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Abstract. Timing side channels are a serious threat to the security of
cryptographic algorithms. This paper presents a novel method for the
timing-sensitive analysis of information flow in synchronous hardware
circuits. The method is based on a parameterized notion of confiden-
tiality for finite transition systems that allows one to model information
leakage in a fine-grained way. We present an efficient decision procedure
for system security and apply it to discover timing leaks in nontrivial
hardware implementations of cryptographic algorithms.

1 Introduction

Timing side channels are a serious threat to the security of cryptographic al-
gorithms [4, 12, 18]. By analyzing the running times of algorithms such as RSA

decryption, an attacker may be able to deduce information about the secret key
used, possibly even recovering the key in its entirety. Several countermeasures
against this threat have been proposed, including blinding and randomization
techniques. While these techniques successfully defeat certain known attacks, it
is difficult to argue their completeness, in the sense that they defeat all attacks
that exploit timing information.

One systematic and complete countermeasure for preventing timing attacks
is to ensure that the algorithms’ running times are independent of the secrets
processed. Agat [1] pursues this approach by giving a security type system for
a simple imperative programming language. If a program can be assigned a se-
curity type, then its running times are independent of the secrets it computes
with, and hence do not reveal this confidential information. This is shown by
proving the soundness of the type system with respect to a semantic notion of se-
cure information flow. Although this result (as well as other approaches that use
programming language-based models [29, 22, 3]) provides an attractive analysis
method, the timing model used is based on a high-level language and is therefore
too simplistic. Indeed, if the timing behavior of the underlying hardware is not
accurately modeled, it is unclear what is gained from such a formal analysis.
Unfortunately, providing precise timing models for today’s processors seems out
of reach. Giving upper bounds for the real-time behavior of multi-purpose pro-
cessors is already a daunting task [20] and is still not sufficient for proving the
absence of timing leaks.
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In this paper, we approach the problem on a different level of abstraction.
We focus on special-purpose hardware implementations of cryptographic algo-
rithms, which are particularly important in resource-critical application domains
[24]. We develop a method for the information flow analysis of synchronous
(clocked) hardware circuits. To this end, we define RI/RO-security, a param-
eterized and timing-sensitive notion of security for Mealy machines, in which
each transition corresponds to one clock tick. RI/RO-security can be instanti-
ated to standard noninterference definitions, but it can also be used to express
that only partial information on each confidential input is revealed through the
system’s observable behavior. In system runs of arbitrary length, this partial in-
formation can accumulate. We show that the guarantees of RI/RO-security can
be combined with assumptions on the environment to derive an upper bound
on the number of distinguishable output behaviors, a measure for what an at-
tacker may learn about the processed secrets. We develop efficient algorithms
for deciding whether a finite-state system is RI/RO-secure. For deterministic
systems, we reduce this to a reachability problem for a special kind of prod-
uct automaton. In the nondeterministic case, we reduce this to a generaliza-
tion of the Partition Refinement Problem. We also provide a compositional-
ity result as a first step to scaling-up the analysis method to more complex
designs.

Finally, we report on initial experimental results using our method. We have
encoded our decision procedures in an off-the-shelf model checker and used it
to discover subtle timing side channels in a textbook hardware implementation
of a finite-field exponentiation algorithm. The synchronous hardware descrip-
tion language Gezel [25] provides the link between our analysis method and
concrete hardware implementations. Namely, Gezel allows one to specify syn-
chronous circuits in terms of automata, and it comes with a tool for translating
the designs into a subset of the industrial-strength hardware description lan-
guage Vhdl. The translation is cycle-true, which means that it preserves the
timing behavior within the granularity of clock ticks. Moreover, the output is
synthesizeable, i.e. it can be mapped to a physical implementation. Hence, the
security guarantees obtained using our analysis method translate into guarantees
for real-world hardware implementations.

Our main contributions are twofold. First, we extend well-studied notions
of information flow security to a model that is appropriate for the analysis of
timing side channels in hardware implementations. Second, we develop efficient
algorithms for deciding whether a system is secure and we show that they can
be practically applied to nontrivial circuits.

The remainder of this paper is structured as follows. In Section 2, we introduce
our automaton model and define security. In Section 3, we develop reduction
techniques and efficient algorithms for deciding whether an automaton has secure
information flow. We report on experimental results in Section 4, before we
present related work and draw conclusions in Sections 5 and 6.
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2 The Scenario

2.1 Machine Model

We use Mealy machines as a model for hardware circuits that are synchronized
by a global clock signal. We assume that one transition corresponds to one clock
cycle and that, during each clock cycle, input signals are read and output signals
generated. Furthermore, we assume input enabledness, that is, the machine can
always react to every possible input. While hardware is typically designed to be
deterministic, nondeterminism is useful too, for example, for modeling require-
ments, and hence we will keep our presentation general wherever possible. As
there is no standard notion of a nondeterministic Mealy machine, we use the
term automaton with output.

Definition 1. An automaton with output is a 5-tuple M = (S, Σ, Γ, δ, s0),
where S is a finite set of states, Σ is a finite input alphabet, Γ is a finite output
alphabet, δ ⊆ S × Σ × Γ × S is a transition relation, and s0 ∈ S the initial
state. We call M deterministic if for every (s, a) ∈ S × Σ there is at most one
(b, s′) ∈ Γ × S with (s, a, b, s′) ∈ δ.

In a transition (s, a, b, s′), a denotes the input and b denotes the output. We will
sometimes use the shorthand δ(s, a, b) to denote the set {s′ | (s, a, b, s′) ∈ δ}. As
noted above, we require the transition relation to be total, i.e. for all s ∈ S and
a ∈ Σ, there is at least one b ∈ Γ and one s′ ∈ S with (s, a, b, s′) ∈ δ. We do not
consider ε-transitions as they contradict the assumption that input and output
are provided during each clock cycle. In the setting of hardware circuits, Σ and
Γ will be of the form {0, 1}n, for some n ∈ NNN , and represent the values of all
ingoing and outgoing signals.

2.2 Defining Security

We specify security with respect to an observer of the system. An observer is
modeled in terms of its capabilities for distinguishing different system behaviors.
If all system runs are indistinguishable, even when the system computes with dif-
ferent secret data, then the system is intuitively secure. Conversely, information
may leak if the system shows distinguishable behavior while processing different
secrets.

Distinguishing atomic inputs/outputs. The fact that two outputs a, b ∈ Γ are
indistinguishable is captured by an equivalence relation RO ⊆ Γ × Γ . We say
that a and b are observationally equivalent, or simply RO-equivalent, if and only
if a RO b. In other words, if the system outputs x ∈ Γ , an observer can only
deduce the RO-equivalence class [x]. Similarly, we use the equivalence relation
RI ⊆ Σ × Σ to model to what extent an observer can distinguish the input of
the system.

In the following, IdX denotes the identity on a set X and AllX denotes X ×X .
For relations R ⊆ Γ1 × Γ1 and Q ⊆ Γ2 × Γ2, we overload notation and define
R×Q ⊆ (Γ1 ×Γ2)2 as (r1, q1) (R × Q) (r2, q2) if and only if r1 R r2 and q1 Q q2.
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Example 1. The relation RO = AllΓ formalizes an observer who cannot distin-
guish between any two system outputs. In contrast, the relation RO = IdΓ mod-
els an observer who can determine the (singleton) IdΓ -equivalence class of the
output, or equivalently, who can see the entire output. We can also model more
fine-grained capabilities. Consider, for example, Γ = Γ1 ×Γ2, with Γ1 = {0, 1}n,
and the predicate ΨΓ1 = {(a, b) ∈ Γ1 × Γ1 | ‖a‖ = ‖b‖}, where ‖x‖ denotes the
Hamming weight of x, i.e. the number of bits set to 1. The relation ΨΓ1 × IdΓ2

models that an observer can see the entire Γ2-component of the output, but can
only deduce the Hamming weight (determine the ΨΓ1 -equivalence class) of the
Γ1-component. �

Expressing security. Two states of a system are observationally equivalent if ev-
ery output from one state can be matched by an RO-equivalent output from the
other state whenever the corresponding inputs are RI -equivalent. We call the
observational equivalence of states RI/RO-equivalence, which is a partial equiva-
lence relation (Per), i.e. symmetric and transitive, but not necessarily reflexive.
If the initial state of a system is not observationally equivalent to itself, then
running the system on RI -equivalent input sequences may lead to observable
differences in the system behavior. This constitutes a refinement of an observer’s
knowledge about the input (modeled by RI), and thus is an information leak. If,
on the other hand, the initial state is observationally equivalent to itself, then
we say that the system is RI/RO-secure. The idea that security can be modeled
as a system being observationally equivalent to itself is formalized in the Per

model of secure information flow [23].
The next section gives a formal account of these ideas.

2.3 A Parameterized Notion of Observational Equivalence

For the systems under consideration, we model observational equivalence of
states by using a parameterized notion of strong bisimulation. This will capture
timing behavior, as every transition corresponds to a tick of the global clock,
and strong bisimulation equivalence allows one to distinguish process behaviors
that differ in the number of transitions leading to some output.

Definition 2 (RI/RO-Equivalence). Let M = (S, Σ, Γ, δ, s0) be an automa-
ton with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence relations. We
define �RI

RO
as the union of all symmetric and transitive relations R on S with

the property that for all s1, s2 ∈ S:

s1 R s2 ⇒ ∀a1, a2 ∈ Σ.(a1 RI a2 ⇒ ∀(s1, a1, o1, s
′
1) ∈ δ.

∃(s2, a2, o2, s
′
2) ∈ δ.

s′1 R s′2 ∧ o1 RO o2).
(1)

Two states s1, s2 ∈ S are RI/RO-equivalent iff s1 �RI

RO
s2.

Definition 3 (RI/RO-Security). Let M = (S, Σ, Γ, δ, s0) be an automaton
with output, and let RI ⊆ Σ2 and RO ⊆ Γ 2 be equivalence relations. Then M is
RI/RO-secure iff s0 �RI

RO
s0.
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It is easy to see that �RI

RO
is a partial equivalence relation on S and that �RI

RO

itself satisfies Property (1) of Definition 2.
We will now give several instances of RI/RO-security. We first show how

it encompasses a number of security notions from language-based information-
flow (for an overview of this area, see [21]). Afterwards, we instantiate RI/RO-
security to specify partial information flow, which will prove to be useful in our
experiments.

In the following examples, we assume two security domains, high and low,
and we restrict the flow of information from the high domain to the low domain.
A common assumption in programming language-based approaches is that each
variable is classified as either high or low and that an observer may only see the
values of the low variables. In our setting, input and output signals take the role
of variables and have high and low components. This intuition is reflected by
assuming that Σ = ΣH ×ΣL, where ΣH and ΣL represent the values of all high
and low input signals, respectively. Similarly, we assume that Γ = ΓH × ΓL.
The policy that no information flows from the high into the low domain can
then be formalized in the framework of RI/RO-equivalence by choosing RI =
AllΣH × IdΣL and RO = AllΓH × IdΓL . When Σ is understood, we write IdL as
an abbreviation for IdΣL . We abbreviate analogously for Γ , AllL and the high
domain.

Example 2. In the deterministic case, �AllH×IdL

AllH×IdL
represents a notion of obser-

vational equivalence closely related to Agat’s Γ -bisimulation [1]. In our model,
every transition takes one time unit, while in Agat’s approach the duration of
each transition is given by a label representing the primitive operations of the
underlying machine. �

Example 3. In the nondeterministic case, �AllH×IdL

AllH×IdL
represents a possibilistic no-

tion of security similar to Volpano and Smith’s concurrent noninterference [26],
which has been used to model the security of multithreaded programs in the
presence of a purely nondeterministic scheduler. Note that our definition is more
restrictive with respect to timing, as it is based on strong bisimulation equiva-
lence as opposed to the weak bisimulation-based concurrent noninterference. �

In addition to capturing variants of previously studied notions of security, RI/
RO-equivalence allows one to express more fine-grained forms of information
flow.

Example 4. Consider the binary predicate ΨΣ = {(a, b) ∈ Σ × Σ | ‖a‖ = ‖b‖},
where Σ = {0, 1}n and ‖x‖ denotes the Hamming weight of x. Suppose we have
s0 �Ψ

IdΓ
s0, where s0 is the initial state of a deterministic system. Then the

system shows the same behavior for each pair of (and hence, by transitivity of
�Ψ

IdΓ
, for all) input traces a1 · · · am and b1 · · · bm, where ‖ai‖ = ‖bi‖ for every

i ∈ {1, . . . , m}. �

The converse of Example 4 is more subtle. An observable difference between
two output traces of a deterministic system implies that the input traces’ Ham-
ming weight differs at some point in time. While the leakage of a single input’s
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Hamming weight might be acceptable, the leakage of the Hamming weight of all
symbols in the input trace can be used to encode arbitrary information.

Example 5. Consider an automaton M with a single state s0, alphabets ΣH =
ΣL = Γ = {0, 1}, and transitions {(s0, (h, l), h, s0) | h, l ∈ {0, 1}}. M maps every
high input h to the identical output. Still, M is ΨH × IdL/IdΓ -secure. �

To assess how much can be learned by observing the behavior of a RI/RO-secure
system, we need to consider the environment that provides it with high input.

2.4 Environment Behavior

In this section, we consider the interaction of a deterministic automaton M =
(S, ΣH × ΣL, Γ, δ, s0) with an environment that provides it with high input. We
will show how to combine security guarantees for M with restrictions on the
environment to give bounds on the number of distinguishable behaviors. This is
a useful measure for assessing the information leakage from the high to the low
domain since, for a deterministic system and an arbitrary low input, variations
in the output are necessarily due to variations in the high input. Thus, a greater
number of distinguishable output traces means that more information about the
high input is leaked.

We specify the high environment as a subset E ⊆ Σ∗
H of high input traces

of the form
⋃∞

i=0 ◦i
j=1Aj , where Aj ⊆ ΣH represents the set of possible in-

puts from the high environment at time instant j and ◦ denotes word conca-
tentation. Dually to the requirement that M is input enabled, we require the
high environment to provide an input at every clock cycle. For an arbitrary
trace w ∈ Σ∗

L, a high environment E, and RO ⊆ Γ × Γ , we denote the set
of distinguishable behaviors by BM,RO(E, w). Concretely, for (s, a, b, s′) ∈ δ,
we define λRO (s, a) = [b], where [b] denotes the RO-equivalence class of b.
We canonically extend λRO to a mapping from input traces to R∗

O-equivalence
classes of output traces. Here, the relation R∗

O is defined as
⋃∞

i=0 Rk
O where

a1 · · · ak Rk
O b1 · · · bk iff ai RO bi, for all i ∈ {1, . . . , k}. Now we can formally

define BM,RO(E, w) = {λRO(s0, 〈v, w〉) | v ∈ E, |w| = |v|}, where | · | is the
length function and where 〈v, w〉 denotes the trace in (ΣH × ΣL)∗ obtained by
pairing corresponding elements of v and w.

Recall that if a Q × IdL/RO-secure deterministic system is provided with
input from a high environment E in which all traces of the same length are
Q∗-equivalent, then it will produce only R∗

O-equivalent output. That is, |BM,RO

(E, w)| = 1 for every w ∈ Σ∗
L. If we weaken the requirement that the input is

always Q-equivalent, the number of distinguishable behaviors may increase. The
next theorem gives an upper bound for this number.

Theorem 1. Let M = (S, ΣH ×ΣL, Γ, δ, s0) be a deterministic automaton with
output, let Q ⊆ ΣH × ΣH and RO ⊆ Γ × Γ be equivalence relations, and let
E =

⋃∞
i=0 ◦i

j=1Aj ⊆ Σ∗
H be a high environment. If M is (Q × IdL)/RO-secure,

then for all w ∈ Σ∗
L we have

|BM,RO(E, w)| ≤ Π∞
j=1|Aj/Q| .
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Proof. It suffices to prove |{λRO(s0, 〈v, w〉) | v ∈ ◦k
j=1Aj}| ≤ Πk

j=1|Aj/Q| for
all w ∈ Σk

L, as taking the limit k → ∞ then leads to the desired result. We define
the mapping λ′

w : ◦k
j=1Aj/Qk → {λRO(s0, 〈v, w〉) | v ∈ ◦k

j=1Aj} by λ′
w([u]) =

λRO (s0, 〈u, w〉). λ′
w is well-defined since λRO(s0, 〈v, w〉) = λRO (s0, 〈v′, w〉) for

all v, v′ with v Qk v′. Note that λ′
w is surjective and that the range of a func-

tion is of cardinality less or equal than its domain, hence |{λRO(s0, 〈v, w〉) | v ∈
◦k

j=1Aj}| ≤ |◦k
j=1 Aj/Qk | holds. We conclude with |◦k

j=1 Aj/Qk | = Πk
j=1|Aj/Q|.�

Note that the mapping λ′
w from the proof of Theorem 1 expresses the correpon-

dence between equivalence classes of high input and output behaviors. The fact
that its domain is independent of w shows that an attacker cannot learn more
than the Q∗-equivalence class of a fixed high input, even if he runs the system
with all possible low inputs.

Example 6. If a system is AllH × IdL/AllH × IdL-secure (see Example 3) and is
provided with input from a high environment E =

⋃∞
i=0 ◦i

j=1Aj ⊆ Σ∗
H , then the

number of distinguishable output behaviors is Π∞
i=1|Aj/AllH | = 1. That is, the

system can be securely operated in an arbitrary high environment. �

Example 7. Consider again the ΨH × IdL/IdΓ -secure automaton M from Exam-
ple 5. The number of possible system behaviors is unbounded, as |{0, 1}/ΨH | = 2
and Π∞

j=1|{0, 1}/ΨH | diverges. This estimation is tight in the sense that an arbi-
trary amount of information can be leaked. �

Example 8. Consider an ΨH × IdL/AllH × IdL-secure circuit in which the high
component is initialized during the first clock tick and subsequent high input
is 0. The environment here is given by E =

⋃∞
i=0 ◦i

j=1Aj where A1 = ΣH

and Aj = {0} for j > 1. Then, for each low input w, the system shows at
most |ΣH/ΨH | distinguishable behaviors, each of which corresponds to one ΨH -
equivalence class. This correspondence is given by the mapping λ′

w from the
proof of Theorem 1. Thus at most the secret input’s Hamming weight is leaked
during execution. �

3 Deciding RI/RO-Equivalence

In this section, we reduce the question of deciding RI/RO-equivalence to tra-
ctable, well-understood problems and we analyze the complexity of the resulting
algorithms. We start with the case when the automata are deterministic, which
turns out to be very efficiently solvable.

3.1 Deterministic Case

We first reduce the problem of deciding the RI/RO-equivalence of states to a
reachability problem for a special type of product automaton. This may seem
surprising as, in general, information flow properties are properties of sets of
traces rather than properties of individual traces [16]. The key idea behind our
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construction is that every trace of the product automaton corresponds to a pair
of traces of the original system. Taking the transitivity of RI/RO-equivalence
into account, it suffices to analyze each individual trace of the product automaton
in order to establish RI/RO-security for the original system.

Definition 4. Let Mi = (Si, Σ, Γ, δi, s0,i), with i ∈ {1, 2}, be deterministic au-
tomata with output, and let RI and RO be equivalence relations on Σ and Γ , re-
spectively. Then M1×RI

RO
M2 is the automaton (S1×S2, RI , {0, 1}, δ′, (s0,1, s0,2)),

where

δ′ = {((s1, s2), (a, b), χ, (t1, t2)) | a RI b ∧ (χ = if c R0 d then 1 else 0) ∧
(s1, a, c, t1) ∈ δ1 ∧ (s2, b, d, t2) ∈ δ2} .

A falsifying state is a state with an outgoing transition labeled with 0. We now
show that deciding observational equivalence of states is equivalent to determin-
ing whether a falsifying state can be reached in M ×RI

RO
M .

Theorem 2. Let M = (S, Σ, Γ, δ, s0) be a deterministic automaton with output,
RI ⊆ Σ × Σ and RO ⊆ Γ × Γ equivalence relations, and let s1, s2 ∈ S. Then

s1 �RI

RO
s2 ⇔ no falsifying state is reachable from (s1, s2) in M ×RI

RO
M .

Proof. (⇒) We show that no input w ∈ (RI)∗ can trigger a transition labeled
with 0. We proceed by induction on the length of w. The assertion is clear
for w = ε. Suppose now that w = (a, b)w′. As s1 �RI

RO
s2 and δ is total and

deterministic, there are unique transitions (s1, a, c, t1) and (s2, b, d, t2) ∈ δ, with
t1 �RI

RO
t2 and (c, d) ∈ RO. Hence M ×RI

RO
M outputs 1 on this transition and

we apply the induction hypothesis to (t1, t2) and w′.

(⇐) We show that Q = {(t1, t2) | (t1, t2) can be reached from (s1, s2)} fulfills
(1) of Definition 2. Pick (t1, t2) ∈ Q and (a, b) ∈ RI . Since δ is total and deter-
ministic, there are unique transitions (t1, a, c, t′1) and (t2, b, d, t′2) ∈ δ. Clearly,
(t′1, t

′
2) can also be reached from (s1, s2) in M ×RI

RO
M and, as no transition

labeled with 0 can be triggered by assumption, (c, d) ∈ RO holds. Hence Q is
contained in the union of all relations with (1) of Definition 2. �

This theorem justifies a simple decision procedure where we decide RI/RO-
equivalence by searching the product automaton from Definition 4. We use
breadth-first search, as it will find a shortest path to a falsifying state.

Corollary 1. Let M = (S, Σ, Γ, δ, s0) be a deterministic automaton with output,
let s1, s2 ∈ S, and let RI ⊆ Σ and RO ⊆ Γ be equivalence relations. Then
s1 �RI

RO
s2 can be decided in time O(|S|2|RI |), given the product automaton

M ×RI

RO
M .

Proof. Breadth-first search can be implemented in time O(|V |+ |E|) on a graph
G = (V, E). M ×RI

RO
M has |S|2 states and |S|2|RI | transitions. This yields

an O(|S|2|RI |) upper bound for the time complexity of deciding RI/RO-
equivalence. �
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3.2 Nondeterministic Case

A straightforward extension of the above reduction does not appear possible in
the nondeterministic case. Instead, we use the Partition Refinement Problem
[19] as a starting point for deciding RI/RO-equivalence.

A partition of a set S is a set π = {A1, . . . , An} of pairwise disjoint blocks with
the property that

⋃n
i=1 Ai = S. A refinement of a partition π is a partition π′

such that every block of π′ is contained in some block of π. A partition π can also
be formalized in terms of an equivalence relation Rπ, where the elements of π
correspond to the equivalence classes of Rπ. The Partition Refinement Problem
is, given a partition π and a property P , to find the coarsest refinement π′ of
π such that π′ fulfills P . This is equivalent to finding the greatest equivalence
relation Rπ′ , with Rπ′ ⊆ Rπ, such that Rπ′ satisfies P .

Since RI/RO-equivalence is a partial equivalence relation, Per for short, we
need to generalize the Partition Refinement Problem. The Partial Partition Re-
finement Problem is, given a partial equivalence relation R and a property P , to
find the coarsest refinement R′ of R, such that R′ satisfies P . We next show that
the problem of deciding RI/RO-equivalence can be cast as an instance of this
problem. Then, following the ideas in [11], we compute this coarsest refinement
as the maximal fixed point of a monotone mapping Φ.

The domain of a partial equivalence relation R is the set dom (R) = {x ∈
S | x R x} on which R is reflexive, and hence an equivalence relation. A partial
partition of a set S is a pair 〈{A1, . . . , An}, C〉, where the Ai are pairwise disjoint
blocks with

⋃n
i=1 Ai ∪ C = S and

⋃n
i=1 Ai ∩ C = ∅. There is a one-to-one corre-

spondence between Pers R of a set S and partial partitions 〈{A1, . . . , An}, C〉,
where the Ai correspond to the equivalence classes of R, and C = S \ dom(R).
As notation, we denote this correspondence as 〈{A1, . . . , An}, C〉 =̂ 〈R, C〉. Let
π1 = 〈{A1, . . . , An}, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 be partial partitions of
S. We define π1 ≤ π2 to hold whenever C1 ⊇ C2 and if every block of π1 is
contained in some block of π2. The relation ≤ is a partial order on the set of
all partial partitions of a set S. In fact, it is also a lattice when we define the
meet � as 〈{A1, . . . , An}, C1〉 � 〈{B1, . . . , Bm}, C2〉 = 〈{Ei,j}, C1 ∪ C2〉, with
Ei,j = Ai ∩ Bj for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

In the remainder of this subsection, let M = (S, Σ, Γ, δ, s0) be a nondeter-
ministic automaton with output, and let RI ⊆ Σ × Σ and RO ⊆ Γ × Γ be
equivalence relations.

Definition 5 (RI/RO-partition). A RI/RO-partition of S is a partial parti-
tion 〈{A1, . . . , An}, C〉 of S, with

∀i, j ∈ {1, . . . , n}. ∀s1, s2 ∈ Ai. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .

δ(s1, a1, x) ∩ Aj �= ∅ ⇔ δ(s2, a2, x) ∩ Aj �= ∅ ∧
δ(s1, a1, x) ∩ C = δ(s2, a2, x) ∩ C = ∅ ,

(2)

where δ(s, a, x) denotes the set
⋃

c∈x δ(s, a, c). A RI/RO-partition π of S is max-
imal if π ≥ π′ holds for every RI/RO-partition π′ of S.
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We adapt (2) of Definition 5 to a mapping on partial partitions whose fixed points
are precisely the RI/RO-partitions of S. To this end, let π=〈{A1, . . . , An}, C1〉 =̂
〈R1, C1〉 be a partial partition of S. We define Φ(π) := 〈R2, S \dom(R2)〉, where
s1 R2 s2 if and only if

s1 R1 s2 ∧ ∀j ∈ {1, . . . , n}. ∀(a1, a2) ∈ RI . ∀x ∈ Γ/RO .

δ(s1, a1, x) ∩ Aj �= ∅ ⇔ δ(s2, a2, x) ∩ Aj �= ∅ ∧
δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅ .

Lemma 1. Let 〈R, C〉 be a partial partition of the set of states S. Then the
following are equivalent:

1. 〈R, C〉 is a fixed point of Φ.
2. 〈R, C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

The proof of Lemma 1 is given in Appendix A. From Lemma 1, it follows that the
relation �RI

RO
is a maximal fixed point of the function Φ. In particular, �RI

RO
itself

satisfies (1) of Definition 2 and is thus contained in every maximal fixed point
of Φ. Conversely, as every fixed point of Φ satisfies Property (1), the maximal
fixed point is contained in �RI

RO
, the union of all such relations.

The following theorem gives a constructive way to derive maximal RI/RO-
partitions.

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S, namely,
π∗ = Φn(〈{S}, ∅〉), for some n ∈ NNN .

Proof (Sketch). First observe that Φ is monotone with respect to ≤. Now since
the set of partial partitions of S is a complete lattice, it follows from the Knaster-
Tarski fixed point theorem that a unique maximal fixed point of Φ exists. By
Lemma 1, this fixed point is also a maximal RI/RO-partition. The full proof
details are given in Appendix A. �

Theorem 3 provides the basis of an efficient algorithm for deciding the RI/RO-
equivalence of states.

Corollary 2. For two states s1, s2 ∈ S we can decide s1 �RI

RO
s2 in time

O(|S|4 · |RI | · |Γ/RO |) ,

under the assumption that δ(s, a, x) =
⋃

c∈x δ(s, a, c) is given as an array indexed
by s ∈ S, a ∈ Σ, and x ∈ Γ/RO .

Proof. It suffices to show that a single application of Φ can be computed in
time O(|S|3 · |RI | · |Γ/RO |). Due to Theorem 3, a fixed point can be obtained by
iteratively applying Φ. As Φ(π) ≤ π for every partition π, this process terminates
within at most |S| applications.
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We assume S = {s1, . . . , sn} and that the equivalence class of each state
is given by a representative si with minimal i, and by a distinguished symbol
∗ �∈ S if the state is outside the domain of the relation. For example, in the case
of π� = 〈{S}, ∅〉, the canonical representative for every state is s1. Suppose now
we are given a partial partition π = 〈R, C〉 and we want to compute Φ(π) =
〈R′, C′〉. To decide whether two states si and sj relate in R′, we perform the
following procedure: for all (a1, a2) ∈ RI , and for all x ∈ Γ/RO , we compare
the corresponding sets of R-equivalence classes of the target states. If all of the
corresponding sets coincide, si and sj are in the same R′-equivalence class. By
iterating i stepwise from 1 to n, we perform this check for every j ∈ {1, . . . , n}.
Under this ordering, the canonical representative of the R′-equivalence class of
each sj is the si with minimal index such that equivalence of si and sj can be
established, and ∗ if there is no such si. In this way, each application of Φ can
be computed in time O(|S|3 · |RI | · |Γ/RO |). �

3.3 Compositionality

Compositionality is a prerequisite for scaling our analysis method to larger sys-
tems. In this section we use the example of sequential composition to show how
the guarantees obtained from analyzing sub-circuits can be combined to a guar-
antee for the entire system. To this end, we first define an operator that connects
the output signals of a machine M1 to the input signals of a machine M2. M2’s
transition function is total, hence communication never blocks. This notion of
composition models a sequential connection of two synchronous circuits with a
common clock.

Definition 6. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let Γ1 ⊆ Σ2. Then M1 ·M2 is the automaton (S1×S2, Σ1, Γ2, δ

′, (s0,1,
s0,2)), where

δ′ = {((s1, s2), a, b, (t1, t2)) | ∃c ∈ Γ1. (s1, a, c, t1) ∈ δ1 ∧
(s2, c, b, t2) ∈ δ2} .

If the observational equivalence relation on the input alphabet of M2 is coarser
than the one on the output alphabet of M1, then we can safely compose the two
machines, as the following theorem shows.

Theorem 4. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let RI ⊆ Σ1 × Σ1, RO ⊆ Γ1 × Γ1, QI ⊆ Σ2 × Σ2, and QO ⊆ Γ2 × Γ2
be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If Γ1 ⊆ Σ2, RO ⊆ QI,
s1 �RI

RO
s2, and t1 �QI

QO
t2, then

(s1, t1) �RI

QO
(s2, t2) in M1 · M2 .

The proof of Theorem 4 is given in Appendix A.

Example 9. Suppose Mi = (Si, Σi, Γi, δi, s0,i), for i ∈ {1, 2}, are automata with
output, Σ1 = ΣH × ΣL, and Γ1 = Σ2 = {0, 1}n. If the output of M1 is not
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distinguishable with respect to the Hamming weight, i.e. s0,1 �AllH×IdL

Ψ s0,1,
(where Ψ = {(a, b) ∈ {0, 1}n | ‖a‖ = ‖b‖}) and if M2 does not leak anything
other than possibly the Hamming weight, i.e. s0,2 �Ψ

IdΓ2
s0,2, then the composi-

tion M1 · M2 does not leak any information, i.e. the initial state relates to itself
under �AllH×IdΓ2

IdL
. �

Analogous results hold for the parallel composition of two circuits.

4 Experimental Results

Below we report on two case studies: a simple circuit for bit-serial multiplica-
tion of nonnegative integers and a circuit for exponentiation in the field F2k .
Exponentiation over F2k is relevant, for example, in the generalized ElGamal
encryption scheme, where decryption consists of one exponentiation and one
multiplication step [17]. We implemented and tested both circuits in the hard-
ware description language Gezel. Instead of implementing a search procedure
by hand, we used the symbolic model checker Smv to automate the search on
the product automaton from Definition 4.1 Note that we translated the Gezel

implementations to the input language of Smv by hand. However, the semantic
gap between both languages is so small that an automated translation would be
straightforward.

4.1 The Circuits

Bit-serial multiplication. For multiplying two natural numbers m and n bitwise,
consider the representation n = Σk−1

i=0 ni2i, where ni denotes the ith bit of n.
The product m · Σk−1

i=0 ni2i can be expanded to

(. . . ((nk−1 · m) · 2 + nk−2 · m) · 2 + . . . ) · 2 + n0 · m ,

which can easily be turned into an algorithm: starting with p = 0, one iterates
over all the bits of n, beginning with the most significant bit. If ni = 1, one
updates p by adding m and then doubling p’s value. Alternatively, if ni = 0, one
updates p by just doubling its value. At the end of the loop, p = m · n.

We implemented two versions of this algorithm. In the first version, the dou-
bling and adding operations each take one clock cycle. Hence, the running time
reflects the number of 1-bits in n. In the second version, we introduce a dummy
step whenever no addition takes place. In this way, the running time is indepen-
dent of the operands. In our Smv implementations, the input signals are called
hi_in and lo_in and they are initialized during the first clock cycle with the
values of n and m, respectively. Input values of subsequent cycles are ignored.
We use two output signals: one for the result p and a flag done, which signals
termination.
1 The Gezel and Smv-code is given in the accompanying technical report [13].
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Exponentiation in a finite field. We analyzed a hardware implementation of
the finite field exponentiation algorithm from [6]. Basically, it consists of the
following three building blocks:

1. To compute the exponentiation of a field element x with exponent a =
Σn−1

i=0 ai2i, one iterates over all bits of the exponent

xa = (. . . (((xan−1 )2 · xan−2)2 · xan−3)2 · . . . )2 · xa0 . (3)

In finite fields, every element x is represented by the coefficients of a poly-
nomial, and thus each square and each multiplication operation in Equation
3 is again implemented by a loop.

2. Multiplication of polynomials q and x = Σr−1
j=0xjT

j is computed using the
expansion (. . . ((xr−1 · q) · T + xr−2 · q) · T + . . . ) + x0 · q in a loop similar to
the one for bit-serial multiplication.

3. At the bit level, multiplication by T of a polynomial represented by coeffi-
cients s = (sr−1, . . . , s0) can be implemented as follows. If sr−1 = 0, left-shift
s by one. If sr−1 = 1, left-shift s by one and XOR the result with the coef-
ficients of the field polynomial.

In our Smv-implementation of this exponentiation algorithm, the input signals
hi_in and lo_in are initialized during the first clock cycle with a and x, respec-
tively. Input values of subsequent cycles are ignored. We use two output signals,
p and done, to represent the result xa and termination, respectively.

4.2 Security Properties

We analyzed the multiplication and the exponentiation circuits from Section 4.1
with respect to two different security properties.

Property 1. We specify that a circuit’s running time is independent of the con-
fidential part of the input, the input signal hi_in. Recall that, in the case of
serial multiplication, hi_in and lo_in are initialized with the operands n and
m, respectively. In the case of exponentiation, hi_in and lo_in are initialized
with the exponent a and the basis x, respectively. For verifying that the execu-
tion time is independent of the high input, we are only interested in when the
computation terminates, that is, when the flag done is set, and we ignore all
other output. This is specified by the relation �AllΣH

×IdΣL

AllΓH
×IdΓL

. Here, ΣH = {0, 1}k

denotes the range of hi_in, and ΣL = {0, 1}l denotes the range of lo_in. The
done-flag ranges over ΓL = {0, 1}, and ΓH stands for all output that is not
considered.

Figure 1 demonstrates how the product construction of Definition 4 can be
encoded in a few lines of Smv-code. The system to be analyzed is a module that
we call circuit, which we instantiate twice in line 4. Both instances, sys1 and
sys2, are provided with the same low input (as specified by IdΣL), and are pro-
vided with all possible combinations of high inputs (as specified by AllΣH ). This
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1 MODULE main
2 VAR
3 lo,hi1,hi2 : array (SIZE-1)..0 of boolean;
4 sys1 : circuit; sys2 : circuit;
5 ASSIGN
6 sys1.lo_in:=lo; sys1.hi_in:=hi1;
7 sys2.lo_in:=lo; sys2.hi_in:=hi2;
8
9 SPEC !EF(!sys1.done=sys2.done)

Fig. 1. Product construction in Smv

is reflected in lines 6 and 7. In fact, all such input combinations are considered,
as no assignments are made to the variables lo, hi1, and hi2.

Reachability of a falsifying state of the product automaton corresponds to
a violation of the Ctl-formula !EF(!sys1.done=sys2.done) in line 9. If we
reach a state in which one instance’s done flag is set before the other instance
terminates, then we have found a falsifying state of the product automaton. In
this case, Smv computes a counterexample, namely, two AllΣH ×IdΣL-equivalent
input sequences that lead to a distinguishable output.

Property 2. While it is easy to see that the running times of the multiplication
and exponentiation algorithms depend on the input to the hi_in-signal, it is less
clear what these dependencies are. We now specify and check a second property
that formalizes that the running time only depends on the Hamming weight of
the hi_in input (see also Example 4). That is, if the system is provided with
two input sequences that are indistinguishable with respect to the Hamming
weight of corresponding inputs to hi_in, then we require that the system has
equivalent timing behavior. This is specified by the relation �Ψ×IdΣL

AllΣH
×IdΓL

, where
Ψ = {(a, b) ∈ ΣH × ΣH | ‖a‖ = ‖b‖}. Here again, ΣH = {0, 1}k denotes the
range of hi_in, and ΣL = {0, 1}l denotes the range of lo_in. The done-flag
ranges over ΓL = {0, 1}, and ΓH stands for all output that is not considered.

The Smv-implementation of Property 2 follows along the same lines as the
implementation of Property 1. The only difference is that we modify the input
to hi_in of sys2 in line 7 of Figure 1 in the following way:

sys2.hi_in:=
case
hi1[0]+...+hi1[SIZE-1]=hi2[0]+...+hi2[SIZE-1] : hi2;
1 : hi1;

esac;

The variables hi1 and hi2 both take all possible values in their range. Only when
their Hamming weight coincides is sys2 fed with hi2. Otherwise its input is hi1.
In this way, we ensure that the inputs to both instances of circuit always have
the same Hamming weight and that all such combinations are considered.
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4.3 Results

Security Analysis. The table in Figure 2 presents the results of our analysis. The
first column corresponds to the serial multiplication algorithm where dummy
steps are inserted to avoid timing leaks. The second column corresponds to the
multiplication algorithm without dummy steps, and the third column contains
the results for the finite-field exponentiation algorithm. The rows correspond to
Properties 1 and 2 described in Section 4.2. An entry � denotes that the model
is secure with respect to the corresponding notion of security, whereas × denotes
that this is not the case.

The first column reflects what was intended by inserting dummy computation
steps into the design: the circuit’s running time is independent of the input to
the signal hi_in. In particular, as Example 6 shows, arbitrary input sequences
do not lead to distinguishable behavior.

The second column shows that the running time of the multiplication algo-
rithm without dummy computation depends on the input to the signal hi_in.
However, if the implementation is only run on inputs with equal Hamming
weight, then we cannot observe any differences between the running times. Ex-
ample 8 shows that, if the high environment provides input only during the first
clock cycle, no more than the Hamming weight of the input can be leaked. Note
that this actually holds in an arbitrary environment, as the circuit ignores input
during all but the first clock ticks.

The third column shows that the running time of the exponentiation algorithm
depends on the input to the signal hi_in, which corresponds to the exponent.
The result of the analysis with respect to inputs of equal Hamming weights is
surprising. When only considering loop 1 (see Section 4.1), one might expect the
same result as for serial multiplication. However, the second row states that this
is not the case: even when provided with input of the same Hamming weight, the
system shows differences in its running times. This means that information other
than the Hamming weight can be leaked. We have not yet undertaken a precise
characterization of this leak. The counterexample computed by Smv suggests
that this might be nontrivial: the first difference between the sequences of states
reached in both instances of circuit occurs after 20 steps, and distinguishable
output is not produced until 36 steps.

Performance. We performed our experiments on a 2.4 GHz machine with 3
gigabytes of RAM. In the case of serial multiplication, we were able to ana-
lyze designs up to 10 bits per operand within one minute. In the case of ex-
ponentiation, we were able to analyze designs with up to 3 bits per operand
within 2 minutes.2 For larger bit-widths the running times increased notably.
Note that these numbers were obtained by using Smv “out of the box”, that is,
without applying one of the many existing optimization techniques. We expect
a significant performance gain by tailoring the search procedure to our spe-

2 This corresponds to a state-space size of approximately 252 for the product automa-
ton.
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Multiplication
(padded) Multiplication Exponentiation

�AllH×IdL
AllH×IdL � × ×

�Ψ×IdL
AllH×IdL � � ×

Fig. 2. Results of Analysis

cific problem instance, for example by adopting abstraction techniques for ha-
ndling bit-vectors.

5 Related Work

Both timing-aware security definitions and decidability results exist in process
algebraic settings, e.g., [7, 15], to name just a few. Their standard model of com-
munication is event-based and differs significantly from our time-synchronous
model. Likewise, security definitions for process algebras usually restrict the
detection of secret events by low-level observers, while RI/RO-security aims
at protecting a stream of confidential data. While formal connection between
language-based and process algebraic approaches can be made [8], we focus on
methods from language-based security as they are more directly related to our
work.

Several authors use bisimulations to express timing-sensitive notions of secure
information flow, e.g., [29, 1, 22]. The use of arbitrary equivalence relations for
capturing partial information flow has been proposed in a timing-insensitive con-
text [2, 9]. In this context, the notion of independent composition [2] is related
to our product construction ×RI

RO
. RI/RO-security marries the timing-awareness

of the bisimulation-based approaches with the accuracy of the parameterized
approaches. In [10], a parameterized and timing-aware definition of secure infor-
mation flow is given. However, it does not allow for input sequences of arbitrary
length and it is unclear whether it can be efficiently checked. The idea of quanti-
fying information by the number of distinguishable behaviors has been proposed
by Lowe [15] as an over-approximation for Shannon’s information-theoretic mea-
sure.

Programming language-based approaches to counter timing leaks usually as-
sume infinite-state transition systems, which leads to undecidable analysis prob-
lems. One way to approximate undecidable security conditions is to use syntax-
driven techniques, such as security type systems. Several security type systems
for dealing with timing-sensitive notions of secure information flow for program-
ming languages have been proposed [1, 29, 22, 14, 3]. We exploit the fact that the
state spaces in our setting are finite to develop a method for efficiently deciding
system security.

Tolstrup et al. [28] present an information flow analysis method for the hard-
ware description language Vhdl that does not consider timing issues. A recent
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follow-up paper [27] also incorporates timing and provides a type-system to ap-
proximate a semantic definition of security. Analyzing hardware on the level of
Vhdl has the advantage of being very concrete, but it also means that one has
to deal with artifacts such as processes and δ-time. Our automata-based model
is more abstract and it allows for a clean separation of program semantics and
security definitions. Moreover, our approach has the advantage of an efficient
decision procedure.

6 Conclusions and Outlook

The results presented in this paper are both theoretical and practical. On the
theoretical side, we have developed a parametric notion of security for an au-
tomaton model for synchronous systems and have given algorithms and complex-
ity bounds for its decision problem. In the deterministic case, we have derived
quantitative bounds for the confidential information that a system may reveal to
an attacker. On the practical side, we have shown that our definitions encompass
a number of interesting security properties and applied our techniques to verify
(or detect timing leaks in) nontrivial hardware implementations of cryptographic
algorithms.

While the notion of RI/RO-security proposed appears to be a general and
useful parametric notion of information flow, counting distinguishable behaviors
provides only an approximate measure of the quantity of information that a
system may leak. It should not be difficult though to incorporate probability
distributions on the inputs to give more concrete, information-theoretic bounds,
e.g. along the lines of [5].

Another area for future work concerns algorithms and abstractions that can
help us manage both larger systems and those with infinite state-spaces. It would
also be interesting to use our security notions as a starting point for techniques
to automatically correct insecure systems.
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A Proofs

In the following, let M = (S, Σ, Γ, δ, s0) be a nondeterministic automaton with
output, and let RI ⊆ Σ × Σ and RO ⊆ Γ × Γ be equivalence relations.
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Lemma 1. Let 〈R, C〉 be a partial partition of the set of states S. Then the
following are equivalent:

1. 〈R, C〉 is a fixed point of Φ.
2. 〈R, C〉 is a RI/RO-partition of S.
3. R satisfies (1) of Definition 2.

Proof. (1. ⇒ 2.) The assertion follows by setting R1 = R2 = R in the definition
of Φ, and observing that two states s1 and s2 relate in R whenever they are
contained in the same set Ai of the corresponding partial partition.

(2. ⇒ 3.) Let s1 R s2, a1 RI a2, and (s1, a1, c1, s
′
1) ∈ δ. As δ(s1, a1, [c1])∩C = ∅,

we have s′1 ∈ δ(s1, a1, [c1])∩A for some equivalence class A of R. By hypothesis,
we also have δ(s2, a2, [c1])∩A �= ∅, and hence there is a transition (s2, a2, c2, s

′
2) ∈

δ with c1 RO c2 and s′1 R s′2.

(3. ⇒ 1.) Let 〈R, C〉 =̂ 〈{A1, . . . , An}, C〉 and Φ(〈R, C〉) = 〈R′, C′〉. It suffices
to show that R′ = R. The implication R′ ⊆ R follows directly from the definition
of Φ. To show that R ⊆ R′, choose s1 R s2 and a1 RI a2. If δ(s1, a1, x)∩Aj �= ∅,
then there is a (s1, a1, c1, s

′
1) ∈ δ with c1 ∈ x and s′1 ∈ Aj . As R satisfies (1) of

Definition 2, there is also a (s2, a2, c2, s
′
2) ∈ δ, with c2 ∈ x and s′2 ∈ Aj . Hence

δ(s2, a2, x) ∩ Aj �= ∅, and R ⊆ R′ follows. �

Theorem 3. There exists a unique maximal RI/RO-partition π∗ of S, namely,
π∗ = Φn(〈{S}, ∅〉), for some n ∈ NNN .

Proof. To apply the Knaster-Tarski fixed-point theorem, it suffices to show that
Φ is monotone. To this end, consider the partial partitions π1 = 〈{A1, . . . , An},
C1〉 =̂ 〈Q1, C1〉 and π2 = 〈{B1, . . . , Bm}, C2〉 =̂ 〈Q2, C2〉, where π1 ≤ π2. Fur-
thermore, let Φ(π1) = 〈Q′

1, C
′
1〉 and Φ(π2) = 〈Q′

2, C
′
2〉. We need to show that

s1 Q′
1 s2 implies s1 Q′

2 s2. Assume s1 Q′
1 s2. By the definition of Φ, this im-

plies s1 Q1 s2, which implies s1 Q2 s2. Furthermore, for all (a1, a2) ∈ RI ,
and for all x ∈ Γ/RO , we have δ(s1, a1, x) ∩ C1 = δ(s2, a2, x) ∩ C1 = ∅. As
C1 ⊇ C2, we also have δ(s1, a1, x) ∩ C2 = δ(s2, a2, x) ∩ C2 = ∅. Finally, let
(a1, a2) ∈ RI and x ∈ Γ/RO , and suppose s′1 ∈ δ(s1, a1, x) ∩ Bi. s′1 is also
contained in some Aj ⊆ Bi, as otherwise this would contradict the assumption
δ(s1, a1, x)∩C1 = ∅. Then, as s1 Q′

1 s2, we also have δ(s2, a2, x)∩Aj �= ∅. Hence
we conclude δ(s2, a2, x) ∩ Bi �= ∅. The proof that δ(s2, a2, x) ∩ Bi �= ∅ implies
δ(s1, a1, x) ∩ Bi �= ∅ follows along the same lines and concludes the proof of the
monotonicity of Φ.

As S is finite, the lattice of partial partitions of S is also finite and hence
complete. The Knaster-Tarski fixed-point theorem guarantees the existence of a
unique maximal fixed point π∗. We have Φ(π) ≤ π for every partial partition π
of S, and hence iteratively applying Φ to π� = 〈{S}, ∅〉 leads to the fixed point
π∗ = Φn(π�) after a finite number of steps n. �

Theorem 4. Let Mi = (Si, Σi, Γi, δi, s0,i), with i ∈ {1, 2}, be automata with
output and let RI ⊆ Σ1 × Σ1, RO ⊆ Γ1 × Γ1, QI ⊆ Σ2 × Σ2, and QO ⊆ Γ2 × Γ2
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be equivalence relations. Let s1, s2 ∈ S1 and t1, t2 ∈ S2. If Γ1 ⊆ Σ2, RO ⊆ QI,
s1 �RI

RO
s2, and t1 �QI

QO
t2, then

(s1, t1) �RI

QO
(s2, t2) in M1 · M2 .

Proof. Since s1 �RI

RO
s2 and t1 �QI

QO
t2, there are relations R1 ⊆ S1 × S1 and

R2 ⊆ S2 × S2 that satisfy Property (1) of Definition 2, where (s1, s2) ∈ R1
and (t1, t2) ∈ R2. It suffices to show that R1,2 := {((s, t), (s′, t′) | |(s, s′) ∈
R1 ∧ (t, t′) ∈ R2} also fulfills Property (1). To this end, let ((s, t), (s′, t′)) ∈ R1,2
and let (a, b) ∈ RI . Choose ((s, t), a, c, (p, q)) ∈ δ′, where δ′ is the transition
function of M1 · M2. From the definition of δ′, there is an e ∈ Γ1 such that
(s, a, e, p) ∈ δ1 and (t, e, c, q) ∈ δ2. As R1 satisfies (1) of Definition 2, there
is a (s′, b, d, p′) ∈ δ1, with (p, p′) ∈ R1 and (e, d) ∈ RO. As RO ⊆ QI and
(t, t′) ∈ R2, there is a (t′, d, c′, q′) ∈ δ2 with (c, c′) ∈ QO and (q, q′) ∈ R2. From
the definition of δ′, we have ((s′, t′), b, c′, (p′, q′)) ∈ δ′ with (c, c′) ∈ QO and
((p, q), (p′, q′)) ∈ R1,2, as required. �
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