
Nonrigid 3D Brain Registration Using
Intensity/Feature Information

Christine DeLorenzo1, Xenophon Papademetris1,2, Kun Wu3,
Kenneth P. Vives3, Dennis Spencer3, and James S. Duncan1,2

1 Departments of Electrical Engineering,
2 Diagnostic Radiology, and

3 Neurosurgery, Yale University, P.O. Box 208042
New Haven CT 06520-8042, USA

{christine.delorenzo, xenophon.papademetris, kun.wu,
kenneth.vives, dennis.spencer, james.duncan}@yale.edu

Abstract. The brain deforms non-rigidly during neurosurgery, prevent-
ing preoperatively acquired images from accurately depicting the
intraoperative brain. If the deformed brain surface can be detected,
biomechanical models can be applied to calculate the resulting volu-
metric deformation. The reliability of this volumetric calculation is de-
pendent on the accuracy of the surface detection. This work presents
a surface tracking algorithm which relies on Bayesian analysis to track
cortical surface movement. The inputs to the model are 3D preoperative
brain images and intraoperative stereo camera images. The addition of a
camera calibration optimization term creates a more robust model, capa-
ble of tracking the cortical surface in the presence of camera calibration
error.

1 Introduction

The use of Surgical Navigation Systems (SNS) has greatly aided neurosurgi-
cal procedures. These systems provide real-time visualization of surgical tool
positions relative to preoperative patient brain images, allowing surgeons to lo-
cate pathologic structures and other surgical targets. As SNS use becomes more
prevalent in varied surgical procedures, the accuracy and reliability of these sys-
tems must be demonstrated. Soft tissue movement due to gravity, loss of blood
and cerebrospinal fluid (CSF), and the action of certain medications can lead
to misalignment between preoperative brain scans and the intraoperative brain
[4, 9]. Therefore, accounting for this brain shift is necessary to realize the effec-
tiveness of these navigation systems and to allow surgeons to confidently excise
tissue, especially near functionally eloquent areas.

Volumetric images revealing the location and amount of brain shift can be
taken intraoperatively. However, surgical constraints limit both the time per
acquisition as well as prevent multi-modality imaging and use of certain modali-
ties such as functional magnetic resonance imaging (fMRI) and positron emission
tomography (PET). The effect of these restrictions is decreased spatial resolu-
tion, lower contrast and the loss of meaningful information [14, 15]. Additionally,
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intraoperative magnetic resonance imaging (iMRI) and computed tomography
(iCT) are prohibitively expensive [15] for most hospitals.

Since the multitude of factors affecting brain shift, coupled with patient vari-
ability, make it impossible to predict brain shift a priori, it becomes necessary
to characterize brain movement using sparse intraoperative data to update the
rich preoperative information. Warfield et al. [3, 14] warped preoperative images
containing projected atlas information through the use of surface data acquired
by iMRI and a volumetric biomechanical model. Their study focused on the vi-
sualization of the corticospinal tract, which is not observable with conventional
MRI, and indicated visually appealing results can be obtained in real time. Sev-
eral groups use commercially available laser range scanners (LRS) to detect the
cortical surface. Registration can then be performed between the acquired depth
maps. Audette et al. [1] used a non-rigid iterative closest point (ICP) algorithm
for this registration in which the initial alignment must be done manually. This
work did not take advantage of any surface features such as blood vessels or
sulci. In [10], the LRS acquired both a range and texture map, allowing the
non-rigid registration to be performed in the 2D texture space, which uniquely
corresponds to a depth map.

Nakajima et al. [7] used cortical surface vessels for registration of 2D intraop-
erative images with 3D postcontrast MRI images. Cortical vessels were chosen
as landmarks due to their similarity with sulcal and gyral patterns and ease of
identification in phase contrast MRI. Sun et. al [12] also used cortical surface
vessels to guide surface registration in a phantom study. Vessels were simulated
by metal wires and imaged using CT. Intraoperative surface information was
acquired using a single charge-coupled device (ccd) camera mounted on an oper-
ating microscope. To perform stereo reconstructions of the surface, two images
were acquired at different microscope positions, which were tracked optically.
Sun et al. [13] later replaced this with a stereo camera mounted microscope.
S̆krinjar [11] et al. used a similar stereo camera setup. His work combined the
model deformation and stereo reconstruction. However, neither study used fea-
ture matching with the stereo reconstruction.

This work extends that of previous authors by performing both intensity and
feature based nonrigid registration of cortical brain surface using a stereo cam-
era setup. Since the reliability of a system based on cameras is highly depen-
dent on the accuracy of the camera calibration, this work seeks to correct for
any calibration inaccuracies and update the calibration matrices with the sur-
face deformation calculation. This framework is both convenient and versatile.
(Digital cameras are either present or can easily be transported to the operating
room.) By using sulcal grooves and not cortical vessels as features, this algorithm
does not require patients to ingest contrast or endure more than the standard
preoperative imaging. And, it takes full advantage of the feature information
to improve the deformation prediction while also correcting for any calibration
inaccuracies, which would limit the reliability of the result. In this way, many of
the advantages of the above-proposed models are captured in one algorithm.
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2 Method

A surface detection algorithm which calculates the most likely intraoperative
brain surface deformation using Bayesian analysis was outlined in [2]. This work
developed a model predicting the dense displacement field of the cortical surface,
given intraoperative images and surface feature locations. This displacement
field, Ûdense, was found to be:

Ûdense = arg max
Udense

p(Udense|I,K, C, SU ,A) (1)

where Udense is a possible dense displacement field. A = [A0, A1], where A0, A1
are the camera calibration matrices acquired by the left (0) and right (1) cam-
eras. I = [I0, I1], where I0, I1 are the intraoperative images acquired by the left
(0) and right (1) cameras. K = [K0, K1], where K0, K1 are matrices in which
each column is the vector representation of a 2D sulcal groove traced by an
expert user from images I0 and I1, respectively. C is a matrix in which each col-
umn is the vector representation of a 3D preoperative sulcus position, and SU

is the original (preoperative) cortical surface, extracted from the preoperative
MRI.

This method yielded surface deformation predictions with submillimeter mean
accuracy both in simulation and phantom experiments. The camera calibration
matrices were critical for taking advantage of both the surface intensities, as
acquired from the stereo cameras, and the feature alignment, which requires a
projection from 3D space to the image plane. However, ideal calibrations are
not feasible in many real world situations [6], especially in a busy operating
room where time is of the essence. Therefore, we propose updating the camera
calibration calculation in the region of interest using the extra scene information
obtained from cortical feature information obtained during neurosurgery.

The updated model can be written as follows:

(Ûdense, Â) = arg max
Udense,A

p(Udense,A|I,K, C, SU ) (2)

Equation (2) can be solved using an iterative scheme that updates both the
camera calibration and the dense displacement field calculation at every itera-
tion.

Ûk
dense = arg max

Udense

p(Udense|I,K, C, SU ,Ak−1) (3)

Â
k

= argmax
A

p(A|I,K, C, SU , Udense
k−1) (4)

where k is the iteration number.
Maximizing the expressions in equations (3) and (4) is equivalent to maximiz-

ing the log of the posterior probabilities. The expansion of equation (3) can be
found in [2].
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2.1 Camera Calibration Optimization

Looking at equation (4), the most likely camera calibration, Â, will best match
3D cortical surface points to their corresponding 2D image locations. The im-
aged sulci provide accurate feature information from which correspondence can
be reliably determined. Since the brain deformation is small relative to the brain
volume, the sulcal positions should not vary greatly between frames. Because of
this, the projection of sulci from the 3D preoperative brain surface, C, should
be in close proximity to the intraoperatively imaged sulci, K. Using this infor-
mation and further simplification, the determination of Â

k
can be reduced to

the maximum argument over A of:

log [p(A|K, C, Udense
k−1)] (5)

Assuming independence of the stereo cameras, equation (5) can be written as:

log [p(A0|K0, C, Udense
k−1)] + log [p(A1|K1, C, Udense

k−1)] (6)

To solve equation (6), it is assumed that the camera calibration matrices from
the the previous iteration are known. For iteration k = 1, the k-1 calibration ma-
trices are the initial matrices obtained from calibration procedure described in
[2]. According to [5], assuming the measurement error in calculating the calibra-
tion matrices is Gaussian, the reconstruction error will be Gaussian. Therefore,
equation (6) reduces to:

log [p(A|K, C, Udense
k−1)] = −η0,1

∫
d[K0,1 − (A0,1 · (C + UC

dense)]dS (7)

where d is a distance metric, UC
dense represents the deformation field restricted

to the sulci, and η0,1 are constants.
Whereas the search for the displacement field can take advantage of the image

intensities, it would be difficult to incorporate these intensities into a search for
the optimum camera calibration matrix. This is why the use of features is critical
to this process.

2.2 Data Acquisition

Noncontrast preoperative MRI images were obtained on a 1.5 T MR scanner. The
preoperative cortical surface was extracted and 3D sulci positions were located
manually. The camera calibration was performed using the method outlined in
[2]. Images (1024 x 768) were acquired from a mounted ccd camera in the OR,
which could be repositioned by the surgeon. For validation purposes, the 3D
locations of various points on the exposed cortical surface were selected with
a BrainLAB pointer tool (BrainLAB AG, Heimstetten, Germany), and saved
using the Vector Vision Cranial software [2, 8].
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Fig. 1. The left image depicts the extracted 3D brain surface. The craniotomy was
performed in the highlighted section. The right image shows initial (dark spheres)
and final (light spheres) brain surface positions as acquired in the OR for algorithm
validation. The hardware and software required for point acquisition are explained
in [8].

3 Results

Seven patients undergoing stage I epilepsy surgery, in which intracranial elec-
trodes are inserted to monitor the patient during and between seizures, were
chosen for brain shift tracking. Though the craniotomies varied in position, the
size of the skull opening, as well as the surgical time, were similar across all
patients. One sample case is explored below.

Figure 1 shows the extracted preoperative brain surface and the 3D point lo-
cations selected during surgery for validation. The 3D manually-selected preop-
erative sulcal locations, smoothed extracted surface and intraoperative pictures
with outlined sulci (Figure 2) were inputs to the surface detection algorithm. The
algorithm took 23.5 minutes to run on a 3 GHz Pentium 4 computer. As seen
qualitatively in Figure 3, the algorithm closely predicts the deformed cortical
surface position. The coloring on the 3D patches represents greylevel intensi-
ties projected on the surface from one of the intraoperative images. Due to the
misalignment caused by the soft tissue deformation, most of the initial surface
patch is not in the camera view. However, the actual and predicted surface
show the correct intensities, reflecting their accurate location relative to the OR
camera.

The mean reconstruction error was 1.01 mm when the calibration optimization
was used. As can be seen in Table 1, without the camera calibration correction,
the surface matching result is much worse. This makes intuitive sense because
calibration accuracy determines the effectiveness of both the image intensities
and the projected feature information. In this case, the optimized calibration
matrices were less than 2% different from the initial matrices. This small differ-
ence, which could have been the result of fitting error or slight camera movement,
created a significant difference in the algorithm result.
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Table 1. Surface Deformation Tracking Results. The actual surface displacement was
measured by the BrainLAB VV Cranial software and compared to the displacement
predicted by the algorithm, with and without camera calibration optimization. When
the camera calibration matrices are inaccurate, the intensity and feature information
cannot be reliably used to track the surface.

mean (mm) max (mm) std (mm)
surface displacement 7.49 8.38 0.61
algorithm error, no calibration correction 6.80 11.01 1.98
algorithm error, calibration correction 1.01 1.97 0.60

Fig. 2. Stereo camera intraoperative images acquired approximately three hours after
surgery began. The sulci used as the feature information are outlined.

4 Discussion

During neurosurgery, it is essential to accurately locate pathologic structures
within the brain. Due to the similarity in appearance between these pathologic
regions and healthy tissue, neurosurgeons often rely on SNS, though these sys-
tems cannot currently compensate for intraoperative brain shift. Biomechanical
models can be used to predict this nonrigid brain shift, if driven by accurate in-
traoperative information, such as cortical surface deformation. This work made
use of a stereo camera setup to track this cortical surface displacement. Future
model refinement will focus on application of the model to a greater number of
surgical cases, updating model parameters for optimum accuracy, as well as us-
ing the acquired surface results with biomechanical models to track the volume
deformation.

Though it has been previously shown that intraoperative images can be used
to drive surface tracking models, the results have always been susceptible to
camera calibration error. This is especially true in patient studies in which OR
time, and therefore camera calibration time, is limited. As seen in the above test
case, the surface tracking algorithm would have failed without the calibration
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Fig. 3. The color of the surfaces patches was found by backprojecting the image inten-
sities to the surface using the camera calibration matrices. The cortical surface sinks
during surgery from its initial position, out of the intraoperative camera view, to the
deformed position. The surface tracking algorithm takes advantage of both the image
intensities and the feature information to closely determine the final cortical position.

optimization, though the calibration matrices were within two percent of their
correct values. The addition of the camera calibration optimization term, how-
ever, yielded significantly better results. The combined algorithm predicted the
surface displacement with an error less than, or within the range of, previously
published surface deformation studies [3, 10, 13]. This work shows that by taking
advantage of the cortical feature information, the surface displacement can be
tracked in the presence of calibration inaccuracies.
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