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Abstract. The two key factors to design an ensemble of neural networks are how
to train the individual networks and how to combine the different outputs to get
a single output. In this paper we focus on the combination module. We have pro-
posed two methods based on Stacked Generalization as the combination module
of an ensemble of neural networks. In this paper we have performed a comparison
among the two versions of Stacked Generalization and six statistical combination
methods in order to get the best combination method. We have used the mean
increase of performance and the mean percentage or error reduction for the com-
parison. The results show that the methods based on Stacked Generalization are
better than classical combiners.

1 Introduction

The most important property of a neural network is its generalization capability. The
ability to correctly respond to inputs which were not used in the training set.

It is clear from the bibliography that the use of an ensemble of neural networks
(figure 1) increases the generalization capability, [1,2], for the case of Multilayer Feed-
forward (MF) and other classifiers. The two key factors to design an ensemble are how
to train the individual networks and how to combine them.

Fig. 1. The basic diagram of an Ensemble of Neural Networks
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Among the methods of training the individual networks there are an important num-
ber of alternatives. Our research group has performed a comparison among methods of
building ensembles which shows that the Simple ensemble method provides a reason-
able performance with a lower computational cost [3,4].

Moreover, our research group has performed another comparison among combina-
tion methods of ensembles which shows that the Output Average is the simpler method
but it is one of the best combination methods [5,5].

In this paper, we present some results of two versions of Stacked Generalization and
we compare them with six classic combination methods. We have built ensembles of 3,
9, 20 and 40 networks with Simple Ensemble on six databases from the UCI repository
to test the performance of the combination methods.

The methods are described in 2. The results we have obtained on these six databases
are in subsection 3.2. We have also calculated general measurements of the combination
methods to compare them, these results appear in subsetion 3.3.

2 Theory

In this section, firstly we briefly review the methods of combination that we have used
in our experiments in subsections 2.1-2.6. Finally we describe two new methods based
on Stacked Generalization in subsections 2.7 and 2.8.

2.1 Output Average

This approach simply averages the individual classifier outputs across the different clas-
sifiers.

yclass(x) =
1
k
·

k∑

net=1

ynet
class(x) (1)

The output yielding the maximum of the averaged values is chosen as the correct
class.

haverage(x) = arg max
class=1,...,q

yclass(x) (2)

Where q is the number of classes, k is the number of networks in the ensemble.

2.2 Majority Vote

Each classifier provides a vote to a class, given by the highest output. The correct class
is the one most often voted by the classifiers.

votenet
class(x) =

1 if hnet(x) = d(x)
0 otherwhise

(3)

hvoting(x) = arg max
class=1,...,q

⎛

⎝
∑

net=1,...,k

votenet
class(x)

⎞

⎠ (4)
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2.3 Winner Takes All

In this method, the class with overall maximum output across all classifier and outputs
is selected as the correct class.

yclass(x) = max
net=1,...,k

ynet
class(x) (5)

hwta(x) = arg max
class=1,...,q

yclass(x) (6)

2.4 Borda Count

For any class c, the Borda count is the sum of the number of classes ranked below c by
each classifier. The Borda count for class class is:

Bordaclass(x) =
k∑

net=1

Bordanet
class(x) (7)

Where Bordanet
class(x) is the number of classes ranked below the class class by the net-

th classifier. The final hipothesys is given by the class yielding the highest
Borda count.

hborda(x) = arg max
class=1,...,q

Bclass(x) (8)

2.5 Bayesian Combination

This combination method is based on the belief value, the class with maximum belief
value is selected as the correct class. According to [6] this value is the conditional
probability that the pattern x belongs to class i, it can be approximated by:

Beliefclass(x) =
∏k

net=1 p(x ∈ class|h(ynet) = j)
∑q

i=1

∏k
net=1 p(x ∈ i|h(ynet) = j)

(9)

hbayesian(x) = arg max
class=1,...,q

Beliefclass(x) (10)

Where the conditional probability that sample x actually belongs to class i, given that
classifier k assign it to class j can be estimated from the values of the confusion
matrix [7].

p(x ∈ i|class(ynet) = j) =
cnet
i,j∑q

m=1 cnet
m,j

(11)

2.6 Dinamically Averaged Networks

It is proposed in reference [8]. It is a weighted output average which introduces weights
to the outputs of the different networks prior to averaging. The weights values are de-
rived from the network output of the pattern we are classifying.
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yclass(x) =
k∑

net=1

wnet
class · ynet

class(x) (12)

Where the weights are calculated by:

wnet
class(x) =

Cnet
class(x)

∑k
i=1 Ck

class(x)
(13)

Cnet
class(x) =

{
ynet

class(x) if ynet
class(x) ≥ 0.5

1 − ynet
class(x) otherwise

(14)

hdan(x) = arg max
class=1,...,q

yclass(x) (15)

2.7 Stacked Generalization

Stacked Generalization was introduced by Wolpert [9]. The combination method we
propose in this paper is based on the idea of Stacked Generalization and it consist on
training a neural network to combine the output vectors provided by the networks of the
ensemble. The neural network used for combination is called Combination network, the
networks of the ensemble are also known as expert networks. In Figure 2 we can see a
diagram of the Stacked Generalization.

2.8 Stacked Generalization Plus

The use of the original pattern input vector is the difference between Stacked General-
ization and Stacked Generalization Plus. The outputs of the expert networks on patterns
from training set and the original pattern input vector are used to train the combination
network. In Figure 3 we can see a diagram of the Stacked Generalization Plus.

Fig. 2. Stacked Generalization diagram



214 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Fig. 3. Stacked Generalization Plus diagram

3 Experimental Testing

In this section we describe the experimental setup and the datasets we have used in
our experiments. Finally, we show and compare the results we have obtained with the
combination methods on the different datasets.

3.1 Datasets

We have used six different classification problems from the UCI repository of machine
learning databases [10] to test the performance of methods. The databases we have
used are:

Arrhythmia Database (aritm)
The aim is to distinguish between the presence and absence of cardiac arrhythmia and
to classify it in one of the 16 groups. This dataset contains 443 instances, 277 attributes
and 3 classes.

Glass Identification Database (glas)
The aim of the dataset is to determinate if the glass analysed was a type of ‘float’ glass
or not for Forensic Science. This dataset contains 2311 instances, 34 attributes and 2
classes.

Ionosphere Database (ionos)
Classification of radar returns from the ionosphere. This dataset contains 351 instances,
34 attributes and 2 classes.

The Monk’s Problems 1 (mok1)
Artificial problem with binary inputs. This datasets contain 432 instances, 6 attributes
and 2 classes.

The Monk’s Problems 2 (mok2)
Artificial problem with binary inputs. This datasets contain 432 instances, 6 attributes
and 2 classes.
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Vowel Database (vowel)
There is no description about it in the repository. This dataset contains 990 instances,
11 attributes and 11 classes.

Table 1 shows the training parameters (Step, Momentum, Number of Hidde Units
and Number of iterations) we have used to train the combination networks for Stacked
Generalization. Table 2 shows the training parameters for Stacked Generalization Plus.
Finally, Table 3 shows the training parameters and the performance of expert networks.

All these values has been determinated by trial and error.

3.2 Results

In this subsection we present the experimental results. Table 4 shows the results we
have obtained with ensembles of 3 networks. Tables 5, 6, 7 show the results we have
obtained for ensembles of 9, 20 and 40 networks respectively.

3.3 Interpretations of Results

Comparing tables 4-7 we can see that both methods based on Stacked Generalization
are more accurate than the classical methods.

Table 1. MF training parameters for Gating Network (Stacked)

Database Networks Hidden Step Momentum Iterations

aritm

3 0.01 0.05 3 10000
9 0.01 0.05 20 500
20 0.01 0.05 1 100
40 0.01 0.05 5 100

glas

3 0.01 0.05 3 10000
9 0.01 0.05 3 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

ionos

3 0.01 0.05 7 10000
9 0.01 0.05 1 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

mok1

3 0.01 0.05 1 10000
9 0.01 0.05 1 10000
20 0.01 0.05 1 10000
40 0.01 0.05 1 10000

mok2

3 0.01 0.05 15 100
9 0.01 0.05 5 100
20 0.01 0.05 5 250
40 0.01 0.05 25 250

vowel

3 0.01 0.05 19 10000
9 0.01 0.05 6 7500
20 0.01 0.05 20 500
40 0.01 0.05 10 5000
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We have calculated the increase of performance of Stacked Generalization and
Stacked Generalization Plus with respect to Output Average to see more clearly if
Stacked combination methods performs better. A positive value of the increase of per-
formance means that the performance is better. A negative value means that the perfor-
mance of the method on the dataset is worse. The results appear in tables 8 and 9.

Comparing the results showed in tables 8-9 we can see that the improvement in per-
formance using our method depends on the database and the number of networks used

Table 2. MF training parameters for Gating Network (Stacked Plus)

Database Networks Hidden Step Momentum Iterations

aritm

3 0.01 0.05 4 2500
9 0.01 0.05 6 1500
20 0.01 0.05 17 1500
40 0.01 0.05 5 1500

glas

3 0.01 0.05 5 10000
9 0.01 0.05 4 10000
20 0.01 0.05 15 10000
40 0.01 0.05 15 10000

ionos

3 0.01 0.05 1 10000
9 0.01 0.05 1 10000
20 0.01 0.05 4 10000
40 0.01 0.05 5 10000

mok1

3 0.01 0.05 5 10000
9 0.01 0.05 5 10000
20 0.01 0.05 5 10000
40 0.01 0.05 5 10000

mok2

3 0.01 0.05 4 2500
9 0.01 0.05 5 250
20 0.01 0.05 5 250
40 0.01 0.05 1 250

vowel

3 0.01 0.05 30 2500
9 0.01 0.05 13 5000
20 0.01 0.05 10 2500
40 0.01 0.05 7 5000

Table 3. MF training parameters for Expert Networks

Database Hidden Iterations Step Momentum Performance
aritm 9 2500 0.1 0.05 75.6 ± 0.7
glas 3 4000 0.1 0.05 78.5 ± 0.9

ionos 8 5000 0.1 0.05 87.9 ± 0.7
mok1 6 3000 0.1 0.05 74.3 ± 1.1
mok2 20 7000 0.1 0.05 65.9 ± 0.5
vowel 15 4000 0.2 0.2 83.4 ± 0.6
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in the ensemble. We can see that, in general the methods based on Stacked Generaliza-
tion are better than Output Average.

We have also calculated the percentage of error reduction (PER) of the ensembles
with respect to a single network to get a general value for the comparison among all the
methods we have studied. We have used equation 16 to calculate its value.

PER = 100 · Errorsinglenetwork − Errorensemble

Errorsinglenetwork
(16)

Table 4. Results for the ensemble of three networks

aritm glas ionos mok1 mok2 Vowel
Average 73.5 ± 1.1 94 ± 0.8 91.1 ± 1.1 98.3 ± 0.9 88 ± 2.5 88 ± 0.9

Vote 73.1 ± 1 93.6 ± 0.9 91.3 ± 1 98.3 ± 0.9 88 ± 2.2 86.9 ± 0.9
WTA 73.6 ± 1 94 ± 0.6 91.1 ± 1.1 98.1 ± 1 88 ± 2.4 86.7 ± 0.8
Borda 73.1 ± 1 94.4 ± 0.9 91.3 ± 1 98.3 ± 0.9 88 ± 2.2 85.9 ± 1

Bayesian 73.6 ± 0.9 94.2 ± 1 91.4 ± 1.1 98.4 ± 0.9 88.8 ± 2.4 86.4 ± 1
DAN 73.2 ± 1.1 92.8 ± 1.6 90 ± 1.2 97.1 ± 1 87 ± 2.2 84.6 ± 1.2

Stacked 75.4 ± 1.4 95.2 ± 0.9 92 ± 0.8 98.4 ± 0.9 88.8 ± 2.3 89.4 ± 0.8
Stacked + 74.4 ± 1.4 95.6 ± 0.9 92 ± 0.9 99.8 ± 0.3 88.5 ± 2.5 89.8 ± 0.8

Table 5. Results for the ensemble of nine networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1.1 94 ± 0.7 90.3 ± 1.1 98.8 ± 0.8 90.8 ± 1.8 88 ± 0.9

Vote 73.3 ± 0.9 93.2 ± 0.8 90.6 ± 1.2 98.3 ± 0.9 90.3 ± 1.8 88 ± 0.9
WTA 73.3 ± 1.1 93.8 ± 0.6 90.9 ± 1.3 99.5 ± 0.5 90 ± 1.2 88 ± 0.9
Borda 73.3 ± 0.9 94.2 ± 0.7 90.6 ± 1.2 98.3 ± 0.9 90.3 ± 1.8 88 ± 0.9

Bayesian 73.6 ± 0.9 92.2 ± 0.9 93.1 ± 1.4 99.8 ± 0.3 89.6 ± 1.7 88 ± 0.9
DAN 73.6 ± 1 92.8 ± 1.1 90 ± 1.1 98.8 ± 0.9 86.8 ± 2.8 88 ± 0.9

Stacked 75.1 ± 1.2 96 ± 0.7 92.9 ± 1 99.8 ± 0.3 92.1 ± 1.2 88 ± 0.9
Stacked + 73.6 ± 1.7 95.6 ± 0.8 92.7 ± 1 100 ± 0 91.9 ± 1.3 92.3 ± 0.6

Table 6. Results for the ensemble of twenty networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1 94 ± 0.7 90.4 ± 1 98.3 ± 0.9 91.1 ± 1.1 91.4 ± 0.8

Vote 73.3 ± 1 93.4 ± 0.9 90 ± 1.2 98.1 ± 1 90.4 ± 1.8 90.6 ± 0.6
WTA 73.1 ± 1.2 94.4 ± 0.7 91.3 ± 1.1 100 ± 0 90 ± 1.1 89.7 ± 0.7
Borda 73.3 ± 1 94.4 ± 0.8 90 ± 1.2 98.1 ± 1 90.4 ± 1.8 88 ± 0.9

Bayesian 73.8 ± 1 90.6 ± 0.9 93.1 ± 1.4 100 ± 0 89.9 ± 1.6 74.9 ± 1
DAN 72.8 ± 1.2 94.2 ± 1.2 89.6 ± 1.1 97.6 ± 1 86.6 ± 2.1 85.3 ± 1.1

Stacked 73.8 ± 1.3 96.6 ± 0.8 92.7 ± 1.1 100 ± 0 91.5 ± 1.1 93.3 ± 0.6
Stacked + 74.7 ± 1.1 96.6 ± 0.8 92.9 ± 1.2 100 ± 0 91.5 ± 1.1 93.3 ± 0.7
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Table 7. Results for the ensemble of forty networks

aritm glas ionos mok1 mok2 Vowel
Average 73.8 ± 1.1 94.2 ± 0.6 90.3 ± 1 98.3 ± 0.9 91.1 ± 1.2 92.2 ± 0.7

Vote 73.5 ± 1 94 ± 0.8 90.1 ± 1.2 98.3 ± 0.9 91 ± 1.6 90.5 ± 0.7
WTA 73.1 ± 1.2 93.8 ± 0.9 91.6 ± 1.1 99.6 ± 0.4 90 ± 1.6 89.5 ± 0.7
Borda 73.5 ± 1 94.4 ± 0.8 90.1 ± 1.2 98.3 ± 0.9 91 ± 1.6 88.7 ± 0.8

Bayesian 74.1 ± 1.1 90.2 ± 0.9 93.4 ± 1.4 100 ± 0 90.3 ± 1.5 67.7 ± 1.3
DAN 73.2 ± 1 93.2 ± 0.9 89 ± 1.2 98.8 ± 0.8 86.4 ± 2.8 84.3 ± 1.2

Stacked 73.9 ± 1.4 95.8 ± 0.6 92.4 ± 1 100 ± 0 92.4 ± 1.2 94.2 ± 0.8
Stacked + 74.5 ± 1.3 96.6 ± 0.8 92.4 ± 1.2 100 ± 0 91.4 ± 1.2 94.1 ± 0.7

Table 8. Stacked Generalization increase of performance with respect to Average

Database 3 Nets 9 Nets 20 Nets 40 Nets
aritm 1.95 1.27 0 0.11
glas 1.2 2 2.6 1.6

ionos 0.85 2.56 2.27 2.14
mok1 0.12 1 1.75 1.75
mok2 0.75 1.38 0.37 1.25
vowel 1.41 1.36 1.92 2.02

Table 9. Stacked Generalization Plus increase of performance with respect to Output Average

Database 3 Nets 9 Nets 20 Nets 40 Nets
aritm 0.92 −0.24 0.91 0.68
glas 1.6 1.6 2.6 2.4

ionos 0.85 2.41 2.42 2.14
mok1 1.5 1.25 1.75 1.75
mok2 0.5 1.13 0.37 0.25
vowel 1.81 1.36 1.92 1.92

The PER value ranges from 0%, where there is no improvement by the use of a
particular ensemble method with respect to a single network, to 100%. A negative value
means that the performance of the ensemble is worse.

Furthermore, we have calculated the increase of performance with respect to Single
Network (Table 10) and the mean PER (Table 11) across all databases for each method
to get a global measurement.

According to these global measurement Stacked Generalization methods are the best
performing methods. The highest difference between Stacked Generalizacion and Out-
put Average is in the 40-network ensemble where the mean PER increase is 9.54%.
Although, Stacked Generalization Plus is slitghly better than Stacked Generalization
there are some cases where the second method is better.
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Table 10. Mean increase of performance across all databases with respect to Single Network

Method 3 Nets 9 Nets 20 Nets 40 Nets
Average 11.2 12.15 12.23 12.38

Vote 10.91 11.6 11.7 11.95
WTA 10.98 12.03 12.14 11.99
Borda 10.88 11.42 11.44 11.72

Bayesian 11.18 10.85 9.45 8.35
DAN 9.85 10.34 10.07 9.88

Stacked 12.25 13.75 13.72 13.86
Stacked Plus 12.4 13.41 13.9 13.9Table 11. Mean performance of error reduction across all databases

Method 3 Nets 9 Nets 20 Nets 40 Nets
Average 49.17 49.66 50.16 50.94

Vote 46.94 47.18 47.55 48.57
WTA 48.41 49.43 50.05 49.52
Borda 45.68 45.87 45.73 47.05

Bayesian 38.19 43.61 35.21 28.52
DAN 39.35 41.05 39.65 38.09

Stacked 56.78 58.3 58.56 58.98
Stcaked+ 56.91 56.8 59.4 59.4

4 Conclusions

In the present paper we have analysed six classical combination methods and we have
proposed two methods based on Stacked Generalization. We have used ensembles of
3, 9, 20 and 40 networks previously trained with Simple Ensemble on six databases
from the UCI Repository to cover a wide spectrum of the number of networks in the
classification system.

The results showed that the improvement by the use of Stacked Generalization de-
pends on the database. Moreover, we have calculated the mean increase of performance
and the mean percentage of error reduction across all databases with respect to a Single
Network in order to get global measurements to compare the combination methods we
have studied. According to the results of these global measurements Stacked General-
ization methods perform better than the classical combination methods studied in this
paper. In general, Stacked Generalization is the best performing combination method
for ensembles of 9 networks and Stacked Generalization Plus is the best performing
combination method for ensembles of 3, 20 and 40 networks.

We can conclude that the use of a Combination Network in the module combination
of an ensemble increases the generalization capability of the ensemble.
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