 fluoroscope and dewarped. Thus both the seed
locations and X-ray pose were not biased/optimized in any way, closely repre-
senting an uncontrolled surgical scenario. Each image was hand segmented to
establish the true segmentation and correspondence. The true C-arm pose and
reconstruction was compared to that computed from the algorithm.

B

Fig. 3. An image of the point phantom attached to the fiducial (left). The phantom can
replicate many point configurations. A typical X-ray image of the combination (right).

We divided the experiments into three separate cloud sizes: sparse having an
average 3D point separation > 25 mm, medium having ~ 15 mm, while a high
density one being < 10 mm. These represent different types of surgical scenarios,
ranging from orthopedic to brachytherapy. We generated random clouds using
10 — 20,20 — 40 & 40 — 100 points. Region of convergence (ROC), accuracy of C-
arm tracking and reconstruction error (RE) are the three metrics used to evaluate
performance. Since the scale is not directly recoverable, only the rotation errors
are used to study errors in the pose. To study RE, the scale is established using
two points from the fiducial.

Figure @ plots the performance of the algorithm. Each data point is averaged
using 10 random runs of the initial estimate and the point cloud. When no
prior correspondences are available, the algorithm could have some difficulty in
converging reliably. Pose recovery accuracies vary with the number of available
points, the average being about 0.9°, while RE remains fairly stable at 0.8 mm.
The ROC for sparse and medium sized clouds is 8 — 10° (individually along both
AP and lateral axes), while it is about 6° for dense implants.

Runtime: The algorithm was implemented in Matlab 7 on a Windows PC
(3.2 GHz P4, 1GB RAM). The algorithm would typically converge in anywhere
between 3-7 total iterations, taking 2-7 minutes, depending on the point cloud
density and initial estimate. However, it should be noted that it spends about
50-70% of the time for file I/O (a Matlab constraint). Thus a C/C++ imple-
mentation is expected to run in 30s.



C-arm Tracking and Reconstruction Without an External Tracker 501

Alg. Performance for Small Clouds (no known corres.) Algorithm Performance for Small Clouds
6 3.5
+ Pose Recovery Accuracy (deg) s * Pose Recovery Accuracy (deg)
5 o 3D Reconstruction Error (mm)
X' Number of Failures .
25 X Number of Failuires
o 4 o
5 g
<] g 2
Es E
L 215
) )
a2 o
1
1 0.5
0 0
2 4 6 8 10 2 4 6 8 10
Error in Initial Pose (deg) Error in Initial Pose (deg)
(a) (b)
Algorithm Performance for Medium Clouds Algorithm Performance for Dense Clouds
8
5 7
+" Pose Recovery Accuracy (deg) o *_ Pose Recovery Accuracy (deg)
o4k 2 3D Reconstruction Error (mm) ® o' 3D Reconstruction Error (mm)
S | x Number of Failures ©5
S & x' Number of Failures
Es3 Ea
(=} o
t =
) S 3
a2 a
2
1
1
0 0

2 10 2

4 6 8 4 6 8
Error in Initial Pose (deg) Error in Initial Pose (deg)

(c) (d)

Fig. 4. The performance of the algorithm as a function of initial estimate. (a) is with
no known correspondences, while (b)-(d) are with a few known ones.

4 Conclusion

A unified framework for point correspondence, C-arm tracking and reconstruc-
tion has been proposed and experimentally validated on phantoms. The exper-
iments indicate an accuracy of 0.9° for tracking, 0.8 mm for 3D reconstruction
and a convergence region of 8° (each) in both the AP and lateral axis of rotation.
The framework does not need external fiducials for C-arm pose estimation and
is capable of using information naturally present in the X-ray images of a family
of clinical applications, such as prostate brachytherapy. In applications where
this information is not present, or a greater accuracy is desired, the framework
easily extends by randomly attaching beads around the patient. Our technique
does not compromise on the available clinical work volume. The framework can
also accommodate any available prior information on projection angles or corre-
spondences to constrain the optimization better, and thereby to achieve a higher
accuracy.

The main concern for the clinical use of methods relying heavily on high
dimensional optimization is that of providing uniformity and reliability in per-
formance. We have conducted our validation on randomly selected views and
number /distribution of the points, indicating the robustness of the algorithm to
these issues. Nevertheless, this is only a first step and further work to achieve bet-
ter uniformity in the results is desirable. Though the alternative of well designed
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calibration fixtures and image acquisition procedures are also available, they
become cumbersome in many procedures. Further development of the current
approach or even an amalgamation of the two approaches, could significantly
improve the current clinical viability of intra-operative quantitative fluoroscopy.
The development of a clinical prostate brachytherapy system to further vali-
date our approach is currently underway. Note that, even though the driving
application was prostate brachytherapy, the method also has potential in many
synergistic applications in orthopedics and angiography.
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