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Abstract. Modeling the deflection of flexible needles is an essential part
of needle insertion simulation and path planning. In this paper, three
models are compared in terms of accuracy in simulating the bending
of a prostate brachytherapy needle. The first two utilize the finite el-
ement method, one using geometric non-linearity and triangular plane
elements, the other using non-linear beam elements. The third model
uses angular springs to model cantilever deflection. The simulations are
compared with the experimental bent needle configurations. The models
are assessed in terms of geometric conformity using independently iden-
tified and pre-identified model parameters. The results show that the
angular spring model, which is also the simplest, simulates the needle
more accurately than the others.

1 Introduction

The insertion of needles into soft tissue is an essential part of many medical
interventions such as biopsy and brachytherapy. Due to tissue deformation and
needle bending during insertion, target displacement, and insufficient feedback
from medical imaging, reaching a target location with the needle requires sig-
nificant skill, training, and experience of the performing physician. Therefore,
physical simulators and path planning systems for needle insertion are areas of
need for accurate models of flexible needles.

Due to the complexity of interactions between needles and tissue, needle in-
sertion simulation cannot be accommodated using a combined mesh. Therefore,
two separate models for the tissue and the needle are usually employed [T1[21[3,4] .

Tissue deformation and target displacement during rigid needle insertion have
been studied in 2D [IL2]. Prior work on flexible needle simulation generally
assumed needle bending in 2D. DiMaio and Salcudean [2] simulated the needle
as an elastic material using the finite element method (FEM) with geometric non-
linearity. This method was extended to 3D using 4-node tetrahedral elements by
Goksel et al. [].

Webster et al. [3] identified a non-holonomic model for a highly flexible needle
to simulate the effect of bevel tip on needle motion in tissue. The assumption
of high flexibility is unfortunately not valid for many conventional needles such
as the ones used for epidural blocks and prostate brachytherapy. This model
was later used in [BL[6] for path planning of a needle in 2D tissue. Glozman
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and Shoham [7] used linear beam elements to simulate needle bending for nee-
dle steering. This approach is relatively simple and fast but the elements are
not rotation invariant and do not preserve needle length during large deforma-
tions. Friction and cutting forces on the needle during insertion have also been
studied [8,9].

Because they are easy to simulate, angular springs have been widely used in
cloth and hair modeling [I0] and 3D modeling of vibration and deformation [11] .
Most of these contributions used complex dynamic models in 3D with various
approximations to angular spring behavior (i.e. linear or quadratic). This pa-
per focuses on the physical validity and the modeling accuracy of this method
for static deformations of thin rods, and specifically for the deformation of a
brachytherapy needle. Different models are assessed in terms of modeling accu-
racy. The model simulation results are compared with the experimental data.
Although the models in this paper are described and validated only in 2D and
with a single tip force, they can be easily extended to 3D with multiple forces
along the needle. The following section introduces the three different models
studied.

2 Methods

2.1 Finite Element Method Using Triangular Elements

The finite element method with triangular elements can be used to predict nee-
dle bending. If the needle elastic material is assumed to be linear (mechanical
linearity), the linear geometry assumption leads to a set of linear algebraic equa-
tions between nodal forces and displacements. While linearity can be exploited
for real time implementation, the linear geometry assumption is not valid for
needle deformation, due to large rotations and displacements [2].

Using the non-linear geometric relation between strain and displacement leads
to a set of non-linear algebraic equations

f=K(u)u (1)

where u and f are the vectors of nodal displacements and forces, respectively.
This non-linear formula can compensate for axial displacements and preserves
the needle length during large lateral deformations. Although computationally
expensive compared to the solution of the linear model, the Newton-Raphson
method [I2] can be employed to solve the set of non-linear algebraic equations
in (). Simulations show that this method is stable and converges in a few
iterations. However, offline computations and condensation cannot be used.

2.2 Finite Element Method Using Non-linear Beam Elements

Another choice of element suitable for needle modeling is the Euler-Bernoulli
beam element, which employs linear and cubic interpolation functions for the
axial displacement u and the transverse displacement w, respectively. The nodal
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variables at node p are the longitudinal displacement u?, the transverse deflection

s and its derivative sb, such that s = w and sb = —dw/dx . Considering non-
linear geometry, the equilibrium equation can be written as [12]:
11 12
g el | [ =[] @)
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where f | is the vector of axial forces and f , 1s the vector of lateral forces and

torques on the nodes. K% is a function of the material and geometric properties
of the beam and the nodal displacements and rotations. This non-linear set of
equations can be easily solved using the Picard iterative method [12]. Reduced
integration should be used in integrating the stiffness matrix in () to avoid
membrane locking in the element due to large deformations [12].

The linear geometry assumption yields the linear beam element formulation,
which separates displacements in axial and transverse directions. This model ap-
proximates the transverse deflections with a simple third order curve. Although
the linear beam element stiffness matrix is constant and makes offline computa-
tion possible, it cannot preserve the needle length during deformation.

2.3 Angular Spring Model

This method models the cantilever using a number of rigid rods connected via
rotational springs (see Fig.[I(right)). Consider a short section of length L of a
bent cantilever under a constant bending moment M (all in 2D). Fig.[Ii(left)
shows the neutral axis of the bent cantilever and its bending radius p. Let ¢ be
the distance of the neutral axis from the outer fibre. From similar triangles we
obtain the following;:

L+6:p+c:>6:c 3)

L P L p

Substituting (@) in the definition of outer fibre strain and using the fact that

L = 0p leads to:
(5__Mc:>1_M_9 (@)
LT EI T )T EIT L
where F is the stiffness and I is the moment of inertia. With respect to the initial
unbent orientation, the angle o of deflection caused by the bent section being

Fig. 1. A short section of a bent cantilever (left), and (right) The angular spring model
for a needle
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analyzed is equal to 6. Thus, using (@) the linear relation between the bending
moment and the deflection angle is written as M = ka where k = 2EI/L.
While the definition of £ obtained for an infinitesimal length may not hold for
the discretized model described next, continuum analysis leads to an expected
linear relation between M and a.

The angular spring model is composed of line segments connected via springs.
In a model with n + 1 segments the equation between forces and joint angles is:

fi ai
[J1 () | I3 (ar,a2) | -+ [Ty (@, san)] | 0 | =K | ()
fn Qn

where «; are the joint angles, JI is the transposed conventional serial link Ja-
cobian matrix up to link ¢, f; is the nodal force on the node (i + 1) and K is a
diagonal matrix of spring constants. Since the material is the same throughout
the shaft, all springs are assigned the same constant. Despite their non-linearity,
these equations can be solved iteratively by fast and simple forward vector-
algebraic equations. If the needle is in a posture with values (aq, - -, ay,) at the
t*h iteration, the next values for the angles are:

ol = 37 M/ (6)

Jj2i

where ij is the torque applied by force f; on joint ¢ in t*™ jteration. The
procedure converges fast, typically in 2 to 5 iterations.

3 Experiment and Simulations

In order to compare the models with the actual needle bending, an 18 gauge
20 cm brachytherapy needle (Bard, NJ, USA), consisting of a steel stylet sliding
inside a steel cannula, was used in an experiment. For simplicity the needle is
modeled as a simple bar with a single unknown parameter that is identified by
fitting the model to experimental data acquired by bending the needle with a
force at the tip. The Young’s modulus for the finite element model and the spring
constant for the angular spring model are the unknown model parameters to be
identified. Since this simplified model represents the combination of the cannula
and stylet, the identified Young’s moduli are not equal to the Young’s modulus
of steel and the identified spring constants do not satisfy the definition of k in
Section 2.3.

To identify the model parameters, two cost functions of the lateral tip position
error and the area error between the models and the real needle were minimized
independently. The former is the vertical difference between the simulated and
the experimental tip position. The latter is the integral area lying between the
simulated and the experimental needle shafts. The identified parameters were
used in the model to simulate the bending of the needle.
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Fig. 2. Left: Needle shaft with the scales hanging at the tip. Right: Discretized needle
using a 11x2 nodes mesh.

Table 1. Tip deflection for various lateral tip forces

Force [mN] 63 113 163 213 263 313 413
Deflection [mm] 8.3 14.5 20.9 27.0 33.0 39.0 50.2

The brachytherapy needle was horizontally clamped at its base while a vertical
force was applied on its tip. The clamp decreased the effective needle length to
18.7 cm. Different vertical tip forces were achieved by hanging different scaling
weights of 5, 10, 15, 20, 25, 30, and 40g on a tiny hook at the tip (see Fig.[2l).
The stage setup used for hanging weighted 1.3g. The vertical needle tip force
was varied between 63 mN and 413 mN. Images of the needle were taken on a
white background with a digital camera, the shutter of which was controlled
by computer. The tip deflection from nominal axis is given in Table[l] for each
applied force.

For FEM with triangular elements, meshes of 11x2 and 21 x2 nodes were used
to discretize the needle as shown in Fig.2l. Plain stress analysis was performed
with a thickness of 0.9 mm, and taking the Poisson’s ratio as 0.3, equal to the
Poisson’s ratio of steel. The Young’s modulus was identified to fit this model to
the experimental data. Similarly, 10 and 20 segment models were used for both
the non-linear beam element and the angular spring models. The differences
between identified parameters from two different optimization cost functions
were less than 2% . Therefore, throughout the rest of this paper we are referring
to the values that were identified using the lateral tip-error minimization.

In the triangular FEM and the beam models, the mean values of the identified
Young’s moduli for different forces were used for simulation and verification.
For the triangular element model, this mean value increased with the number
of segments. Since the strain is assumed to be constant inside this element a
lower Young’s modulus (softer material) is needed to yield the same amount of
deformation when fewer elements are used. The identified Young’s moduli for
the non-linear beam element model were constant for any number of elements.

Using the angular spring model, the mean value of the spring constants in-
creased with the change in the number of segments from 10 to 20 and 50 as
expected. Normalizing these values with segment length did not show a con-
stant number. In this model the spring constants were identified directly and
then used in the simulation phase.
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(a) Triangular element with 21 X 2 nodes.
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(b) The non-linear beam element with 20 segments.
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(¢) Angular spring model with 20 segments.

Fig. 3. The experimental data (circles connected with dashed lines) and the simulated
needle (solid lines) using the mean value of identified parameters

In the next step, the needle bending was simulated for a range of tip loads
using the mean value of the identified parameters. The identified parameters for
all the models did not deviate from their mean values by more than 4%. Figure
shows the simulated and the real needle configuration for the three models.
For each simulation a tip and an area error are reported in Fig.[l

4 Discussion

Comparing the two FEM based models, the triangular element model has a
slightly higher accuracy than the non-linear beam model. However, the tip posi-
tion error is less than the needle diameter in most cases. Although the elements
of both models have 6 degrees of freedom, modeling a rod using triangular el-
ements requires more elements than in the beam element approach. This leads
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Fig. 4. Comparison of (Left) lateral tip position and (Right) area errors of different
models with 10 and 20 segments using the mean value of parameters

to larger matrices. For example modeling a needle using a mesh of n x 2 nodes
using triangular elements leads to a 4n x 4n tangent stiffness matrix while using
n nodes as beam elements leads to a 3n x 3n one. In addition, the fact that
the beam model results are not changing with the number of nodes can be uti-
lized for adaptive meshing in needle insertion simulation to achieve higher speed
without loss of accuracy. In adaptive meshing an element is added as the needle
penetrates the tissue and makes contact with more tissue mesh nodes [7].

Extension of the non-linear beam model to 3D is straightforward. Assuming
that the axial moments and bending are negligible, each element in 3D has 5
degrees of freedom leading to a 10 x 10 tangent stiffness matrix that can be
computed as in the 2D case.

Extension of the triangular element model to 3D leads to tetrahedral elements
with 12 x 12 tangent stiffness matrices. Meshes used in this paper for the trian-
gular element models are asymmetric. For more accurate simulations, symmetric
meshes should be used which require more elements and proper design [4]. In
contrast to this, the non-linear beam and angular spring models are always sym-
metric. Therefore, using triangular or tetrahedral symmetric models in 2D or
3D requires a significantly higher number of elements and is computationally
more demanding than modeling the needle with non-linear beam elements or
with angular spring models.

Of the three models considered, the angular spring model gives the most
accurate results, as shown in Fig.@. It is also computationally more efficient.
Extension to 3D is straightforward as presented for hair models in [I0] .

While not considered explicitly in this paper, the effect of tissue forces that
are distributed along the needle, not only at the tip, can be modeled in a similar
manner, for both the planar and 3D cases.

5 Conclusion

Three different models for simulating the flexibility of a brachytherapy needle
have been demonstrated in 2D. An experimental setup was designed to verify the
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models. Model parameters (Young’s moduli and spring constants) were identified
using the collected data and their mean values were used to simulate needle
bending arising from vertical needle tip forces. The fit of the simulations to the
experiments was reported in terms of tip error and mismatching area error.

Based on the results one can conclude that the angular spring model is the
easiest to implement, the fastest to compute and the most accurate in simulating
needle flexibility in 2D.

In the future, the needle bending models will be validated in 3D using the
ultrasound images exploiting the methods introduced in [13] .
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