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Abstract. OpenMP provides a portable programming interface for shared mem-
ory parallel computers (SMPs). Although this interface has proven successful for
small SMPs, it requies greater flexibility in light of the steadily growing size
of individual SMPs and the recent advent of multithreaded chips. In this pa-
per, we describe two application development experiences that exposed these
expressivity problems in the current OpenMP specification. We then propose
mechanisms to overcome these limitations, including thread subteams and thread
topologies. Thus, we identify language features that improve OpenMP applica-
tion performance on emerging and large-scale platforms while preserving ease of
programming.

1 Introduction

OpenMP supports portable, high-level shared memory parallel programming and has
been successfully deployed on small-to-medium shared memory systems (SMPs) and
large-scale distributed shared memory platforms (DSMs). Its current version 2.5 [14]
merges C/C++ and Fortran bindings and clarifies some concepts, especially with regard
to the memory model. OpenMP 3.0 is expected to follow, and to consider a variety
of new features. Among the many open issues are some tough challenges including
extending OpenMP to SMP clusters and supporting other new architectures.

Several architectural trends to which we collectively call Chip MultiThreading
(CMT) provide support for the simultaneous execution of two or more threads within
one chip. It may be implemented through several physical processor cores in a chip
(Chip MultiProcessor, CMP) [13], a single core with replication of features to maintain
the state of multiple threads simultaneously (Simultaneous multithreading, SMT) [17]
or their combination [9,10]. A hierarchical multithreading architecture results from
using several of these chips in a single SMP. OpenMP was not designed for such hierar-
chical parallelism, nor to enable a programmer to assign different workloads to sibling
threads in order to avoid resource contention. Traditionally, OpenMP targets compu-
tationally intensive, loop-based applications. CMT will probably dramatically increase
the usage of OpenMP. Programmers will need language mechanisms that facilitate scal-
able parallel programming for these hierarchical systems, including flexibility in the
assignment of work to threads.
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In this paper, we describe two application development experiences from different
domains that exposed problems with the expressivity of the current OpenMP specifica-
tion. The first example involved porting an industrial seismic data processing applica-
tion to OpenMP in order to create an easy-to-maintain version that exploited SMPs with
hyperthreading. The language extensions we designed based on this effort turned out to
have a much wider applicability. The second example comes from experiences gained
while building scalable scientific applications on a large distributed shared-memory
platform. Here too, the extensions facilitated an appropriate mapping of work to threads
and led to a scalable parallel code. In each case, our inability to assign work to subsets
of threads in the current thread team, and to orchestrate the work of different threads,
in OpenMP 2.5 artificially limited performance. To overcome this, we propose a new
clause for worksharing constructs that assigns the work to a subteam of the existing
threads. Further, we introduce the notion of a topology, which gives a subteam a shape,
and library routines to support these concepts. Finally, we also propose new constructs
for improved work coordination between threads. We outline these applications and our
proposed OpenMP extensions that facilitate programming them in the next two sections.
Then, we discuss related work briefly before summarizing our findings.

2 Thread Subteams

Our experiences with commercial seismic data processing software initially motivated
our thread subteam concept. Kingdom Suite from Seismic Micro-Technology, Inc. is
an integrated geosciences interpretation software package for Windows systems used
by the energy industry in the search for oil. OpenMP was applied to TracePak, an I/O-
intensive module of Kingdom Suite to analyze and to process two-dimensional (2-D)
and three-dimensional (3-D) post-stack seismic data [16]. Our goal was a parallel ver-
sion for Windows-based SMPs with hyperthreading enabled. This version must be as
close as possible to the original sequential code to simplify its maintenance, a common
industrial requirement. Although our example could be programmed in a low-level style
using thread IDs explicitly, this would require significant changes in the source code.
In contrast, the suggested directives require only a minimal, localized modification of
the source code and maintain the ease of programming that makes OpenMP a desired
programming model. The subteam concept proposed here has been implemented in the
OpenUH compiler [15]. It is comparatively straightforward, requiring less implementa-
tion effort than nested parallelism. WE are currently implementing our other proposals.
Due to space limitations, implementation details will be addressed in a separate paper.

2.1 Seismic Data Processing on an SMT Platform

Fig. 1 shows the structure of the sequential program. This code iteratively reads data
from an input file, processes it using different transform functions in a specified order,
and then writes the results to an output file. The amount of seismic data typically han-
dled in a job is quite large, ranging from 100MB to 100GB, and reading and writing
consume considerable time.

Since OpenMP does not support parallel I/O, we decided that the best strategy to
parallelize the code of Fig. 1 is to overlap the sequential I/O operations (lines 2 and 7)
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1. for (i=0; i<N; i++) {
2. ReadFromFile(i,...);
3. for (j=0; j<ProcessingNum; j++)
4. for (k=0; k<M; k++) {
5. ProcessData(); //processing involves several

//different seismic functions
6. }
7. WriteResultsToFile(i);
8. }

Fig. 1. A sequential pseudo-code fragment for seismic data processing

with the parallelized computation (line 5), as illustrated by the timeline view in Fig. 2.
A simple way to parallelize the computation is to enclose the innermost loop (k-loop)
between threads in an “omp parallel for” directive. This approach, however, does not
overlap the computation and I/O, and moreover, frequently entering and leaving paral-
lel regions degrades performance. A dependence between the seismic data processing
functions prevents parallelization of the outer loop (j-loop). In order to overcome these
deficiencies, we enclose the entire loop nest in a parralel region as shown in Fig. 3. This
version preloads the data needed for the first iteration of the i-loop (line 6). Then, we
use “omp single nowait” and “omp for schedule(dynamic)” to enclose and to overlap
the I/O operations and computation. One thread reads the data for the next iteration and
another thread writes the results to an output file. The remaining threads share the work
of the j loop (line 11 of Fig. 3). The dynamic schedule enables the threads performing
I/O to subsequently join the computation.

The innermost, work-shared loop includes an implicit barrier at its end. Unfortu-
nately, we cannot simply remove it since the data processing functions must follow a
specific sequential order: each iteration uses results from the previous one. Thus al-
though plenty of computation remains, the computing threads must wait at the implicit
barrier until the I/O has completed, as shown in Fig. 4. Thus I/O operations and compu-
tation are not fully overlapped. Unfortunately, exchanging the order of the loops in the
nest would, if possible, require a complete rewrite. However, a parallelization strategy
that requires major code reorganization is unacceptable, as previously discussed.

2.2 Performance Improvement

In a normal run, the ratio of I/O and computation is about 1.2:1, where the I/O takes
slightly longer than the computation. Thus, including the I/O threads in the barrier limits
the overlap of I/O with computation. To determine how much removing this limitation
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Fig. 2. Overlapping I/O with computation in the parallel seismic program
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1. #pragma omp parallel
2. { #pragma omp single
3. { //preload data to be used in the first iteration of the i-loop in line 6
4. ReadFromFile(0,...);
5. }
6. for (i=0; i<N; i++) {
7. #pragma omp single nowait
8. { //preload the data for next iteration of the i-loop
9. ReadFromFile(i+1...);
10. }
11. for (j=0; j< ProcessingNum; j++)
12. #pragma omp for schedule(dynamic)
13. for(k=0; k<M; k++) {
14. ProcessData(); //user configurable data processing functions
15. } //here is the barrier
16. #pragma omp single nowait
17. {
18. WriteResultsToFile(i);
19. }
20. }
21. }

Fig. 3. The OpenMP code for seismic data processing kernel
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Fig. 4. Execution behavior of OpenMP seismic code
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would improve performance, we combined OpenMP with Windows threads for reading
and writing files and achieved much greater overlap than with pure OpenMP. Fig. 5
shows results on an HP XW8200 with dual Xeon 3.4 GHz CPUs, 1MB L2 cache, 3GB
memory, Intel extended memory 64, and hyperthreading technology. The compiler used
was Microsoft Visual C++ in Visual Studio 2005 with OpenMP support. The hybrid
version was 25% faster than standard OpenMP on four threads.

To achieve similar results with pure OpenMP, we require mechanisms to separate the
computational threads from the data handling threads, and to synchronize their activities
in the desired manner. We can achieve this with three parallel sections: read, write,
and computation. The computation section would create a nested parallel region and
share the work among its threads. We either prefetch data in the previous iteration,
as in the code of Fig. 3, or use critical regions and arrays of variables. Unfortunately,
each iteration of the outer i-loop requires a new parallel region if we are to retain the
sequential program structure and the overheads for these are potentially high.
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2.3 Thread Subteam as a Solution

Nested parallelism can dynamically create, exploit and terminate teams of threads and
is well-suited to codes with needs that change over time. Our code structure is static.
The relative amount of data and computation does not vary, and we expect the number
of participating threads and their roles to remain the same. Nested parallelism is more
powerful than we require. Thus, we propose a simpler mechanism that allows us to bind
the execution of a worksharing or barrier construct to a subset of threads in the current
team. Only the threads in the specified subteam participate in its work, including any
barrier operations encountered. To synchronize the actions of multiple subteams, we
may use existing OpenMP constructs and take advantage of the shared memory.

To realize this idea, we define an “onthreads” clause for worksharing and barrier di-
rectives. In contrast to nested parallelism, it refers only to existing threads. This clause
permits us to specify that a worksharing directive is applied to a subteam of threads:
participation in the associated work is restricted to the specified members. In particular,
implicit and explicit barriers within the code it encloses do not block threads that are
not part of the subteam. This clause would require minimal change to the current speci-
fication. In addition we can define an “onthreads” directive that could enclose arbitrary
structured block of code within a parallel region. Work in the block would be carried
out by the specified subteam of threads.

Using the thread subteam notation, we can rewrite the example code in Fig. 3 to that
in Fig. 6. Line 5 and line 14 use the “onthreads” clause to limit the I/O to individual
threads, while line 7 defines a subteam of threads to process the data. The integer ex-
pressions in parentheses use OpenMP’s thread-ids and array section notation to specify
the desired subset of threads. The implicit barrier at line 12 applies only to the threads
defined in the subteam from line 7.

Additional syntax could enable the programmer to name these subsets. New run-time
library routines would be provided to get the number of threads in a (named) subteam
and a subteam-internal consecutive thread number. A programmer might also want to
permute the order of threads in a subteam to specify schedules that enforce a certain
work distribution, e.g. to support data reuse. Although none of these (except possibly the

1. #pragma omp parallel
2. { #pragma omp single
3. ReadFromFile(0,...); //preloads data for first iteration of i-loop
4. for (i=0; i<N; i++) {
5. #pragma omp single onthreads(0)
6. ReadFromFile(i+1...); //preload data for next iter. of i-loop
7. #pragma omp onthreads ( 2:omp get num threads()-1 )
8. for (j=0; j< ProcessingNum; j++)
9. #pragma omp for schedule(dynamic)
10. for (k=0; k<M; k++) {
11. ProcessData(); //user configurable data processing functions
12. } //here is the group-internal barrier
13. #pragma omp barrier //this ensures we are ready for next iter.
14. #pragma omp single onthreads(1)
15. WriteResultsToFile(i);
16. }
17. }

Fig. 6. OpenMP seismic data processing kernel with the “onthreads” directive
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library routines) are essential, they would greatly increase the expressive power of this
construct. Interactions between subteams could be made explicit by providing notation
for communication between subteams. This might help a programmer reason about
the structure of this communication and avoid programming errors such as deadlock.
The same construct might also enable point-wise synchronization between threads in a
single subteam to avoid barriers. In the code fragment of Fig. 7, a post-wait notation
does this succinctly and we have named the thread team, whose order is a permutation
of the original thread numbers (used here only to illustrate the concept).

#pragma omp parallel
{

#pragma omp team CompthreadsReordered = threads(omp get num threads()-1:2:-1)
for (i = 0; i < N; i++) { //executed by all threads

#pragma omp single onthreads(0)
{ ReadFromFile(i);

#pragma omp post (dataready[i]) //signals reading is complete
} //thread(0) independently does this reading and posting
........
#pragma omp on CompthreadsReordered
{ //subteam starts to work

#pragma omp wait (dataready[i]) //after data is ready

Fig. 7. Excerpt from OpenMP code with named subteam and post/wait

The ability to divide work among subteams of threads, and thus to have different
subteams working concurrently and independently, seems to be a fairly natural exten-
sion to the current API and it has a variety of potential uses. It would likely simplify the
use of OpenMP within third party libraries. It also enables the specification of multi-
disciplinary code ensembles and permits components written in traditional program-
ming languages to interact without the need to provide external file-based interactions.
It supports the simpler case of multilevel parallelism with a fixed team of threads with-
out the extra overheads and burden of nested parallelism.

3 Worksharing and Synchronization Across Loop Nests

Scientific and engineering computations must exploit large numbers of threads, not only
in emerging, very large shared-memory systems, but also in smaller SMPs with CMPs.
Writing scalable code requires special care. Two of the authors previously proposed a
set of language features to enable the parallelization of multiple levels of loop nests
[8]. These features specify an appropriate execution schedule and assign threads to
loop levels, as well as additional synchronization that enables a pipelined execution
scheme in the LU benchmark from the NAS Parallel Benchmarks [2]. They addressed
scalability limitations in several applications despite the presence of sufficient inherent
parallelism.

3.1 The LU Example

The LU application benchmark uses the symmetric successive over-relaxation (SSOR)
method to solve a seven band block-diagonal system. Figure 8 illustrates its lower
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triangular phase. References to values of elements of array v in line 4 create depen-
dences between loop iterations that prevent straightforward parallelization. However, a
wave-front or a pipelined technique can enable considerable levels of parallelism to be
exploited, since the value of an element of v can be computed once the new values are
available from the previous iteration in each of the three dimensions.

A wave-front restructuring of the code reveals parallelism that can be expressed with
the existing OpenMP parallel directive to update points on a diagonal plane concur-
rently. However, this method suffers from poor cache utilization. A pipelined approach,
in which data are partitioned as blocks in selected dimensions, usually gives better
cache performance. We illustrate the differences between wave-front and pipelined par-
allelism in Fig. 9. Expression of the parallelism in two dimensions would reduce the
cost of pipeline startup and shutdown, and support good cache performance for this
kernel. However, OpenMP currently can only successfully exploit parallelism in one
dimension. Parallelization in multiple dimensions requires nested parallelism, which
results in multiple one-dimensional pipelines and incurs high overheads [7].

1. for (k = 1; k < nz; k++) {
2. for (j = 1; j < ny; j++) {
3. for (i = 1; i < nx; i++) {
4. v[k][j][i] =

v[k][j][i] +
a*v[k][j][i-1] +
b*v[k][j-1][i] +
c*v[k-1][j][i];

5. . . .
6. }
7. }
8. }

Fig. 8. The LU computational kernel
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3.2 Thread Topology

We introduce the notion of a thread topology to support pipelined algorithms. A thread
topology does not create new threads; instead, it reshapes the thread (sub)team and
associates a new naming scheme with existing threads. We can use the topology to
specify a variety of new schedules for worksharing directives. Our syntax requires the
programmer to provide the number of dimensions in the topology and the coordinates
in each dimension. We will also need a default strategy for mapping the linearly num-
bered threads to a Cartesian grid. The basic syntax of specifying a topology is:

#pragma omp topology name(ndim,start,stop,stride,fixedorder)

where name defines a name of the topology. The ndim argument specifies the num-
ber of dimensions. The arguments start, stop, and stride are arrays with one
entry per dimension to specify the topological shape. fixedorder is a Boolean vari-
able that tells the compiler whether or not the default strategy for associating these
threads with the linear thread numbers must be applied. If not, the system can choose
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any mapping of threads to the topology. For example, if 16 threads exist, the directive
can reshape threads into a 4 × 2 × 2 grid with coordinates from start[]=(0,0,0) to
stop[]=(3,1,1) and stride[]=(1,1,1) or any other numbering scheme we desire that
has 16 threads. We can associate a defined topology with a worksharing construct using
the “onthreads” clause. We use standard section notation to specify the target of the
worksharing directive in each topological grid dimension. We use “:” to denote the en-
tire dimension of an array. Dimensions not involved in the worksharing are marked via
a dummy “*” and the computation is replicated in those dimensions. A runtime function
“omp get coord(name,idim)” can obtain coordinates of a thread in the grid topology.

We illustrate the use of our topology notation in Fig. 10 for the LU computational
kernel. We introduce a 2-D logical grid of threads with the same number of threads in
each dimension. Our thread subteam clause maps the iterations of two different loops to
threads using our grid topology through two worksharing constructs (this notation does
not conform to current OpenMP rules). The 2-D topology is used to distribute the work
in the i and j loop nests among threads.

Finally, we need a way to define synchronization between threads in a topology. We
cannot use existing features of OpenMP, since the interaction required is not between
iterations but threads. This is achieved here using post and wait directives with our
2-D thread-ids. In our example, each thread of the topology must wait for its neighbors
to the left and below it to finish their computation except for where the thread does
not have a neighbor. For instance, thread 0 does not have a neighbor and can start
right away. Once its work is done, a thread signals its neighbors to the right and above
that they can continue. The ability to synchronize between threads is very important for
implementing the pipelined approach in the LU algorithm. In general, it enables loosely
synchronous algorithms [12].

mystart[0] = 0; mystart[1] = 0; ... // assign values to mystart[:] and mystop[:]
#pragma omp parallel {
#pragma omp topology grid(2,mystart,mystop,mystride,1)

// arrange threads logically into a square called grid
iam1 = omp get coord(grid,1);
iam2 = omp get coord(grid,2); // my coords in grid

1. for (k = 1; k < nz; k++) {
#pragma omp wait grid (iam1-1,iam2) // wait for thread below to complete its portion
#pragma omp wait grid (iam1,iam2-1) // wait for thread on left to complete its portion
#pragma omp for nowait onthreads(grid(:,*)) // share out to first dimension of grid

2. for (j = 1; j < ny; j++) {
#pragma omp for nowait onthreads(grid(*,:)) // share out to second dimension of grid

3. for (i = 1; i < nx; i++) {
4. v[k][j][i] = v[k][j][i] + a*v[k][j][i-1] +

b*v[k][j-1][i] + c*v[k-1][j][i];
5. . . .
6. }
7. }

#pragma omp post grid(iam1,iam2+1) // indicate to thread on right that it is ready
#pragma omp post grid(iam1+1,iam2) // indicate to thread above that it is ready

8. }
}

Fig. 10. The multilevel LU computational kernel using thread topology



Toward Enhancing OpenMP’s Work-Sharing Directives 653

4 Related Work

The NanosCompiler team has proposed groups of threads in association with paral-
lel regions [5,6]. Their notation permits the user to specify the number of independent
teams of threads that will be created. Since these thread groups are associated with the
parallel region, additional notation is required to assign work to the individual groups.
They also propose extensions to express the precedence relations in pipelined computa-
tions. These extensions are also valid in the scope of nested parallelism and are based on
the ability to name worksharing constructs and to specify a predecessor-successor rela-
tionship between them to support synchronization. Our topology simplifies specifying
the desired target sets and is more intuitive than the predecessor-successor relationship.
Furthermore, it does not rely on nested parallelism and the associated overhead.

There have been a variety of proposals for multilevel loop parallelism. The SGI com-
piler for the Origin [11] provides the SGI NEST clause on the OMP DO directive. The
NEST clause requires at least two variables as arguments to identify indices of subse-
quent DO-loops, which must be perfectly nested. It informs the compiler that the entire
set of iterations across the identified loops can be executed in parallel. The compiler can
then linearize the iteration space and divide it among the threads. Intel has proposed a
new directive to enable wavefront execution schema. Although this might sometimes
be appropriate, we expect that it will be hard to achieve good data locality in most
cases. Our proposal explicitly enables control of work distribution and, thus, enables
the expression of data locality.

New programming languages [1,3,4] are being proposed to facilitate high end ap-
plication development in a multithreading environment. These languages address prob-
lems faced by levels of scaling that are far from those currently envisaged for hierar-
chical SMPs, and they provide a wealth of new ideas related to correctness, locality,
efficiency of shared memory updates, and more. We will explore these ideas in the
context of OpenMP.

5 Conclusions

OpenMP is a widely deployed shared memory programming API that offers the pro-
mise of performance and ease of use. It seems possible that the judicious addition of
language features that increase the power of expressivity might also improve the achiev-
able performance of a variety of OpenMP codes. In this paper, we introduced a unified
notation for sharing work among subteams of threads and for flexibly executing multi-
ple levels of loop nests in parallel. Table 1 lists the proposed new OpenMP constructs
and clauses in the paper. This approach fits in well with existing features of the API.
As our future work, we will conduct more detailed performance study of the proposed
subteam concept implemented in the OpenUH compiler.

Table 1. Proposed new OpenMP Constructs and Clauses

Proposed OpenMP Directives/Clauses Description
omp onthreads / onthreads (clause only) Defines thread subteams for work sharing

omp topology name Defines the thread topology
omp post / omp wait Uses for point-wise synchronization
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