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Abstract. The immaturity of current intrusion detection techniques
limits the traditional security systems in surviving malicious attacks.
Intrusion tolerance approaches have emerged to overcome these limita-
tions. Before intrusion tolerance is accepted as an approach to security,
there must be quantitative methods to measure its survivability. How-
ever, there are very few attempts to do quantitative, model-based eval-
uation of the survivability of intrusion tolerant systems, especially in
database field. In this paper, we focus on modeling the behaviors of an
intrusion tolerant database system in the presence of attacks. Quantita-
tive measures are proposed to characterize the capability of a resilient
database system surviving intrusions. An Intrusion Tolerant DataBase
system (ITDB) is studied as an example. Our experimental results vali-
date the models we proposed. Survivability evaluation is also conducted
to study the impact of attack intensity and various system deficiencies
on the survivability.

1 Introduction

Although intrusion tolerance techniques, which gain impressive attention re-
cently, are claimed to be able to enhance the system survivability, survivability
evaluation models are largely overlooked in the previous research. Quantifying
survivability metrics of computer systems is needed and important to meet the
user requirements and compare different intrusion tolerant architectures. Efforts
aimed at survivability evaluation have been based on classic reliability or avail-
ability models.

The work described in this paper is motivated by the limitations of using the
evaluation criteria for availability to evaluate survivability. The evaluation cri-
teria for system availability are quantified by availability modeling, which has a
fairly matured literature as summarized in [1]. However, the availability model
cannot be used to quantify the survivability of a security system. Besides the
differences between security and fault tolerance, a fundamental reason is because
the availability model assumes the “fail-stop” semantics, but the “attack-stop”
semantics probably can never be assumed in trustworthy data processing sys-
tems, not only because of the substantial detection latency, but also because of
the needs for degraded services.
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The goal of this paper is taking the first step to develop a survivability eval-
uation model that can systematically address the inherent limitations of classic
availability evaluation models in measuring survivability. The approach we pro-
posed is using a state transition graph to model an intrusion tolerant database
system. We attempt to model the system in a modular way, so that it can be
easily adapted to a wide variety of intrusion tolerant database systems. Quanti-
tative measures are proposed to characterize the capability of a resilient database
system surviving intrusions. Furthermore, we are interested in understanding the
impact of existing system deficiencies and attack behaviors on the survivability.
In this paper, we take the first step to do detailed, quantitative evaluation of the
survivability of intrusion tolerant database systems and the impact of system
deficiencies and attack behaviors on it.

In particular, the main contributions of this paper are four-fold:

1. We extend the classic availability model to a new survivability (evaluation)
model. Comprehensive state transition approaches are applied to study the
complex relationships among states and their transition structures encoding
sequential response of intrusion tolerant database systems facing attacks.

2. Novel quantitative survivability evaluation metrics are proposed by us. Mean
Time to Attack (MTTA), Mean Time to Detection (MTTD), Mean Time to
Marking (MTTM), and Mean Time to Repair (MTTR) are proposed as basic
measures of survivability. We find that there is a natural mapping between
the MTTA-MTTD-MTTM-MTTR model and the steady state probabili-
ties of the system in state transition modeling. This mapping not only pro-
vides valuable insights on why the MTTA-MTTD-MTTM-MTTR model can
measure survivability, but also provides a convenient way to use mathemat-
ical analysis to quantify survivability. Based on the MTTA-MTTD-MTTM-
MTTR model, this survivability measuring methodology is no longer ad hoc.

3. To validate the survivability models we proposed, a representative intrusion
tolerant database system, ITDB [2], is studied as an empirical example. A
real testbed is established to conduct comprehensive validation experiments
running TPC-C benchmark transactions. Experimental results show the va-
lidity of the survivability models we proposed.

4. To further evaluate the security of ITDB, we have done an empirical surviv-
ability evaluation, where maximum-likelihood methods are applied to esti-
mate the values of the parameters used in our state transition models. The
impacts of existing system deficiencies and attack behaviors on the surviv-
ability are then studied using quantitative measures we defined.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the ITDB framework. In Section 3, a series of state transition models are
proposed. In Section 4, quantitative measures of database system survivability
are proposed. The experiments are conducted in Section 5 to validate the models
we established. Survivability evaluation results are reported in Section 6. In
Section 7, we discuss the related work. We conclude our paper in Section 8.
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2 ITDB: An Motivating Example

ITDB is motivated by the following practical goal: “after the database is dam-
aged, automatically locate the damaged part, contain and repair it as soon as
possible, so that the database can continue being useful in the face of attacks or
intrusions”. The major components of ITDB are shown in Figure 1. Note that
in [3], a comprehensive ITDB system has been proposed. In this paper, we only
focus on important components of ITDB, namely the damage containment and
recovery subsystems. In the rest of this section, we give a brief overview of the
functions of major ITDB components.

Confinement Executor

Database 
Server

Transaction Logs

Transaction Proxy

Intrusion Detector

Damage Assessor

Damage Repairer

Unconfinement  Executor

Damage Recovery System

Damage Containment System

Traditional Database System

Mediator

User Transsactions

Fig. 1. Basic ITDB System Architecture

The Mediator subsystem functions as a “proxy” for each user transaction and
transaction processing call to the database system. Through this proxy, ITDB
is able to keep useful information about user transactions, such as information
about transactions’ read and write operations, which is important to generate
the corresponding logs for damage recovery and containment. This part is the
foundation of the whole ITDB system. All other subsystems of ITDB rely on
this part.

Traditional damage containment approaches are one-phase. An item o will
not be contained until it is identified as damaged. However, significant dam-
age assessment latency can cause the damage on o spreading to many other data
items before o is contained. To overcome this limitation, ITDB uses a novel tech-
nique called multi-phase damage containment as an alternative. This approach
has one containing phase, which instantly contains the damage that might have
been caused by an intrusion as soon as the intrusion is identified, and one or more
later on uncontaining phases, denoted containment relaxation, to uncontain the
items that are mistakenly contained during the containing phase.

The damage recovery subsystem has the responsibility to perform accurate
damage assessment and repair. To do this job, first, the damage recovery subsys-
tem retrieves reportedmalicious transactionmessages from the intrusion detection
subsystem. ITDB then traces damage spreading by capturing the dependent-upon
relationship among transactions. ITDB repairs the damage caused by Ti using a
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special cleaning transaction which restores each contaminated data item to its lat-
est undamaged version.

The intrusion detection subsystem has the responsibility to detect and report
malicious transactions to the damage containment and recovery subsystems. It
uses the trails kept in the logs and some relevant rules to identify malicious
transactions.

3 Modeling Intrusion Tolerant Database Systems

To analyze and evaluate the survivability of an intrusion tolerant database sys-
tem, a quantitative evaluation model is required. A variety of modeling tech-
niques can be applied in the research of survivability study. Deterministic models
are quite limited in the stochastic behavior. State transition models are much
more comprehensive. All possible system states can be captured by state tran-
sition models. In this section, we apply state transition models to explore the
complex relationships and transition structure of an intrusion tolerant database
system.

3.1 Basic State Transition Model

Figure 2 shows the basic state transition model of an intrusion tolerant database
system. Traditional computer security leads to the design of systems that rely on
prevention to attacks. If the strategies for prevention fail, the system is brought
from good state G into the infected state I during the penetration and explo-
ration phases of an attack. If the attack is detected successfully, intrusion toler-
ance system picks up where attack prevention leaves off. The system enters the
containment state M . In this state, all suspicious data items are contained. After
marking all the damage made by the attack, undamaged items are released and
the system enters to the recovery state R. The repair process will compensate all
the damage and the system returns to the good state G. The four phases which
are attack penetration, error detection, attack containment, damage assessment
and error recovery, describe the basic phenomena that each intrusion tolerant
system will encounter. These can and should be the basic requirement for the
design and implementation of an intrusion tolerant database system.

Parameters in Figure 2 are: 1/λa is the mean time to attacks (MTTA), the
expected time for the system to be corrupted; 1/λd is the mean time to detect
(MTTD), the expected time for the intrusion to be detected; 1/λm is the mean
time to mark (MTTM), the expect time for the system to mark “dirty” data

G RMI

λmλdλa

λr

Fig. 2. Basic State Transition Model
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items; 1/λr is the mean time to repair (MTTR), the expect time for the system
to repair damaged data items.

3.2 Intrusion Detection System Model

As an important part of an intrusion tolerant system, the Intrusion Detection
System (IDS) is largely ignored in intrusion tolerant system modeling. [4] as-
sumes that the IDS can report intrusion without delay or false alarm. Some
works only consider part of IDS parameters, like true positive [5]. In this part,
we will integrate a comprehensive model of IDS into the whole system.

False alarm rate and detection probability are widely used to evaluate the
performance of an IDS in either networking [6] or database field [7]. Detection
latency, so called detection time in [8], is another metrics to evaluate an IDS.
We define detection latency as the duration that elapses from the time when an
attack compromises a database system successfully to the time when the IDS
identifies the intrusion. All these three metrics are included in our model.

Let Ta and Tfa, respectively, denote the times to intrusion and the time to
the failure of the IDS. If the IDS fails before the intrusion, then a false alarm is
said to have occurred. Let A denote the time to intrusion occurrence. Clearly,

A = min{TA, Tfa} (1)

We assume that Ta and Tfa are mutually independent and exponentially dis-
tributed with parameter λa and α, respectively. Then, clearly, A is exponentially
distributed with parameter λa + α.

After the intrusion, it takes a finite time Td (detection latency) to detect the
intrusion. We assume that the time to identify one successful intrusion is expo-
nentially distribution with parameter λd. For the imperfect detection, we assume
that all attacks will be identified by the database administrator eventually. We
use state MD and MR to represent the undetected state and manual repair state
respectively. We assume that the detection probability of an IDS to identify a
successful intrusion is d. The transition probability that the system transfers
from state I to state MD is (1 − d). We assume that the time to manually
identify a successful intrusion is exponentially distribution with parameter λmd

and the time to manually repair infected data items is exponentially distribution
with parameter λmr. The state transition model considering the deficiencies of
the IDS is presented in Figure 3.

G MI

dλdλa+α

λm

λr

MDMR

(1-d)λd

λmd

λmr

R

Fig. 3. State Transition Model with IDS
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3.3 Damage Propagation and Repair Model

The damage keeps propagating the effect of the intrusion during the detection
phase. The purpose of the IDS is to reduce its detection latency. Although dam-
age spreading is a normal phenomenon, little work puts effort on studying the
effect of damage propagation on the survivability in their intrusion tolerant sys-
tem models. In this part, we want to take the first step to study the effect of
detection delay on damage propagation, which may affect damage assessment
and repair correspondingly.

Let Tdi denotes the time between the infection of (i − 1)th and ith data item.
Obviously,

Td =
k∑

i=1

Tdi (2)

where k is the number of infected data items during the detection latency. Let’s
assume that Tdi is exponentially distributed with parameter λdi and

FDi(t) = 1 − e−λdit (3)

As soon as the intrusion is identified, the containing phase instantly contains
the damage that might have been caused by an intrusion. At the same time, the
damage assessment process begins to scan the contained data items and locate
the infected ones. We assume that the time to scan one infected data item is
exponentially distributed with parameter λm.

After all infected data items are identified via the damage assessment process,
the repair system begins to compensate the damage caused by the intrusion. We
assume the time to repair one infected data item is exponentially distributed
with parameter λr

Let (I : k) denote the infect state with k infected data items in the database,
and (M : k) denote the mark state with k infected data need to be located.
Figure 4 shows the comprehensive state transition model of ITDB.

G

dλd1

λa+α

λr

I:1

M:k

I:k

R:k

M:1

λm

λdk-1λd1

λr

λr

MD

MR

(1-d)λd1

λmd

λmr
M:1

R:1 M:2

I:2

R:2

M:1

λm

λm

λm

λm

λd2 λdk

λm

Fig. 4. Comprehensive State Transition Model
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4 Survivability Evaluation

Evaluation criteria in trustworthy data processing systems are often referred to
as survivability or trustworthiness. Survivability refers to the capability of a sys-
tem to complete its mission, in a timely manner, even if significant portions are
compromised by attacks or accidents [9]. However, in the context of different
types of systems and applications, it can mean many things. This brings a dif-
ficulty in the measurement and interpretation of survivability. For a database
system, survivability is the quantified ability of a system or subsystem to main-
tain the integrity and availability of essential data, information, and services.
Also a survivable database system should maintain the performance of essential
services facing attacks. In this section, based on the models we established in
Section 3, quantitative metrics are proposed to facilitate evaluating the surviv-
ability of intrusion tolerant database systems from several aspects.

4.1 State Transition Model Analysis

Let {X(t), t ≥ 0} be a homogeneous finite state Continuous Time Markov
Chain (CTMC) with state space S and generator matrix Q = [qij ]. Let Pi(t) =
P{X(t) = i, i ∈ S} denote the unconditional probability that the CTMC will
be in state i at time t, and the row vector P(t) = [P1, P2, · · · , Pn] represent the
transient state probability vector of the CTMC. The transient behavior of the
CTMC can be described by the Kolmogorov differential equation:

dP(t)
dt

= P(t)Q (4)

where P(0) represents the initial probability vector (at time t = 0).
In addition, cumulative probabilities are sometimes of interest. Let L(t) =∫ t

0 P (u)du; then, Li = (t) represents the expected total time the CTMC spends
in state i during the interval [0, t). L(t) satisfies the differential equation:

dL(t)
dt

= L(t)Q + P(0) (5)

where L(0) = 0.
The steady-state probability vector π = limt→∞P(t) satisfies:

πQ = 0,
∑

i∈S

πi = 1 (6)

By solving the equations 4, 5 and 6, we can get some important survivable
metrics of an intrusion tolerant database system.

4.2 Survivability Evaluation Metrics

In our model, survivability is quantified in terms of integrity and availability.
According to survivability, we define integrity in a way different from integrity
constraints. In this paper, we define integrity as follow:
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Definition 1: Integrity is defined as a fraction of time that all accessible data
items in the database are clean.

High integrity means that the intrusion tolerant database system can serve
the user with good or clean data at a high probability. Obviously, all data items
are clean and accessible in state G. When attacks occur, some data items will
be affected. So in state I, part of accessible data items are “dirty”. After the
intrusion is identified, the ITDB can contain the all damaged data until it finish
the repair process. Since the ITDB does selective containment and repair, the
database system is still available, and accessible data items are clean during the
containment, damage assessment, and repair process.

Consider the model in Figure 2, state space S = {G, I, M, R}. The generator
matrix Q for the basic state transition model in Section 3.1 is:

Q =

⎡

⎢⎢⎣

−λa λa 0 0
0 −λd λd 0
0 0 −λm λm

λr 0 0 −λr

⎤

⎥⎥⎦ (7)

By solving the equations 5 and 6, we can get:

πG =
1/λa

1/λa + 1/λd + 1/λm + 1/λr
=

MTTA

MTTA + MTTD + MTTM + MTTR

πI =
1/λd

1/λa + 1/λd + 1/λm + 1/λr
=

MTTD

MTTA + MTTD + MTTM + MTTR

πM =
1/λm

1/λa + 1/λd + 1/λm + 1/λr
=

MTTM

MTTA + MTTD + MTTM + MTTR

πR =
1/λr

1/λa + 1/λd + 1/λm + 1/λr
=

MTTR

MTTA + MTTD + MTTM + MTTR

From Definition 1, we can get the integrity for the basic state transition model
in Section 3.1:

I = πG + πM + πR =
MTTA + MTTM + MTTR

MTTA + MTTD + MTTM + MTTR
(8)

Similarly, we can get the integrity for the comprehensive state transition model
we proposed in Section 3.3:

I = πG +
k∑

i=1

πMi +
k∑

i=1

πRi (9)

Availability [1] is defined as a fraction of time that the system is providing
service to its users. Since the ITDB does on-the-fly repair and will not stop its
service facing attacks, its availability is nearly 100%, which can not show the
performance of ITDB clearly. To better evaluate the survivability of ITDB, we
define another type of availability, Rewarding-availability:
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Definition 2: Rewarding-availability (RA) is defined as a fraction of time
that the all clean data items are accessible.

If the clean data can not be accessed, it is a loss of service to users. Rewarding-
availability means that the system not only can serve its users, but also do not
deny the request for the clean data. ITDB will release the all contained clean
data items after damage assessment. For the basic state transition model in
Section 3.1, the Rewarding-availability is:

RA = πG + πR =
MTTA + MTTR

MTTA + MTTD + MTTM + MTTR
(10)

The Rewarding-availability for the comprehensive state transition model in
Section 3.3 is:

RA = πG +
k∑

i=1

πRi (11)

5 Empirical Validation

The models we proposed in the above section need to be validated. In this
section, we compare the prediction of our model with a set of measured ITDB
behaviors facing attacks. For our test bed, we use Oracle 9i Server to be the
underlying DBMS. The TPC-C benchmark [10] is in general DBMS independent,
thus the transaction application can be easily adapted to tolerate the intrusions
on a database managed by almost every “off-the-shelf” relational DBMS such as
Microsoft SQL Server, Informix, and Sybase.

5.1 Parameters Setting and Estimation

In the models we proposed, some parameters can be controlled by us. In our
experiments, the behaviors of attackers, human interaction and the properties
of IDS can be controlled by us. So we will set the value of attack hitting rate λa,
false alarm rate α, detection probability d, detection rate λd, manual repair rate
λmr and manual detection rate λmd. We will also vary their value to investigate
the impact of them on system survivability.

Assume we generate n attack events and k data items are damaged by the
attacks. Let assume the total attack time is An, the total detect time is Dk, the
total manual detection time is MDn, and the total manual repair time is MRn.
The transition rates are:

λa =
n

An
, λd =

k

Dk
, λmd =

(1 − d)k
MDn

, λmr =
(1 − d)k
MRn

(12)

Some parameters in our model are the characters of ITDB, which are not
controlled by us. In this section, we will use the method of maximum-likelihood
to produce estimators of these parameters. Assume we observed k scan events
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Table 1. Parameter Setting and Estimation

Parameters Value
Attack Hitting Rate, λa 0.5(Low); 1(Moderate); 5(Heavy)
Detect Rate, λd 10(Slow); 15(Medium); 20(Fast)
Mark Rate, λm 27
Repair Rate, λr 22
Manual Detection Rate, λmd 0.02
Manual Repair Rate, λmr 0.02
False Alarm Rate, α 10%; 20%; 50%
Detection Probability, d 80%; 90%; 99%

and repair events, the total mark time is Mk, and the total repair time is Rk.
The maximum-likelihood estimators of λm, λr are

Λ̃M =
k

Mk
, Λ̃R =

k

Rk
(13)

Table 1 shows the values of parameter setting and estimation of our experi-
ments.

5.2 Validation

The steady state probability of occupying a particular state computed from
the model was compared to the estimated probability from the observed data.
The steady state probabilities for the Markov model are computed by using
Equation 6. The measured data are estimated as the ratio of the length of time
the system was in that state to the total length of the period of observation. The
results are shown in Table 2.

Table 2. Comparison of state occupancy probabilities. (λa = 0.5, λd = 10, α = 10%,
d = 90%).

State Observed Value Value from Model Difference (%)
G 71.64 72.15 0.7169
I 3.96 3.72 6.4516
M 2.64 2.45 7.7551
R 1.98 1.89 4.7619
U 0.55 0.57 3.5088
M 4.4 4.09 7.5795

It can be seen that the computed values from the model and the actual ob-
served values match quite closely. This validates the model building methodology,
and so the Markov model can be taken to model the real system reasonably well.
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6 Results

In this section, we use ITDB [2] as an example to study intrusion tolerant
database systems’ survivability metrics we proposed in section 4. Instead of
evaluating the performance of a specified system, we focus on the impact of dif-
ferent system deficiencies on the survivability in the face of attack. Experiments
run using different system settings and workloads. The analysis presented here
is designed to compare the impact of different parameters of intrusion detection
subsystems, such as False Alarm Rate, Detection Latency; and different work-
load parameters, such as Attack Rates on the relative survivability metrics of
ITDB.

6.1 Impact of Attack Intensity

The attack rate can challenge the survivability of an intrusion tolerant system.
As an intrusion tolerant system, a key problem is whether ITDB can handle
different attack intensity. To answer this question, in this part, we will study the
impact of attack rate on survivability of ITDB.

We compare the steady state probabilities of different system configuration of
ITDB under different attack rates. In Figure 5(a), an example of a good system,
which has a good IDS and fast damage assessment and repair system, is shown.
As can be seen, the heavy attacks have little impact on the survivability of
ITDB. The damage assessment and repair subsystems can locate and mask the
intrusion quickly. As a result, the steady state probabilities of state I, R, and
M are very slow. The integrity and rewarding-availability remain at a high level
(> 0.8). The only impact of high attack rate is that the probability of ITDB
staying at state I is increased. This does not hurt the survivability of ITDB.

An example of a bad system is shown in Figure 5(b). The high attack rate
increases the work load for damage marking and repairing subsystems. As a
result, steady state probabilities of state R (πR > 0.3) and state M go up
quickly. This keeps ITDB busy on analyzing and masking the heavy attacks.
However, the system integrity is not impacted by the attacks significantly. The
reason is that the ITDB applies the damage containment strategy. This enables
the ITDB having the capability to provide clean information to users even facing
heavy attacks.

6.2 Impact of False Alarms

False alarm is a key factor to evaluate the performance of an IDS. ITDB adopts
the behavior-based intrusion detection techniques. The high false alarm rate is
often cited as the main drawback of behavior-based detection techniques since
the entire scope of the behavior of an information system may not be cov-
ered during the learning phase. High false alarm rate may bring extra workload
to the recovery subsystem and waste some system resources. Will ITDB tolerant
the relatively high false alarm rates? To answer this question, we will evaluate
the impact of false alarms on the steady state of ITDB in this part.



218 H. Wang and P. Liu

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Attack Rate

S
te

ad
y 

S
ta

te
 P

ro
ba

bi
lit

y

Integrity
RA
state G
state V
state I
state S
state R

(a) good system (d = 99%,
α = 0.1, λd = 20)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Attack Rate

S
te

ad
y 

S
ta

te
 P

ro
ba

bi
lit

y

Integrity
RA
state G
state V
state I
state S
state R

(b) poor system (d = 80%,
α = 0.5, λd = 10)

Fig. 5. Impact of Attack Intensity

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

False Alarm Rate (%)

S
te

ad
y 

S
ta

te
 P

ro
ba

bi
lit

y

Integrity
RA
state G
state V
state I
state S
state R
state U
state M

(a) Light Attack (λa = 1, λd =
15, d = 90%)
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(b) Heavy Attack (λa = 5,
λd = 15, d = 90%)

Fig. 6. Impact of False Alarm Rate

Figure 6(a) shows the variation of steady state probabilities when ITDB is un-
der light attacks (λa = 1). ITDB maintains the integrity (> 0.85) and rewarding-
availability (> 0.6) at a high level, even though facing a nearly 100% false alarm
rate. This indicates that the system can tolerate a high false alarm rate under
light attacks. Also the steady state probabilities of state I, M, R are at a very low
level (< 0.1). This indicates that the system can contain, locate, and repair the
attacks efficiently and quickly. Another case that ITDB is under heavy attacks
(λa = 5) is shown in Figure 6(b). As can be seen, high false alarm brings pressure
on ITDB. The steady state probability of state I, πD, is higher than the proba-
bility state G, πG, when false alarm rate is higher than 60%. The heavy attacks
and extra load brought by false alarms increase the steady state probabilities of
state I, M , and R. These mean that ITDB spends much more time on state I and
keeps busy on analyzing and repairing the damage. The rewarding-availability
decreases as the damage containment and assessment process becomes longer.
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At the same time, the system still can maintain the integrity (> 0.85) at a high
level. This means that the probability that the system can provide clean data to
some users is high.

6.3 Impact of Detection Probability

Detection probability is another important feature to measure the performance
of an intrusion detector. In this section, we will study the impact of detection
probabilities on the survivability under different attack intensity.

Figure 7(a) shows that ITDB is under light attack (λa = 1). When detection
rate is 0%, the system totally depends on manual detection. Since the manual
detection requires human intervention, it takes a relatively long time to detect
the intrusion manually. As a result, ITDB has a high probability (> 0.4) stay-
ing at state MD and a low probability staying at state G when d = 0. The
integrity and rewarding-availability are also at a low level (≈ 0.5). The steady
state probability of state MD goes back to 0 when the detection probability is
100%. The steady state probabilities of state M and R go up while the detection
probability is increasing. This indicates that, with more attacks are identified
by the IDS, the system will spend more time on damage assessment and recov-
ery. Since the manual repair is much slower than the repair subsystem of ITDB,
the rewarding-availability and integrity go up while the detection probability
is increasing. When ITDB faces a heavy attack as shown in Figure 7(b), low
detection rate hurts the performance of ITDB. The steady state probability of
state G, πG is lower than 0.5.

Compared with the false alarms, the impact of detection probability on the
survivability of an intrusion tolerant database system is severer. The variance of
integrity and rewarding-availability is less than 0.2 when the detection probabil-
ity changes from 0% to 100%, while the variance is nearly 0.4 when changing false
alarm rate from 0% to 100%. One reason is that the high false alarms will bring
extra load to the security system to contain and repair unaffected data items,
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while low detection probability will bring more work for the administrator to
mark and repair the damage manually. If the system can identify and recover
the damage faster than manual operation, the impact of low detection probabil-
ity is severer and more dangerous to the survivability. This result encourages us
to consider more on improving the detection probability for the future intrusion
tolerant system development.

6.4 Transient Behaviors

Much of the theory developed for solving Markov chain models is devoted to
obtaining steady state measures, that is, measures for which the observation
interval is “sufficiently large” (t → ∞). These measures are indeed approxima-
tions of the behavior of the system for a infinite, but long, time interval, where
long means with respect to the interval of time between occurrences of events
in the system. However, in some cases the steady state measures are not good
approximations for the measures during a relatively “short” period of time.

Before reaching the steady state, the system will go through a transient period.
If the damage containment and recovery systems are not efficient enough, the
system may never reach steady states, or take a very long time. The cumulative
time distribution of contain and repair states will be dominant. Even through
the steady state probability of good state is high, obviously we can not satisfy
the system’s performance. The limitation of steady state measures motivates us
to observe the transient behaviors of different intrusion tolerant systems in this
part. Figure 8 and 9 show the comparison results. We start the system from
state G, which means PG(0) = 1.

A better system’s behaviors are shown in Figure 8. We assume that a better
intrusion tolerant system has a good IDS, which can detect intrusion quickly and
have a high detection rate and a low false alarm rate. Damage assessment and
repair systems can locate and mask the intrusion quickly. As can be seen in Fig-
ure 8(a), a better system reaches steady state quickly. The probability of staying
at state G is high, while the probabilities of staying at another states, like state
I, R, and M , are very low. From Figure 8(b), we can also find that the cumula-
tive time distribution of staying at state G is dominant, which means the system
will spend most of time at good state. Since the damage assessment and repair
system can accomplish their tasks quickly, the cumulative time distribution of
state I, R, and M are low.

In Figure 9, we give an example of a poor system, which has a slow assessment
and repair system. Compared with Figure 8, we can find that it takes a longer
time for the system to reach steady states. The cumulative time of state G is
not dominant. The system spends more time on damage assessment and repair.

7 Related Works

Despite that intrusion tolerance techniques, which gain impressive attention re-
cently, are claimed to be able to enhance the system survivability, suitable and
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precise measures to evaluate the survivability of an intrusion tolerant system
are largely missed in the previous research. Most of the research in the litera-
ture report and discuss the survivable capability of their work from a qualitative
point of view. Little research has proposed the quantitative evaluation metrics
of survivability.

In [9] and [11], formal definitions of survivability are presented and compared
with related concepts of reliability, availability, and dependability. [11] defined
the survivability from several aspects and claimed that the big difference between
reliability and survivability is that degraded services of survivable systems are
acceptable to users, reliability assumes that the system is either available or
not. However, the quantitative measurements of survivability and the level of
degraded services are missing in that study.

The attacks and the response of an intrusion tolerant system are modeled
as a random process in [5]. Stochastic modeling techniques are used to capture
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the attacker behavior as well as the system’s response to a security intrusion.
Quantitative security attributes of the system are proposed in the paper. Steady-
state behaviors are used to analyze the security characterization. A security
measure called the mean time (or effort) to security failure is proposed. However,
“good guestimate” values of model parameters were used in their experiments.
And the validation of their models is missing in their work.

Efforts for quantitative validation of security have usually been based on for-
mal methods [12]. [13] shows that probabilistic validation through stochastic
modeling is an attractive mechanism for evaluating intrusion tolerance. The
authors use stochastic activity networks to quantitatively validate an intrusion-
tolerant replication management system. Several measures defined on the model
were proposed to study the survivability provided by the intrusion tolerant sys-
tem. The impacts of system parameters variations are studied in that work.

Although several survivability models and corresponding measurements were
proposed in the literature, they are limited in evaluating the security attribu-
tions of an intrusion tolerant database system. Zhang and Liu [14] take the first
step towards delivering database services with information assurance guaran-
tees. In particular, (a) the authors introduce the concept of Quality of Integrity
Assurance(QoIA) services; (b) a data integrity model, which allows customers or
applications to quantitatively specify their integrity requirements on the services
that they want the database system to deliver, is proposed; and (c) the authors
present an algorithm that can enable a database system to deliver a set of QoIA
services without violating the integrity requirements specified by the customers
on the set of services.

An online attack recovery system for work flow is proposed in [4]. The behav-
iors of the recovery system are analyzed based on a Continuous Time Markov
Chain model. Both steady-state and transient behaviors are studied in that pa-
per. Only ‘NORMAL’, ‘SCAN’, and ‘RECOVERY’ three categories of states
are considered in the model. The deficiency of intrusion detection and damage
propagation are not considered in that model.

In [15], we have done detailed, quantitative evaluation on the impact of in-
trusion detection deficiencies on the performance and survivability by running
TPC-C benchmark. However, only some ad hoc survivability metrics were used.
Systematic survivability model and measurements were not proposed in [15].

8 Conclusion

In this paper, we extend the classic availability model to a new survivability
model. Comprehensive state transition approaches are applied to study the com-
plex relationships among states and their transition structure encoding sequen-
tial response of intrusion tolerant database systems facing attacks. Mean Time
to Attack (MTTA), Mean Time to Detection (MTTD), Mean Time to Marking
(MTTM), and Mean Time to Repair (MTTR) are proposed as basic measures
of survivability. Quantitative metrics integrity and rewarding-availability are de-
fined to evaluate the survivability of intrusion tolerant database systems.
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A real intrusion tolerant database system is established to conduct compre-
hensive experiments running TPC-C benchmark transactions to validate the
state transition models we established. Experimental results show the validity of
proposed survivability models. To further evaluate the security of ITDB, we have
done an empirical survivability evaluation, where maximum-likelihood methods
are applied to estimate the values of the parameters used in our state transition
models. The impacts of existing system deficiencies and attack behaviors on the
survivability are studied using quantitative measures we defined. Our evaluation
results indicate that (1) ITDB can provide essential database services in the
presence of attacks, and (2) maintain the desired essential survivability proper-
ties without being seriously affected by various system deficiencies and different
attack intensity.
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