
Discretionary Capability Confinement

Philip W.L. Fong

Department of Computer Science, University of Regina, Regina, SK, Canada
pwlfong@cs.uregina.ca

Abstract. Motivated by the need of application-level access control in
dynamically extensible systems, this work proposes a static annotation
system for modeling capabilities in a Java-like programming language.
Unlike previous language-based capability systems, the proposed anno-
tation system can provably enforce capability confinement. This confine-
ment guarantee is leveraged to model a strong form of separation of duty
known as hereditary mutual suspicion. The annotation system has been
fully implemented in a standard Java Virtual Machine.

1 Introduction

Dynamic extensibility is a popular architectural feature of networked or dis-
tributed software systems [1]. In such systems, code units originating from po-
tentially untrusted origins can be linked dynamically into the core system in
order to augment its feature set. The protection infrastructure of a dynamically
extensible system is often language based [2]. Previous work on language-based
access control largely focuses on infrastructure protection via various forms of
history-based access control [3,4,5,6,7,8,9]. The security posture of infrastruc-
ture protection tends to divide run-time principals into a trusted “kernel” vs
untrusted “extensions”, and focuses on controlling the access of kernel resources
by extension code. This security posture does not adequately address the need
of application-level security , that is, the imposition of collaboration proto-
cols among peer code units, and the enforcement of access control over resources
that are defined and shared by these code units. This paper reports an effort to
address this limitation through a language-based capability system.

The notion of capabilities [10,11] is a classical access control mechanism for
supporting secure cooperation of mutually suspicious code units [12]. A capabil-
ity is an unforgeable pair comprised of an object reference plus a set of access
rights that can be exercised through the reference. In a capability system, pos-
session of a capability is the necessary and sufficient condition for exercising the
specified rights on the named object. This inherent symmetry makes capability
systems a natural protection mechanism for enforcing application-level security.

Previous approaches to implement language-based capability systems involve
the employment of either the proxy design pattern [13] or load-time binary
rewriting [14] to achieve the effect of interposition. Although these “dynamic”
approaches are versatile enough to support capability revocation , they are not
without blemish. Leaving performance issues aside, a common critique [13,15]

D. Gollmann, J. Meier, and A. Sabelfeld (Eds.): ESORICS 2006, LNCS 4189, pp. 127–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 P.W.L. Fong

is that an unmodified capability model fails to address the need of capability
confinement : once a capability is granted to a receiver, there is no way to
prevent further propagation.

An alternative approach is to embed the notion of capabilities into a static
type system [16]. In a capability type system [17,18], every object reference
is statically assigned a capability type, which imposes on the object reference
a set of operational restrictions that constrains the way the underlying object
may be accessed. When a code unit delegates a resource to an untrusted peer,
it may do so by passing to the peer a resource reference that has been statically
typed by a capability type, thereby exposing to the peer only a limited view of
the resource.

The class hierarchy of a Java-like programming language [19,20] provides non-
intrusive building blocks for capability types. Specifically, one may exploit ab-
stract types (i.e., abstract classes or interfaces in Java) as capability types. An
abstract type exposes only a limited subset of the functionalities provided by the
underlying object, and thus an object reference with an abstract type can be
considered a capability of the underlying object. A code unit wishing to share
an object with its peer may grant the latter a reference properly typed with
an abstract type. The receiver of the reference may then access the underlying
object through the constrained interface. This scheme, however, suffers from the
same lack of capability confinement. The problem manifests itself in two ways.

1. Capability Theft. A code unit may “steal” a capability from code units
belonging to a foreign protection domain, thereby amplifying its own access
rights. Worst still, capabilities can be easily forged by unconstrained object
instantiation and dynamic downcasting.

2. Capability Leakage. A code unit in possession of a capability may inten-
tionally or accidentally “push” the capability to code units residing in a less
privileged protection domain.

This paper proposes a lightweight, static annotation system called Discre-
tionary Capability Confinement (DCC), which fully supports the adop-
tion of abstract types as capability types and provably prevents capability theft
and leakage. Targeting Java-like programming languages, the annotation system
offers the following features:

– While the binding of a code unit to its protection domain is performed stati-
cally, the granting of permissions to a protection domain occurs dynamically
through the propagation of capabilities.

– Inspired by Vitek et al [21,22,23,24], a protection domain is identified with
a confinement domain . Once a capability is acquired, it roams freely
within the receiving confinement domain. A capability may only escape from
a confinement domain via explicit capability granting.

– Following the design of Gong [25], although a method may freely exercise
the capabilities it possesses, its ability to grant capabilities is subject to
discretionary control by a capability granting policy .

Discretionary Capability Confinement 129

– Under mild conditions, capability confinement guarantees such as no theft
and no leakage can be proven. Programmers can achieve these guarantees
by adhering to simple annotation practices.

– An application-level collaboration protocol called hereditary mutual sus-
picion is enforced. This protocol entails a strong form of separation of
duty [26,27]: not only is the notion of mutually-exclusive roles supported,
collusion between them is severely restricted because of the confinement
guarantees above.

The contributions of this paper are the following:

– A widely held belief among security researchers is that language-based capa-
bility systems adopting the reference-as-capability metaphor cannot address
the need of capability confinement [13,15]. Employing type-based confine-
ment, this work has successfully demonstrated that such a capability system
is in fact feasible.

– The traditional approach to support separation of duty is through the impo-
sition of mutually exclusive roles [28,27]. This work proposes a novel mech-
anism, hereditary mutual suspicion, to support separation of duty in an
object-oriented setting. When combined with confinement guarantees, this
mechanism not only implements mutually exclusive roles, but also provably
eliminate certain forms of collusion.

Organization. Sect. 2 motivates DCC by an example. Sect. 3 outlines the main
type constraints. Sect. 4 states the confinement guarantees. Sect. 5 discusses
extensions and variations. The paper concludes with related work and future
work. Appendix A reports implementation experiences.

2 Motivation

The Hero-Sidekick Game. Suppose we are developing a role-playing game. Over
time, a playable character, called a hero (e.g., Bat Man), may acquire an arbi-
trary number of sidekicks (e.g., Robin). A sidekick is a non-playable character
whose behavior is a function of the state of the hero to which it is associated.
The intention is that a sidekick augments the power of its hero. The number of
sidekicks that may be attached to a hero is a function of the hero’s experience.
A hero may adopt or orphan a sidekick at will. New hero and sidekick types may
be introduced in future releases.

A possible design is to employ the Observer pattern [29] to capture the dy-
namic dependencies between heros and sidekicks, as is shown in Fig. 1, where
sidekicks are observers of heros. The GameEngine class is responsible for creating
instances of Hero and Sidekick, and managing the attachment and detachment
of Sidekicks. This set up would have worked had it not been the following
requirement: users may download new hero or sidekick types from the internet
during a game play. Because of dynamic extensibility, we must actively ensure
fair game play by eliminating the possibility of cheating through the downloading
of malicious characters. Two prototypical cheats are the following.

130 P.W.L. Fong

public interface Character { /* Common character behavior ... */ }
public interface Observable {

State getState();
}
public abstract class Hero implements Character, Observable {

protected Sidekick observers[];
public final void attach(Sidekick sidekick) { /* Attach sidekick */ }
public final void detach(Sidekick sidekick) { /* Detach sidekick */ }
public final void broadcast() {

for (Sidekick observer : observers)
observer.update(this);

}
}
public interface Sidekick extends Character {

void update(Observable hero);
}
public class GameEngine { /* Manage life cycle of characters ... */ }

Fig. 1. A set up of the hero-sidekick game

Cheat I: Capability Theft. A Sidekick reference can be seen as a capability,
the possession of which makes a Hero instance more potent. A malicious Hero
can augment its own power by creating new instances of concrete Sidekicks, or
stealing existing instances from unprotected sources, and then attaching these
instances to itself.

Cheat II: Capability Theft and Leakage. A Hero exposes two type interfaces:
(i) a sidekick management interface (i.e., Hero), and (ii) a state query inter-
face (i.e., Observable). While the former is intended to be used exclusively by
the GameEngine, the latter is a restrictive interface through which Heros may be
accessed securely by Sidekicks. This means that a Hero reference is also a capa-
bility from the perspective of Sidekick. Upon receiving a Hero object through
the Observable argument of the update method, a malicious Sidekick may
downcast the Observable reference to a Hero reference, and thus exposes the
sidekick management interface of the Hero object (i.e., capability theft). This in
turn allows the malicious Sidekick to attach sidekicks to the Hero object (i.e.,
capability leakage).

Solution Approach. To control capability propagation, DCC assigns the Hero and
Sidekick interfaces to two distinct confinement domains [21], and restricts
the exchange of capability references between the two domains. Specifically, ca-
pability references may only cross confinement boundaries via explicit argument
passing. Capability granting is thus possible only under conscious discretion .
Notice that the above restrictions shall not apply to GameEngine, because it is
by design responsible for managing the life cycle of Heros and Sidekicks, and
as such it requires the rights to acquire instances of Heros and Sidekicks. This
motivates the need to have a notion of trust to discriminate the two cases.

To further control the granting of capabilities, a capability granting policy
[25] can be imposed on a method. For example, a capability granting policy can

Discretionary Capability Confinement 131

be imposed on the broadcast method so that the latter passes only Observable
references to update, but never Hero references.

Our goal is not only to prevent capability theft and leakage between Hero and
Sidekick, but also between the subtypes of Hero and those of Sidekick. In
other words, we want to treat Hero and Sidekick as roles, prescribe capability
confinement constraints between them, and then require that their subtypes
also conform to the constraints. DCC achieves this via a mechanism known as
hereditary mutual suspicion .

3 Discretionary Capability Confinement

This section presents the DCC annotation system for the JVM bytecode lan-
guage. The threat model is reviewed in Sect. 3.1, the main type constraints are
specified in Sect. 3.2, and the utility of DCC in addressing the security challenges
of the running example is discussed in Sect.3.3.

3.1 Threat Model

As the present goal is to restrict the forging and propagation of abstractly typed
references, we begin the discussion with an exhaustive analysis of all means by
which a reference type A may acquire a reference of type C. We use metavari-
ables A, B and C to denote raw JVM reference types (i.e., after erasure). We
consider class and interface types here, and defer the treatment of array types
and genericity till Sect. 5.1.

1. B grants a reference of type C to A when B invokes a method1 declared in
A, passing an argument via a formal parameter of type C.

2. B shares a reference of type C with A when one of the following occurs:
(a) A invokes a method declared in B with return type C; (b) A reads a
field declared in B with field type C; (c) B writes a reference into a field
declared in A with field type C.

3. A generates a reference of type C when one of the following occurs: (a) A
creates an instance of C; (b) A dynamically casts a reference to type C; (c)
an exception handler in A with catch type C catches an exception.

3.2 Type Constraints

We postulate that the space of reference types is partitioned by the programmer
into a finite number of confinement domains, so that every reference type
C is assigned to exactly one confinement domain via a domain label l(C). We
use metavariables D and E to denote confinement domains. The confinement
domains are further organized into a dominance hierarchy by a programmer-
defined partial order �. We say that D dominates E whenever E � D. The
1 By a method we mean either an instance or static method, or an instance or class

initializer. By a field we mean either an instance or static field.

132 P.W.L. Fong

dominance hierarchy induces a pre-ordering of reference types. Specifically, if
l(B) = E , l(A) = D, and E � D then we write B � A, and say that B trusts A.
We write A �� B iff both A�B and B�A. The binary relation �� is an equivalence
relation, the equivalence classes of which are simply the confinement domains.
If C � A does not hold, then a reference of type C is said to be a capability for
A. Intuitively, capabilities should provide the sole means for untrusted types to
access methods declared in capability types. The following constraint is imposed
to ensure that an untrusted access is always mediated by a capability:

(DCC1) Unless B � A, A shall not invoke a static method declared in B.

Acquiring non-capability references is harmless. Capability acquisition, however,
is restricted by a number of constraints, the first of which is the following:

(DCC2) The following must hold:
1. A can generate a reference of type C only if C � A. [No capability gen-

eration is permitted.]
2. B may share a reference of type C with A only if C � A ∨ A �� B.

[Capability sharing is not permitted across domain boundaries.]

In other words, capability acquisition only occurs as a result of explicit capability
granting. Once a capability is acquired, it roams freely within the receiving
confinement domain. Escape from a confinement domain is only possible when
the escaping reference does not escape as a capability, or when it escapes as a
capability via argument passing.

We also postulate that there is a root domain � so that � � D for all D.
All Java platform classes are members of the root domain �. This means they
can be freely acquired by any reference type2.

Capability granting is regulated by discretionary control. We postulate that
every declared method has a unique designator, which is denoted by metavari-
ables m and n. We occasionally write A.m to stress the fact that m is declared in
A. Associated with every method m is a programmer-supplied label l(m), called
the capability granting policy of m. The label l(m) is a confinement domain.
(If l(n) = E , l(m) = D, and E � D, then we write n � m. Similarly, we write
m � A and A � m for the obvious meaning.) Intuitively, the capability granting
policy l(m) dictates what capabilities may be granted by m, and to whom m
may grant a capability.

(DCC3) If A.m invokes3 B.n, and C is the type of a formal parameter of n, then
C � B ∨ A �� B ∨ (B � m ∧ C � m).

2 Notice that the focus of this paper is not to protect Java platform resources. Instead,
our goal is to enforce application-level security policies that prescribe interaction
protocols among dynamically loaded software extensions. The organization of the
domain hierarchy therefore reflects this concern: platform classes and application
core classes belong respectively to the least and the most dominating domain.

3 In the case of instance methods, if A.m invokes B.n, the actual method that gets
dispatched may be a method B′.n′ declared in a proper subtype B′ of B. Constraints
(DCC3) and (DCC4) only regulate method invocation. Dynamic method dispatching
is regulated by controlling method overriding through (DCC6).

Discretionary Capability Confinement 133

That is, capability granting (¬ C�B) across domain boundaries (¬ A �� B) must
adhere to the capability granting policy of the caller (B�m∧C �m). Specifically,
a capability granting policy l(m) ensures that m only grants capabilities to those
reference types B satisfying B � m, and that m only grants capabilities of type
C for which C � m.

A method may be tricked into invoking another method that does not honor
the caller’s capability granting policy. This classical anomaly is known as the
Confused Deputy [30]. The following constraint ensures that capability granting
policies are always preserved along a call chain.

(DCC4) A method m may invoke another method n only if n � m.

We now turn to the interaction between capability confinement and subtyping.
We write A <: B whenever A is either B itself or one of B’s subtypes. A
subtype exposes the interface of its supertypes. Specifically, if a reference type
A has acquired a reference of type B, then A has effectively acquired a reference
of every type B′ that is a supertype of B. This is because implicit widening
conversion is not considered a reference acquisition event in our threat model.
The following constraint is imposed to ensure that widening does not turn a
non-capability into a capability.

(DCC5) If A <: B then B � A.

When an instance method B.n is invoked, the method that gets dispatched
may be a method B′.n′ declared in a subtype B′ of B. This allows B′.n′ to
“impersonate” B.n, potentially allowing B′.n′ to (i) grant capabilities in a way
that violates the capability granting policy of B.n, (ii) return a capability to
a caller with whom B′ is not supposed to share capabilities, or (iii) accept
a capability argument that is intended for B rather than B′. The following
constraint prevents impersonation.

(DCC6) Suppose B.n is overridden by B′.n′. The following must hold:
1. n′ � n. [Overriding never relaxes capability granting rights.]
2. If the method return type is C, then C � B ∨ B �� B′. [A method that

returns a capability may not be overridden by a method declared in a
different domain.]

3. If C is the type of a formal parameter, then C �B′ ∨B �� B′. [A method
may be granted a capability only if it does not override a method declared
in a different domain.]

If reference types A and B do not trust each other (i.e., neither A � B nor
B�A hold), they are said to be mutually suspicious. The following constraint
requires that mutual suspicion is preserved by subtyping.

(DCC7) Hereditary mutual suspicion. Suppose A and B are mutually sus-
picious. If A′ <: A and B′ <: B, then A′ and B′ are also mutually suspicious.

(DCC7) results in a strong form of static separation of duty [27]. Firstly, as � is
reflexive, no reference type can be a subtype of both A and B. This renders A
and B mutually exclusive roles. Secondly, Sect. 4.2 shows that a class of collusion
between A and B can be provably eliminated.

134 P.W.L. Fong

3.3 Addressing the Security Challenges

GameEngineDomain
GameEngine

CharacterDomain
Character
Observable

HeroDomain
Hero

SidekickDomain
Sidekick

Fig. 2. Dominance hierarchy for
the hero-sidekick application. Ar-
rows represent “dominated-by” re-
lationships (�).

The challenge of capability theft and leakage
described in our running example (Sect. 2)
can be fully addressed by DCC. A domi-
nance hierarchy for the hero-sidekick game
application is given in Fig. 2. Because Hero-
Domain and SidekickDomain are incompa-
rable in the dominance hierarchy, Hero and
Sidekick are capabilities for each other.
Consequently, not only are Sidekicks not
allowed to downcast an Observable ref-
erence to a Hero capability (i.e., Cheat
II), Heros are also forbidden to create new
Sidekick capabilities or to steal such ca-
pabilities through aliasing (Cheat I). Fur-
thermore, the dominance hierarchy also ren-
ders GameEngineDomain the most dominat-
ing confinement domain, thereby allowing
GameEngine to have full access to the ref-
erence types declared in the rest of the con-
finement domains. We also annotate every method A.m displayed in Fig. 1 with
a capability granting policy of l(m) = l(A): e.g., l(update) = SidekickDomain.
Consequently, even if a Sidekick obtains a Hero reference, it is still not allowed
to attach any sidekick to the Hero instance (Cheat II). Lastly, hereditary mutual
suspicion allows us to turn Hero and Sidekick into mutually suspicious roles,
so that their subtypes cannot conspire to communicate capabilities.

4 Confinement Properties

Given a discretionary access control mechanism such as DCC, safety analysis
[31,32,33] must be conducted to characterize the conditions under which access
rights are not granted to unintended parties. This section reports the confinement
properties that have been established for DCC [34].

4.1 Featherweight JVM

Our confinement results are formalized in a lightweight model of the JVM called
Featherweight JVM (FJVM) [35]. FJVM is a nondeterministic production sys-
tem that describes how the JVM state evolves in reaction to access events. Non-
determinism is employed because we are not modeling the execution of a specific
bytecode sequence, but rather all possible access events that may be generated
by the JVM when well-typed bytecode sequences are executed. FJVM manipu-
lates object references. Every object reference is an instance of exactly one class.
An object has an arbitrary number of fields, each of which is declared either

Discretionary Capability Confinement 135

A,B, C ∈ C raw reference types
m, n ∈ M method designators

p, q, r ∈ O object references
S, T ::= 〈Π,Γ ; Φ, A.m, σ〉 VM states

Π ::= ∅ | Π ∪ {r : C} object pools
Γ ::= ∅ | Γ ∪ {p : B � q : C} link graphs
Φ ::= ∅ | Φ ∪ {r : C} stack frames
σ ::= � | push(Φ, A.m, C, σ) proper stacks

Fig. 3. FJVM states

in the class of the object or one of the supertypes. Each field in turn stores an
object reference. A field may only be initialized once but never updated.

Fig. 3 summarizes the structure of a VM state 〈Π, Γ ; Φ, A.m, σ〉. The object
pool Π is a finite set of allocations r : C, recording the objects allocated by the
VM, together with their class membership. The link graph Γ is a finite set of
links . A link p : B � q : C asserts that p has a field declared in B, with field
type C, storing the object reference q. The stack frame Φ is a finite set of labeled
references r : C. The set Φ models the references accessible in a JVM stack
frame, and tracks the type interfaces that are visible to the execution context.
The execution context A.m is the currently executing method. The proper stack
σ models the call chain that leads to the current VM state. Specifically, σ is
either an empty stack, �, or a non-empty stack, push(Φ, A.m, C, σ), where Φ is
the caller stack frame, A.m is the caller execution context, C is the callee return
type, and σ is another proper stack.

In the following, we write x for a list x1, . . . , xk. We also write X � x if x ∈ X .
Obvious variations shall be clear from the context.

Fig. 4 defines the state transition relation →Σ , which is parameterized by a
safety policy Σ. Intuitively, Σ specifies for each execution context A.m the set
Σ[A.m] of permitted events. The transition rules ensure that →Σ observes Σ.
We model the type rules of DCC by the policy in Fig. 5. (DCC5) and (DCC7)
are not modeled: (DCC5) is implicitly assumed in the proofs [34], and (DCC7) is
orthogonal to the confinement results.

4.2 Confinement Theorem

To help articulate confinement guarantees, a family of Accessible judgments are
defined in Fig. 6 to assert that a labeled reference (r : C or q : C) is accessible
from a domain (D) in a given VM state. The main confinement theorem is stated
below (consult [34] for a detailed proof).

Theorem 1 (Discretionary Capability Confinement). Suppose
〈Π, Γ ; Φ, A.m, �〉 ∗−→Σ 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be an arbitrary domain. If
Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least one of the following
conditions holds:

136 P.W.L. Fong

Φ � r : C C <: B

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {r : B}, A.m, σ〉 (T-Widen)

r is a fresh object reference from O
new〈B〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π ∪ {r : B}, Γ ; Φ ∪ {r : B}, A.m,σ〉 (T-New)

Φ � r : C Π � r : C′ C′ <: B
checkcast〈B〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {r : B}, A.m, σ〉 (T-CheckCast)

Φ � p : B0 B0 <: B Γ � p : B � q : C
getfield〈B : C〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ ∪ {q : C}, A.m, σ〉 (T-GetField)

Φ � p : B0 B0 <: B Φ � q : C
putfield〈B : C〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ∪ {p : B � q : C}; Φ, A.m, σ〉 (T-PutField)

Φ � r : C

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π, Γ ;Φ′, B.n, σ′〉
where Φ′ = {r : C} and σ′ = push(Φ, A.m,C, σ)

(T-InvokeStatic)

Φ � r0 : C0 C0 <: B Φ � r : C
Π � r0 : B′′ B′′ <: B′ B′ <: B

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]

〈Π,Γ ; Φ, A.m, σ〉 →Σ 〈Π,Γ ; Φ′, B′.n′, σ′〉
where Φ′ = {r0 : B′, r : C} and σ′ = push(Φ, A.m,C, σ)

(T-InvokeMethod)

Φ′ � r : C

〈Π,Γ ; Φ′, B.n, push(Φ, A.m, C, σ)〉 →Σ 〈Π,Γ ; Φ ∪ {r : C}, A.m, σ〉 (T-Return)

Fig. 4. FJVM transitions

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)
3. C � m ∧ D � l(m) (controlled capability propagation)

The theorem above ensures that capability propagation honors the capability
granting policy of a method. In the following, we describe how one may anno-
tate methods with capability granting policies to preserve useful confinement
properties. Specifically, a method A.m is said to be safe iff m � A. Executing
a safe method A.m will only cause those domains dominated by l(A) to acquire
capabilities that A can generate. Programmers concerned with capability con-
finement may then arrange their code to invoke untrusted software extensions
only via safe method interfaces.

Theft. Capability theft occurs when executing code in a domain causes the
domain to acquire capabilities it does not already possess. The absence of theft

Discretionary Capability Confinement 137

B � A

new〈B〉 ∈ Σ[A.m]
(P-New)

B � A

checkcast〈B〉 ∈ Σ[A.m]
(P-CheckCast)

C � A ∨ A �� B

getfield〈B : C〉 ∈ Σ[A.m]
(P-GetField)

C � B ∨ A �� B

putfield〈B : C〉 ∈ Σ[A.m]
(P-PutField)

n � m B � A C � A ∨ A �� B
(∀i . Ci � B) ∨ A �� B ∨ (B � m ∧ ∀i . Ci � m)

invokestatic〈B.n : C → C〉 ∈ Σ[A.m]
(P-InvokeStatic)

n � m n′ � n C � A ∨ A �� B
C � B ∨ B �� B′ (∀i . Ci � B′) ∨ B �� B′

(∀i . Ci � B) ∨ A �� B ∨ (B � m ∧ ∀i . Ci � m)

invokemethod〈B.n : C → C〉[B′.n′] ∈ Σ[A.m]
(P-InvokeMethod)

Fig. 5. A safety policy for DCC

l(B) = D Γ � p : B � q : C

Accessible [D](q : C | Γ)

Φ � r : C′ C′ <: C

Accessible [D](r : C | Φ)

Accessible [D](r : C | Φ)

Accessible [D](r : C | push(Φ, A.m, C′, σ))

Accessible [D](r : C | σ)

Accessible [D](r : C | push(Φ, A.m,C′, σ))

Accessible [D](r : C | Γ)

Accessible [D](r : C | 〈Π,Γ ; Φ, A.m, σ〉)
Accessible [D](r : C | Φ)

Accessible [D](r : C | 〈Π,Γ ;Φ, A.m,σ〉)
Accessible [D](r : C | σ)

Accessible [D](r : C | 〈Π,Γ ; Φ, A.m, σ〉)

Fig. 6. Accessibility judgments

makes capabilities unforgeable. Theorem 1 entails that executing safe methods
always guarantees the absence of capability theft.

Corollary 2 (No Theft). Suppose m � A and 〈Π, Γ ; Φ, A.m, �〉 ∗−→Σ

〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be l(A). If Accessible [D](r : C | 〈Π ′, Γ ′; Φ′,
A′.m′, σ′〉), then at least one of the following conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)

Leakage. Capability leakage occurs when executing code in a domain causes a
foreign domain to acquire a capability that the foreign domain does not already
possess. When a capability is granted to a domain, it is in the interest of the

138 P.W.L. Fong

granter that the grantee will not leak the granted capability. Theorem 1 entails
that a safe method never leaks capabilities to a domain that is not dominated
by the home domain of the method.

Corollary 3 (No Leakage). Suppose m � A and 〈Π, Γ ; Φ, A.m, �〉 ∗−→Σ

〈Π ′, Γ ′; Φ′, A′.m′, σ′〉. Let D be a domain such that D � l(A) is not true. If
Accessible [D](r : C | 〈Π ′, Γ ′; Φ′, A′.m′, σ′〉), then at least one of the following
conditions holds:

1. Accessible [D](r : C | 〈Π, Γ ; Φ, A.m, �〉) (previously accessible)
2. l(C) � D (not a capability)

Mutual Suspicion. Suppose A and B are mutually suspicious, and a safe method
A.m is invoked. By Corollary 2, no reference of type B will be acquired by A as
a result of the invocation. Similarly, by Corollary 3, no reference of type A will
be acquired by B. Consequently, mutually suspicious types never exchange ca-
pabilities as a result of invoking safe methods. If the two types have never been
explicitly granted capabilities of one another, then they cannot invoke meth-
ods declared in each others type interface. Collusion of this kind is therefore
completely eliminated.

5 Extensions and Variations

5.1 Accommodating Other Language Constructs

Arrays. The array types C[], C[][], . . . are said to be carrier types for declared
type C. An object reference with a carrier type is a carrier . If D acquires a
carrier (e.g., of type C[]) for a capability type C, while E obtains a carrier-type
reference (e.g., of type Object[]) to the same object, then E can store references
into the carrier, while D can retrieve the said references as type-C capabilities.
Special type constraints must be introduced into DCC to avoid the misuse of
carriers as covert channels for capability communication. A solution is to allow
the aliasing of carriers across domain boundaries so long as the acquisition of
capability carriers is categorically denied. This can be enforced easily by minor
revisions to the type constraints in Sect. 3.2: (a) assume C �� C[]; (b) adapt
(DCC3) to forbid the granting of capability carriers across domain boundaries.
Further details concerning the treatment of arrays can be found in [34].

Genericity. Genericity does not present any security challenge to the present de-
sign of DCC. Genericity is a purely source-level construct that is translated into
bytecode via type erasure. The source-level generic type Set<C> is translated
into the raw reference type Set. Set members are retrieved as Object references.
The compiler introduces a dynamic cast to convert the retrieved Object ref-
erence into a type-C reference. There are two implications to this set up: (1)
since generic containers such as Set belong to the root domain, DCC permits
the acquisition and transmission of capability containers; (2) if C is a capabil-
ity type, then P-CheckCast will effectively forbid the retrieval of any type-C

Discretionary Capability Confinement 139

capabilities from generic containers. This is consistent with the overall design
philosophy of DCC: capability acquisition must only occur as a result of explicit
granting (i.e., argument passing). In summary, there is no security motivation
for any additional type constraint to account for genericity.

5.2 Modular Enforcement of Hereditary Mutual Suspicion

Hereditary mutual suspicion (DCC7) interacts with dynamic linking in a non-
trivial manner. Specifically, (DCC7) is universally quantified over all subtypes of
two mutually exclusive roles. The enforcement of (DCC7) thus involves a time
complexity quadratic to the number of subtypes of the mutually exclusive roles,
making it very inefficient. Worst still, because of the dynamic linking semantics of
the JVM, some of these subtypes may not have been completely loaded, making it
impossible to enforce (DCC7) at link time. This section addresses these two issues
by examining a reformulation of (DCC7) that facilitates modular enforcement .
A conservative solution is adopted. Specifically, we want to check reference type
A only once at link time, and then conclude that it will not participate in the
violation of (DCC7) in the future. To this end, we (1) lift the reasoning of mutual
suspicion from the level of reference types to the level of confinement domains,
and (2) capture in a binary relation the sufficient condition by which mutual
suspicion is preserved in subtyping. A programmer-supplied partial order :� is
postulated, so that:

(HMS1) � :� D (HMS2) D :� E ⇒ D � E
(HMS3) (D :� E ∧ D′ � E) ⇒ (D � D′ ∨D′ � D)

We say that D strongly dominates E whenever E :� D. The :� relation induces
a pre-ordering of Java reference types: we write B :� A iff l(B) = E , l(A) = D
and E :� D. It follows readily from definition that :� is reflexive and transitive,
and B : � A ⇒ B � A. We restate (DCC7) in a form that facilitates modular
enforcement:

(DCC7′′) If A <: B, then B :� A.

The companion technical report [34] shows that (DCC7) follows from (DCC7′′).
That is, (DCC7′′) is sound but incomplete: programs satisfying (DCC7′′) are
guaranteed to satisfy (DCC7), but some programs satisfying (DCC7) may not
satisfy (DCC7′′). We trade completeness for tractability.

6 Concluding Remarks

Related Work. Previous language-based capability systems [16,13,14] lack con-
finement guarantees. This work combines the idea of confinement domains [21]
with capability granting policies [25] to achieve confinement.

The design of DCC has been influenced by confined types [21,22,23,24]. While
the confinement boundaries of confined types are uniform, those in DCC are

140 P.W.L. Fong

discriminatory, allowing reference acquisition through dominance and capability
granting through discretion. This difference is due to the fact that confined types
is designed to uniformly confine all instances of a given concrete class, but DCC
is designed to selectively confine those references that would otherwise escape
with a privileged static type.

The static type system pop [36] supports the reference-as-capability metaphor
in an inheritance-less object calculus. Contrary to “communication-based” sch-
emes of object confinement (e.g., confined types), an “used-based” approach
has been adopted by pop to impose a custom “user interface” over an object.
The user interface specifies how individual protection domains may access the
object. DCC can be seen as a hybrid of communication-based and use-based
approaches to capabilities: use-based views are modeled as static types imposed
on references, and references may only escape from a confinement domain so
long as they do not escape with a view that grants privileged accesses to the
receiving domain.

Stack inspection [5] is an access control model for program execution that
involves code units belonging to distinct protection domains. A common as-
sumption behind most existing models of stack inspection [5,6,7,9] is that the
binding of permissions to code units is performed statically. DCC identifies pro-
tection domains with confinement domains. While the binding of code units to
their protection domains is performed statically, the granting of permissions to
protection domains occurs dynamically through capability acquisition. Notice,
however, the right to grant capabilities is still modeled statically in DCC in the
form of a stack invariant.

Although this work is primarily concerned with access control, and thus or-
thogonal to language-based information flow control [37], one may see the No
Theft and No Leakage properties as playing the analogous roles of Simple
Security and *-Property in information flow control.

Separation of duty is foundational in ensuring system integrity [26]. Establish-
ing mutually-exclusive roles is a popular means [28] for implementing separation
of duty. The underlying assumption is that collusion between multiple agents
is unlikely. In DCC, hereditary mutual suspicion not only establishes mutually
exclusive roles, but provably prevents a class of collusion. To the best of the au-
thor’s knowledge, this is the first work to enforce such a strong form of separation
of duty in a language-based environment.

Future Work. To ease exposition, a simple representation of capability granting
policy has been adopted. A future direction is to explore finer-grained represen-
tations of capability granting policies, and study the collaboration idioms thus
enabled. First ideas are reported in [34].

The right to grant capability is always diminishing along a call chain. This
restricts the reusability of methods, and causes methods deep in a call chain
incapable of granting capabilities. Can we allow the amplification of capability
granting right while preserving confinement? A helpful observation is that the
reasoning of capability granting right is akin to stack inspection. Exploring this
connection belongs to future work.

Discretionary Capability Confinement 141

A limitation of DCC is the lack of support for capability revocation. It is obvi-
ously impossible to “revoke” a reference that has already been acquired by a con-
finement domain. However, the lack of revocation can be alleviated by carefully
regulating authority delegation. Constrained delegation is a well-studied topic
in role-based access control and trust management (see, particularly, [38,39,40]).
Controlling delegation in DCC belongs to future work.

Acknowledgments. This work is supported by an NSERC Discovery Grant.

References

1. Carzaniga, A., Picco, G.P., Vigna, G.: Designing distributed applications with
mobile code paradigms. In: Proceedings of the 19th International Conference on
Software Engineering, Boston, Massachusetts, USA (1997) 22–32

2. Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to security.
In: Informatics: 10 Years Back, 10 Years Ahead. Volume 2000 of LNCS. Springer
(2000) 86–101

3. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: Proceedings of the 5th ACM Conference on Computer and Communica-
tions Security, San Francisco, California, USA (1998) 38–48

4. Gong, L., Schemers, R.: Implementing protection domains in the Java develop-
ment kit 1.2. In: Proceedings of the Internet Society Symposium on Network and
Distributed System Security, San Diego, California, USA (1998) 125–134

5. Wallach, D.S., Appel, A.W., Felten, E.W.: SAFKASI: A security mechanism for
language-based systems. ACM Transactions on Software Engineering and Method-
ology 9 (2000) 341–378

6. Úlfar Erlingsson, Schneider, F.B.: IRM enforcement of Java stack inspection. In:
Proceedings of the 2000 IEEE Symposium on Security and Privacy, Berkeley, Cal-
ifornia (2000) 246–255

7. Fournet, C., Gordon, A.D.: Stack inspection: Theory and variants. ACM Trans-
actions on Programming Languages and Systems 25 (2003) 360–399

8. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings
of the 10th Annual Network and Distributed System Security Symposium, San
Diego, California, USA (2003)

9. Pottier, F., Skalka, C., Smith, S.: A systematic approach to static access control.
ACM Transactions on Programming Languages and Systems 27 (2005) 344–382

10. Dennis, J.B., van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. Communications of the ACM 9 (1966) 143–155

11. Miller, M.S., Yee, K.P., Shapiro, J.: Capability myths demolished. Technical Report
SRL2003-02, System Research Lab, Department of Computer Science, The John
Hopkins University (2003)

12. Rees, J.A.: A security kernel based on the lambda-calculus. A. I. Memo 1564, MIT
(1996)

13. Wallach, D.S., Balfanz, D., Dean, D., Felten, E.W.: Extensible security architec-
tures for Java. In: Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP’97), Saint Malo, France (1997) 116–128

14. Hawblitzel, C., Chang, C.C., Czajkowski, G., Hu, D., von Eicken, T.: Implementing
multiple protection domains in Java. In: Proceedings of the USENIX Annual
Technical Conference, New Orleans, Louisiana, USA (1998)

142 P.W.L. Fong

15. Chander, A., Dean, D., Mitchell, J.C.: A state-transition model of trust manage-
ment and access control. In: Proceedings of the 14th IEEE Computer Security
Foundations Workshop, Cape Breton, Nova Scotia, Canada (2001) 27–43

16. Jones, A.K., Liskov, B.H.: A language extension for expressing constraints on data
access. Communications of the ACM 21 (1978) 358–367

17. Boyland, J., Noble, J., Retert, W.: Capabilities for sharing: A generalization of
uniqueness and read-only. In: Proceedings of the 2001 European Conference on
Object-Oriented Programming, Budapest, Hungary (2001) 2–27

18. Crary, K., Walker, D., Morrisett, G.: Typed memory management in a calculus of
capabilities. In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, Texas, USA (1999) 262–275

19. Arnold, K., Gosling, J., Holmes, D.: The Java Programming Language. 3rd edn.
Addison Wesley (2000)

20. ECMA: Standard ECMA-335: Common Language Infrastructure (CLI). 2nd edn.
(2002)

21. Vitek, J., Bokowski, B.: Confined types in Java. Software - Practice & Experience
31 (2001) 507–532

22. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
In: Proceedings of the 16th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Tampa Bay, FL, USA (2001)
241–253

23. Zhao, T., Palsberg, J., Vitek, J.: Lightweight confinement for Featherweight
Java. In: Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, Anaheim, Califor-
nia, USA (2003) 135–148

24. Zhao, T., Palsberg, J., Vitek, J.: Type-based confinement. Journal of Functional
Programming 16 (2006) 83–128

25. Gong, L.: A secure identity-based capability system. In: Proceedings of the 1989
IEEE Symposium on Security and Privacy, Oakland, California, USA (1989) 56–63

26. Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer
security policies. In: Proceedings of the 1987 IEEE Symposium on Security and
Privacy. (1987) 184–194

27. Li, N., Bizri, Z., Tripunitara, M.V.: On mutually-exclusive roles and separation of
duty. In: Proceedings of the 11th ACM Conference on Computer and Communi-
cations Security, Washington DC, USA (2004) 42–51

28. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security 4 (2001) 224–274

29. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley (1994)

30. Hardy, N.: The confused deputy: or why capabilities might have been invented.
Operating Systems Review 22 (1988) 36–38

31. Lipton, R.J., Snyder, L.: A linear time algorithm for deciding subject security.
Journal of the ACM 24 (1977) 455–464

32. Sandhu, R.S.: The schematic protection model: Its definition and analysis for
acyclic attenuating schemes. Journal of the ACM 35 (1988) 404–432

33. Sandhu, R.S.: The typed access matrix model. In: Proceedings of the 1992 IEEE
Symposium on Security and Privacy. (1992) 122–136

34. Fong, P.W.L.: Discretionary capability confinement. Technical Report CS-2006-
03, Department of Computer Science, University of Regina, Regina, Saskatchewan,
Canada (2006)

Discretionary Capability Confinement 143

35. Fong, P.W.L.: Reasoning about safety properties in a JVM-like environment. Tech-
nical Report CS-2006-02, Department of Computer Science, University of Regina,
Regina, Saskatchewan, Canada (2006)

36. Skalka, C., Smith, S.: Static use-based object confinement. International Journal
of Information Security 4 (2005) 87–104

37. Sabelfeld, A., Meyers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21 (2003) 5–19

38. Bandmann, O., Dam, M., Firozabadi, B.S.: Constrained delegation. In: Proceed-
ings of the 2002 IEEE Symposium on Security and Privacy, Berkeley, California,
USA (2002) 131–140

39. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Security
6 (2003) 128–171

40. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method
in RBAC. In: Proceedings of the 10th ACM Symposium on Access Control Models
and Technologies, Stockholm, Sweden (2005) 59–66

A Implementation Experience

A.1 Source-Level Annotations

Although DCC is formulated and enforced at the bytecode level, a specification
mechanism has been devised to facilitate the annotation of Java source files with
such DCC typing information as domain membership (l(C)), capability granting
policy (l(m)), dominance relationship (�), and strong dominance relationship
(:�). These source-level annotations are encoded using the JDK 5.0 metadata
facility. For example, Fig. 7 illustrates how the domain hierarchy in Fig. 2 is
encoded at the source level as an interface hierarchy. Specifically, a confinement
domain is represented as an empty public interface with a @Domain annotation.
The dominance relation is represented by interface extension: if a domain inter-
face E extends another domain interface D, then D � E . The root domain � is
represented by the predefined domain interface Root, which must be a superin-
terface of every user-defined domain interface. Strong dominance is specified via
the allowSubtyping element of a @Domain annotation. Specifically, the value of
an allowSubtyping element is a list of domain interfaces. If domain interface
D appears in the allowSubtyping list of domain interface E , then we intend it
to mean D :� E . If no allowSubtyping element is supplied, then, by default,
the domain interface is strongly dominated only by Root. Lastly, domain mem-
bership and capability granting policies are indicated by the @Confined and
@Grants annotations respectively. For example, the following declaration con-
fines the Robin class to SidekickDomain and sets the capability granting policy
of the update method to SidekickDomain:

@Confined (SidekickDomain.class)

public class Robin implements Sidekick {
@Grants (SidekickDomain.class)

public void update(Observable hero);

}

144 P.W.L. Fong

@Domain
public interface CharacterDomain extends Root { }
@Domain(allowSubtyping = { CharacterDomain.class })
public interface HeroDomain extends CharacterDomain { }
@Domain(allowSubtyping = { CharacterDomain.class })
public interface SidekickDomain extends CharacterDomain { }
@Domain
public interface GameEngineDomain extends HeroDomain, SidekickDomain { }

Fig. 7. An interface hierarchy representing the dominance hierarchy of the hero-
sidekick game application

Type Checkerjavac BackendFrontend
Annotated

Classfile

Annotated

ClassfileSource

Java

Internet JVM

Source

Java Load−Time

Fig. 8. The DCC software development environment

A.2 Type Checkers

We envision a programming environment (Fig. 8) in which Java source files em-
bedded with DCC annotations are partially validated by a compiler frontend,
and subsequently translated into annotated classfiles by the JDK 5.0 compiler.
The annotated classfiles are then type-checked at the bytecode level by a com-
piler backend prior to shipping. To guard against malicious code generators, type
checking is also conducted by the JVM at load time, against classfiles, at the
bytecode level. All the three DCC type checkers depicted in Fig. 8 have been
implemented. The frontend component is a source-level type checker based on
the JDK 5.0 annotation processing tool (apt). It ensures that the type inter-
face of Java classes and interfaces conform to type constraints (DCC5), (DCC6)
(DCC7′′), as well as the HMS rules. The backend component is an offline,
bytecode-level type checker based on the Apache ByteCode Engineering Library
(BCEL). It ensures that classfiles or JAR files conform to all the DCC type
constraints. Lastly, the load-time type checker is obtained by embedding the
backend type checking engine into a Java class loader, which type-checks class-
files as they are loaded into the JVM.

The present design of DCC is optimized for enforcement efficiency, and as
such it requires no iterative analysis of method bodies. All type constraints are
enforced by a linear-time scan of classfiles.

	Introduction
	Motivation
	Discretionary Capability Confinement
	Threat Model
	Type Constraints
	Addressing the Security Challenges

	Confinement Properties
	Featherweight JVM
	Confinement Theorem

	Extensions and Variations
	Accommodating Other Language Constructs
	Modular Enforcement of Hereditary Mutual Suspicion

	Concluding Remarks
	Implementation Experience
	Source-Level Annotations
	Type Checkers

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

