
W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 853 – 863, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Model for the Development of
AS Fabric Management Protocols*

Antonio Robles-Gómez, Eva M. García, Aurelio Bermúdez,
Rafael Casado, and Francisco J. Quiles

Instituto de Investigación en Informática de Albacete (I3A)
Universidad de Castilla-La Mancha

02071 Albacete, Spain
arobles@dsi.uclm.es

Abstract. Advanced Switching (AS) is a switching fabric architecture based on
the PCI Express technology. In order to support high availability, AS includes
important features, such as device hot addition and removal, redundant path-
ways, and fabric management failover. This work presents an AS model devel-
oped in OPNET. The contribution of this tool is that it can help researchers to
design and evaluate management mechanisms for this new technology. It can
also be used to analyze other key aspects of the architecture, such as routing,
congestion, and quality of service.

Keywords: Advanced switching, modeling, network management, network
availability.

1 Introduction

The Advanced Switching specification [1] has been developed by the Advanced
Switching Interconnect Special Interest Group (ASI-SIG). It is a chip-to-chip and
backplane interconnect switched fabric architecture. Unlike similar technologies, such
as InfiniBand [5] and Quadrics [9], AS can be seen as the last step in the evolution of
the traditional PCI bus [6]. In particular, AS inherits most of the physical and link
characteristics of PCI Express [8]. However, it offers a bigger application space, in-
cluding multiprocessing and peer-to-peer communications. The first commercial AS-
compliant products have just started to appear in the marketplace [11].

To guarantee network availability, AS provides a fabric management mechanism,
which basically configures and monitors the status of the network. Consider, for ex-
ample, the occurrence of a failure in a network device. The management mechanism
must detect that failure, discover the resulting topology, and finally obtain and dis-
tribute to the endpoints a new set of routes for packet delivery. All these tasks are
performed by the fabric manager (FM), a software entity running on one or more AS
endpoints.

* This work is supported by the following projects: TIC2003-08154-C06-02 (Ministerio de

Ciencia y Tecnología), PBC05-007-1 (Junta de Comunidades de Castilla-La Mancha), and
PCTC0622 (Universidad de Castilla-La Mancha).

854 A. Robles-Gómez et al.

The internal behavior of the management mechanism is currently an open issue for
vendors and researchers. The AS specification only considers a set of configuration
data structures –called capabilities– into each device, and the management packets –
called PI-4 packets– used to exchange them among devices.

This paper presents a simulation model that provides the necessary support –
capabilities and PI-4 packets– to develop management mechanisms. In order to be
able to evaluate future proposals, our simulator allows measuring accurately control
overhead and the time expended by the management process.

Our AS model is an evolution of a previous model [2] developed for the InfiniBand
technology [5]. There are many differences between both technologies, such as source
routing instead of distributing routing, and passive instead of active switches. These
differences completely justify the development of a new tool to design specific man-
agement mechanisms for AS.

The AS model has been developed using the OPNET Modeler software [7]. This
tool provides support to model and analyze communication networks and distributed
systems. In OPNET, network devices are modeled through node models, which are
built using basic modules. Fig. 1 shows an example. Each module can generate, send,
receive, and consume packets from other modules. The behavior of a module is pro-
grammed via its process model. It consists of a finite state machine (see Fig. 4) con-
taining blocks of C/C++ code and calls to the OPNET API.

The remainder of this paper is organized as follows. The next section describes the
way we have modeled the AS network devices. Then, Section 3 introduces the model-
ing of the fabric management support. After that, we revise some tasks in the man-
agement mechanism that we plan to develop in the future. Finally, Section 5 gives
some conclusions and future work.

2 Modeling the AS Architecture

Our model1 is made up of AS x1 links, 16-port switches, and fabric endpoints. This
section presents the way in which these network devices are modeled and it details
some architectural issues closely related to the fabric management process, as flow
control and the port state machine.

2.1 Network Components

We have defined AS links starting from the basic OPNET point-to-point bidirectional
link model. The specified bandwidth for these links is 2.5 Gbps. However, bandwidth
is reduced by 8b/10b encoding to 2.0 Gbps. So far, we have not considered transmis-
sion errors. To implement cut-through switching, we have programmed the link
model in such a way that the receiver port can process a packet once the header has
been received.

We have also modeled a multiplexed virtual cut-through switch [4]. Fig. 1 shows
the modules implementing two switch ports –numbered as 7 and 8–, the switch arbi-
tration unit, and the crossbar.

1 The source code of our AS model will be freely available for the OPNET community, at the

"Contributed Models" depot of the OPNET support center [7].

 A Model for the Development of AS Fabric Management Protocols 855

Fig. 1. A detail of the switch model

Each input channel contains a point-to-point receiver (rcv module in Fig. 1) con-
nected to the link. A selector (ingress_sched module) delivers flow control packets
(DLLP, data link layer packet) to the flow control unit. The rest of packets (TLP,
transaction layer packet) are sent to the ingress_CSQs module.

AS defines three types of virtual channels: unicast bypassable VCs (BVC), unicast
ordered VCs (OVC), and multicast VCs (MVC). Each BVC implements an ordered
queue and a bypass one. Packets marked as “bypassable” (the OO field in Fig. 2 is
unset) are delivered to the bypass queue if they cannot progress due to lack of credit.
Packets at this queue can be “bypassed” by other packets at the ordered queue. On the
other hand, OVCs and MVCs only support ordered queues. In our model, the number
of virtual channels of each type and the size of the associated input and output buffers
are defined as switch attributes.

A traffic class (TC) mechanism allows the grouping of traffic flows for similar
treatment. The traffic class of a packet is defined at the source endpoint. When a
packet reaches a port, the Traffic Class field at the header is used to obtain the corre-
sponding VC, by using a set of fixed TC/VC mapping tables. The ingress_CSQs mod-
ule in Fig. 1 performs this mapping, and stores the packet at the tail of the input buffer
associated with the corresponding virtual channel.

In order to simplify the hardware, AS states that unicast packets use source routing.
Endpoints include path information into the packets, by filling up the Turn Pool, Turn
Pointer, and D (direction) fields in the packet routing header (shown in Fig. 2). These
values are used at each intermediate switch to obtain the output port. In our model,
unicast packets are routed when they reach the header of the input buffers. On the
other hand, multicast packets require to look up into a specific forwarding table.
These tables are stored at the switches and are defined by the management process.

1

PI

6

P

7
P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031 1

PI

6

P

7
P

C

R

C

8910 2

Turn PoolD

Traffic

Class

O

O

T

S

Credits

Required

F

E

C

N

Turn PointerHeader CRC

0345111213141516171819202122232425262728293031

Fig. 2. AS routing header

856 A. Robles-Gómez et al.

The arbitration unit (arbitration_unit module in Fig. 1) receives requests from the
input buffers and configures the crossbar, taking into account the space available at
the output buffers (egress_CSQs) and the status of the internal channels.

AS defines several mechanisms for congestion management. First, it uses the
credit-based flow control defined by the PCI Express architecture. The flow control
unit (DLLP queue module in Fig. 1) processes incoming DLLPs and acti-
vates/deactivates the transmission of TLPs through the output channels. It must also
inject periodically new DLLPs, in order to update the credit information at the
neighbor port. The behavior of this module will be detailed in the next section.

Additional optional congestion mechanisms defined in AS are status-based flow
control, minimum bandwidth scheduler, and endpoint source injection rate limiting.
These mechanisms are not currently implemented in our simulator.

To conclude the description of the switch model, the output channel arbitration unit
(egress_sched module in Fig. 1) receives requests from the port flow control unit and
output buffers, and decides the packet that will be finally delivered to the physical
link, through the transmitter module (xmt). Before sending a TLP, this module must
consider the credit available at the corresponding neighbor input buffer, which is
periodically notified by the flow control unit.

The endpoint model (not shown here) incorporates a communication port, includ-
ing exactly the same modules as a switch port. There is also an application module
which generates and consumes upper-level packets. Parameters for traffic generation,
such as packet size and injection rate, are defined as simulation attributes.

2.2 Port Behavior and Flow Control Unit Model

Fig. 3 shows the set of possible states for a port, as defined in the AS specification.
This behavior has been considered in our model. Once the device is powered-on, a
port initialization phase starts. Each port tries to synchronize with a potential neighbor
device. To do that, the port transits from DL_Inactive to DL_Init, and sends DLLPs
through the link. If the port does not receive a response, it returns to the DL_Inactive
state. After some time, it will try to synchronize again.

If the port receives a response from the neighbor, they must negotiate the number
of virtual channels they are going to use in the communication. When the negotiation
process finishes, the port transits to the DL_Protected state. In this state, the transmis-
sion of certain management packets (PI-0:0, for FM election, and PI-4, for device
discovery and configuration) is allowed.

DL_InitDL_Inactive DL_ActiveDL_Protected

Reset

DL_InitDL_Inactive DL_ActiveDL_Protected

Reset

Fig. 3. Port state machine

 A Model for the Development of AS Fabric Management Protocols 857

Fig. 4. (left) Flow control unit behavior and (right) a DLLP with credit information for two
successive OVCs

The FM can order the port to transit to the DL_Active state by means of a PI-4
packet. In this state, the port is completely operational, allowing the transmission of
all packet types. In the same way, the FM can order a transition from DL_Active to
DL_Protected. Finally, the port will return to DL_Inactive if the link or the neighbor
device is taken down, and DLLPs are not received during a period of time.

The flow control unit (DLLP queue module in Fig. 1) models the port behavior we
have just described. Moreover, it implements the flow control tasks enumerated in the
previous section. Fig. 4(left) shows the finite state machine in the corresponding
OPNET process model.

The init state performs some initialization tasks. In the idle state, the process model
is waiting for the occurrence of some simulation event. Periodically, the machine
enters the link_check state and begins the port initialization phase.

In order to inform the neighbor port about the credit available at the local input
buffers, the process enters the fc_update state periodically. In this state, the corre-
sponding DLLPs are generated and injected. Fig. 4(right) shows the format of an
FC_Update DLLP defined in OPNET.

The buffer_notif state is reached when the flow control unit receives a notification
from the ingress_CSQs module, reporting about a variation in the occupation of an
input buffer.

When a DLLP arrives to the flow control unit, it is processed at the incom-
ing_DLLP state. According to its type, the flow control unit either continues the ini-
tialization process, or communicates the available neighbor credit to the egress_sched
module.

Finally, the process model returns to the init state if for a certain time interval the
flow control unit has not received DLLPs with information about the neighbor
credit.

858 A. Robles-Gómez et al.

switch 10switch 10switch 10switch 10switch 10

endpoint 0endpoint 0endpoint 0endpoint 0endpoint 0

endpoint 1endpoint 1endpoint 1endpoint 1endpoint 1

endpoint 2endpoint 2endpoint 2endpoint 2endpoint 2

endpoint 3endpoint 3endpoint 3endpoint 3endpoint 3

endpoint 4endpoint 4endpoint 4endpoint 4endpoint 4

endpoint 5endpoint 5endpoint 5endpoint 5endpoint 5

endpoint 6endpoint 6endpoint 6endpoint 6endpoint 6

switch 11switch 11switch 11switch 11switch 11

switch 12switch 12switch 12switch 12switch 12

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

Traffic Sent (packets/sec/endpoint)

Li
nk

 U
til

iz
at

io
n

(G
bp

s)

switch 12 − endpoint 6
switch 10 − switch 12
endpoint 0 − switch 10

 (a) Scenario used (b) Simulation results

Fig. 5. Example of validation

2.3 Flow Control Validation

Several tests have been conducted in order to validate the AS model. As an example
of this process, the topology in Fig. 5(a) has been used to check the correct implemen-
tation of the credit-based flow control mechanism. In this scenario, the six endpoints
on the left side inject packets to the endpoint located on the right, assuming the exis-
tence of only one OVC in each device.

We have run several simulations varying the packet injection rate at the source
endpoints. Fig. 5(b) shows the link utilization at each level in the topology. We can
see that the maximum link bandwidth (2 Gbps) is never exceeded on the link connect-
ing switch 12 and endpoint 6.

Additionally, results for the other two series show that the flow control is correctly
working. Note that the utilization of the link connecting switch 10 and switch 12 is
exactly half of the utilization at the next hop, and the utilization of the link connecting
endpoint 0 and switch 10 is the third part of the previous one.

3 Fabric Management Model

We are interested in the development of fabric management mechanisms for the AS
technology. This section describes the aspects of the specification that provide sup-
port for this purpose, and how they have been modeled into the simulator. These fea-
tures are the configuration space in each device, and the protocol that allows the FM
to access it.

3.1 Device Configuration Space

The device configuration space is a storage area that contains a set of fields to specify
device characteristics as well as fields used to control the device. This information is
presented in the form of structures called capabilities. Each capability structure de-
fines a specific characteristic of the device.

 A Model for the Development of AS Fabric Management Protocols 859

Packet Starvation Timeout10000h

Link Capabilities10004h

10008h Link Status

Reserved

DLLP Transmit Packet Counter [31:00]

DLLP Transmit Packet Counter [59:32], Control and Status

1000Ch

10010h

10014h

Link Control

...
Packet Starvation Timeout10200h

Link Capabilities10204h

10208h Link Status

Reserved

DLLP Transmit Packet Counter [31:00]

DLLP Transmit Packet Counter [59:32], Control and Status

1020Ch

10210h

10214h

Link Control

...

AS Capability ID Header100h

Device Capabilities Register104h

108h Device Control and Status

Route Header Revision and Port Count

Device Serial Number [31:00]

Device Serial Number [63:32]

Port0 Configuration Record Pointer (10000h)

Port1 Configuration Record Pointer (10200h)

10Ch

110h

114h

118h

11Ch

AP (0)

...

AP (0)

Next Capability Offset Cap
Version AS Capability ID

Reserved B
W

B
R Type L

B
M MPS
Support

OU MPS
Support

BU MPS
Support

Reserved M MPS
Active

OU MPS
Active

BU MPS
Active

Port Number # of PortsRev
Cap

Rev
Act Rsvd # Turn

Bits

Reserved V Max Link
Speed

Max Link
Width

LS Reserved RsvdD
L

R
LPLS Negotiated

Link Width
Negotiated
Link Speed

T
E

L
TR

O Size Counter Register [59:32]

31 0

Fig. 6. Structure of the baseline device capability

The configuration space is made up of up to 16 blocks of 4 Gbytes of storage,
called apertures. All the capability structures reside at the aperture 0. Additional data
associated with the capabilities may be stored in any aperture.

Our model allows defining any AS capability. Currently, it includes the baseline
and the spanning tree capabilities. The reason is that these capabilities are needed by
several management processes, such as the topology discovery and the FM election.

In particular, the baseline capability includes device control and status information.
Fig. 6 shows part of the contents of this capability. Each register is marked with the
corresponding offset inside the aperture 0. The offsets could be different to the ones
shown in this figure. The first six 32-bit blocks in the baseline capability contain
general information for the device, such as its type –endpoint or switch– and serial
number, the number of ports supported, and the maximum packet size. Next (from
offset 118h in Fig. 6), we can find up to 256 32-bit blocks that point to the informa-
tion about each particular port in the device. This information includes link speed and
width, and current port state. In the Fig. 6 we only show the information correspond-
ing to ports 0 and 1.

3.2 PI-4 – Node Configuration and Control Protocol

A device_manager module in the endpoint and switch models is defined. Its function
consists of receiving requests from the FM, accessing to the capabilities in the device
configuration space –by means of read and write operations–, and, if necessary,

860 A. Robles-Gómez et al.

generating and injecting the corresponding responses. This interaction is implemented
by means of the protocol for node configuration and control.

The protocol defines PI-4 read request packets to obtain information from a capa-
bility into a device. A PI-4 read completion with data packet is returned by the device
manager to the FM, containing the requested information. The path (in the opposite
direction) and the traffic class used by the response is the same as those used by the
request. If the read operation was not successful, a PI-4 read completion with error
packet is returned.

Apart from read packets, the PI-4 protocol defines write packets that allow to the
FM to modify any data in the device configuration space. However, in this case the
specification does not define a response packet.

Our model incorporates all these management packets, and the support for their
transmission through the fabric. As an example, Fig. 7 shows a PI-4 read request
packet defined in OPNET. PI-4 read packets start with the common AS routing
header (shown in Fig. 2). In the request packet, the Apperture and Offset fields deter-
mine the position of the information in the configuration space of the destination
device that the FM is requesting for. In this packet, the Req Code field specifies the
amount of data to read (up to eight 32-bit blocks). The Transaction Number field
allows the FM to match completions with requests. Finally, in the completion packet,
the Data Payload field contains the requested information.

Fig. 8 shows an example. The FM –located at the endpoint 7– repeatedly accesses
the baseline capability in switch 12, in order to obtain information about the activity
of its ports. Fig. 9 shows some of the packets exchanged between the FM and the
device manager during this process.

The FM sends a first PI-4 read request packet to the device manager in switch 12
to get general information about this device (located at Offset=100h in Fig. 6). The
corresponding response indicates that the destination device is a switch implementing
a total of 16 physical ports. Then, the FM injects two request packets (Offset=118h
and Offset=138h respectively) to obtain the pointers to every port information. Each
response packet will contain a block of 8 pointers.

After receiving the pointers, the FM generates sixteen new requests to access to the
information about the corresponding ports. The Link State field in each response
packet reports about the activity of the corresponding port. In this case, the state of

Fig. 7. PI-4 read request packet

 A Model for the Development of AS Fabric Management Protocols 861

switch 12
configuration space

switch 12
configuration space

aperture 0

baseline
capability

…

…

PI
 –

4
re

ad
re

qu
es

t

PI – 4 read
completion

Fig. 8. Example of irregular fabric topology composed of 4 switches and 5 endpoints. Small
numbers at link ends represent port numbers.

port 0 is DL_Inactive (we can see in Fig. 8 that it is unconnected) and the state of port
1 is DL_Protected (it is connected to switch 11).

To sum it up, the FM has generated 19 PI-4 read request packets, and it has re-
ceived 19 PI-4 read completion with data packets.

4 Fabric Management Tasks

The model described provides support to develop and evaluate management mecha-
nisms for the AS technology. Network management involves a wide set of different
tasks. Our work will be focused on those tasks related to network topology monitor-
ing, computation of paths among devices, and their distribution to the source end-
points. In this section, we briefly describe the entire management process, and how it
is modeled into our simulator.

As we have seen in Section 2.2, when a fabric device is powered-on, it enters to an
initialization phase, exchanging credit information with potential neighbors and nego-
tiating the available amount of virtual channels. When this negotiation concludes, it
can transmit and receive management packets through its active links (DL_Protected
state in Fig. 3).

If the device runs a FM driver, it triggers a FM election process. This process
elects the primary and secondary fabric managers, the only endpoints that can config-
ure the fabric. If the primary FM fails, the secondary one takes over. The FM election
process is completely defined in the AS specification.

The first task of the (primary) FM is to discover the fabric topology. The discovery
process is performed by using the PI-4 read packets described in the previous section.
The particular implementation of this task is not detailed in the specification, and can
be performed in either a centralized or distributed way [10].

862 A. Robles-Gómez et al.

FM sends a packet to discover a device
 Turn Pointer: 8 Turn Pool: ECh Direction: 0 Transaction Number: 0
 Aperture: 0 Offset: 100h Request Scale: 1 Request Code: 6

FM receives a packet from switch 12
 Turn Pointer: 8 Turn Pool: ECh Direction: 1 Transaction Number: 0
 Next Capability Offset: 900h CapVersion: 0 ID: F000h
 Type: SWITCH Block Write: 1 Block Read: 1 Loopback: 1
 MVC MPS Support: 0 OVC MPS Support: 8 BVC MPS Support: 8
 BVC MPS Active: 8 OVC MPS Active: 8 MVC MPS Active: 0
 # of Ports: 16 # of Turn bits: 4 Rev Act: 0 Rev Cap: 0 Port Number: 1

FM sends a packet to obtain the pointer block 1
 Turn Pointer: 8 Turn Pool: ECh Direction: 0 Transaction Number: 1
 Aperture: 0 Offset: 118h Request Scale: 1 Request Code: 8
FM sends a packet to obtain the pointer block 2
 Turn Pointer: 8 Turn Pool: ECh Direction: 0 Transaction Number: 2
 Aperture: 0 Offset: 138h Request Scale: 1 Request Code: 8

FM receives a packet including the pointer block 1
 Turn Pointer: 8 Turn Pool: ECh Direction: 1 Transaction Number: 1
 Port 0 Configuration Record Pointer: 10000h AP: 0
 Port 1 Configuration Record Pointer: 10200h AP: 0
 ...

FM receives a packet including the pointer block 2
 Turn Pointer: 8 Turn Pool: ECh Direction: 1 Transaction Number: 2
 Port 8 Configuration Record Pointer: 11000h AP: 0
 Port 9 Configuration Record Pointer: 11200h AP: 0
 ...
FM sends a packet to obtain port 0 information
 Turn Pointer: 8 TurnPool: ECh Direction: 0 Transaction Number: 3
 Aperture: 0 Offset: 10000h Request Scale: 1 Request Code: 6

FM sends a packet to obtain port 1 information
 Turn Pointer: 8 Turn Pool: ECh Direction: 0 Transaction Number: 4
 Aperture: 0 Offset: 10200h Request Scale: 1 Request Code: 6
...
FM receives a packet including port 0 information
 Turn Pointer: 8 TurnPool: ECh Direction: 1 Transaction Number: 3
 Timeout: -1 VLink: 0 MaxLink Width: 1 MaxLink Speed: 1
 Peer Link State: DL_Inactive Training Prog: 0 TError: 0 Link Width: 1
 Link Speed: 1 Link State: DL_Inactive Retrain Link: 0 Disable Link: 0

FM receives a packet including port 1 information
 Turn Pointer: 8 TurnPool: ECh Direction: 1 Transaction Number: 4
 Timeout: -1 VLink: 0 MaxLink Width: 1 MaxLink Speed: 1
 Peer Link State: DL_Protected Training Prog: 0 TError: 0 Link Width: 1
 Link Speed: 1 Link State: DL_Protected Retrain Link: 0 Disable Link: 0
...

Fig. 9. Sequence of PI-4 packets to obtain topological information about switch 12 in Fig. 8

After discovery, the FM configures fabric devices. This task includes, for example,
the distribution of paths to endpoints. Moreover, fabric ports must be activated in
order to allow the reception and transmission of all packet types (DL_Active state in
Fig. 3). In this case, PI-4 write packets are used.

Once the network has been configured and activated, the FM remains monitoring
its state. The specification provides an event-reporting mechanism to notify topology
changes. In particular, the device manager in a detecting device can report the FM
about a change in the state of a local port, through a PI-5 packet. After detecting a
change, the FM must update again the set of fabric routes.

In our model, we have defined a FM module at the endpoint model, which models
the behavior of a centralized fabric manager. At this moment, the election process has
not been modeled. We indicate the endpoint that hosts the primary FM by activating a
particular node attribute. In the remaining endpoints, the FM module is inactive.

The FM module handles several data structures to store the fabric topology, the set
of paths between endpoints, and other configuration information. At this moment, it

 A Model for the Development of AS Fabric Management Protocols 863

can discover the configuration information about a particular device, and detect a
topological change (i.e. the addition or removal of any fabric component) by means of
the event-reporting mechanism. Currently, we are developing a discovery algorithm
which can obtain the entire fabric topology. Later, we will focus on the path computa-
tion and dynamic distribution tasks, without stopping upper-level traffic.

5 Conclusions and Future Work

The model presented in this paper embodies key physical and link layer features of
Advanced Switching. Unlike classical simulation tools, our model incorporates the
fabric management entities defined in the specification and the packets that allow the
fabric manager to access to the configuration information in fabric devices. It also
includes the behavior of a port upon a change in its neighbor. At this moment, a basic
fabric management mechanism is being developed. As future work, we plan to im-
prove each management task, in order to optimize the performance of the entire proc-
ess. In particular, we plan to reuse previous proposals [3], and to design specific pro-
tocols for this architecture.

References

1. Advanced Switching Interconnect Special Interest Group, Advanced Switching Core Ar-
chitecture Specification Revision 1.0. December 2003, http://www.asi-sig.org

2. Bermúdez, A., Casado, R., Quiles F. J., Pinkston T. M., Duato, J.: Modeling InfiniBand
with OPNET. In Proceedings of the 2nd Annual Workshop on Novel Uses of System Area
Networks, February 2003

3. Bermúdez, A., Casado, R., Quiles F. J, Duato, J.: Handling topology changes in Infini-
Band. IEEE Transactions on Parallel and Distributed Systems (accepted for publication)

4. Duato, J., Yalamanchili, S., Ni, L.: Interconnection Networks: An Engineering Approach.
Morgan Kaufmann Publishers, 2003

5. InfiniBand Architecture Specification (1.2). November 2002, http://
www.infinibandta.com/

6. Mayhew, D., Krishnan, V.: PCI Express and Advanced Switching: evolutionary path to
building next generation interconnects. In Proceedings of the 11th Symposium on High
Performance Interconnects (HOTI’03), 2003

7. OPNET Technologies, Inc., http://www.opnet.com/
8. PCI-SIG, PCI Express Base Specification Revision 1.0a. April 2003, http://www.pci-

sig.org
9. Petrini, F., Frachtenberg, E., Hoisie, A., Coll, S.: Performance evaluation of the Quadrics

interconnection network. Journal of Cluster Computing, 6(2): 125-142, April 2003
10. Rooholamini, M.: Advanced Switching: a new take on PCI Express. October 2004,

http://www.asi-sig.org/press/Articles/
11. Stargen, http://www.stargen.com/

	Introduction
	Modeling the AS Architecture
	Network Components
	Port Behavior and Flow Control Unit Model
	Flow Control Validation

	Fabric Management Model
	Device Configuration Space
	PI-4 – Node Configuration and Control Protocol

	Fabric Management Tasks
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

